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THE WEAK LEFSCHETZ PROPERTY, MONOMIAL IDEALS,
AND LOZENGES

DAVID COOK II AND UWE NAGEL

Abstract. We study the weak Lefschetz property and the Hil-
bert function of level Artinian monomial almost complete inter-
sections in three variables. Several such families are shown to
have the weak Lefschetz property if the characteristic of the base

field is zero or greater than the maximal degree of any minimal

generator of the ideal. Two of the families have an interesting

relation to tilings of hexagons by lozenges. This lends further

evidence to a conjecture by Migliore, Miró-Roig, and the sec-
ond author. Finally, using our results about the weak Lefschetz

property, we show that the Hilbert function of each level Ar-
tinian monomial almost complete intersection in three variables
is peaked strictly unimodal.

1. Introduction

Let A be a standard graded Artinian algebra over a field K. Then A has
the weak Lefschetz property if there is a linear form � ∈ A such that, for all
integers d, the multiplication map

×� : [A]d → [A]d+1

has maximal rank, that is, it is surjective or injective. In this case, the linear
form � is called a Lefschetz element of A.

This property is of interest mainly because it constrains the Hilbert function
as shown in [7], which in turn has interesting consequences (see, e.g., [10]
for a spectacular application). Furthermore, it is a difficult task to classify
which rings do (and do not) have the weak Lefschetz property. For example,
in [7] it was shown that all height three complete intersections over a field of
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characteristic zero have the weak Lefschetz property, but this is still unknown
if we consider height four complete intersections.

In this note, we further explore level Artinian monomial almost complete
intersections in three variables, as discussed in [2], [3], and more extensively
in [9]. Even in this restricted setting, it is still unclassified which rings have
the weak Lefschetz property. However, in [9] a conjectural solution is put
forth, restated here along with known partial results in Section 2.

Several parts of this conjecture have been established in [9]. Here we resolve
some of the open cases, thus lending further evidence to the conjecture. In
Section 3, we consider three rather straightforward cases, where three of the
four parameters are equal. In Section 4, we consider the two cases where a
parameter is extremal.

The key to these results is the computation of a certain determinant which
was shown to play a crucial role in [9]. Interestingly, the computation of the
determinant in the two extremal cases reveals a connection to combinatorial
objects, namely to tilings of hexagons by lozenges.

While the conjecture in [9] is for algebras over fields of characteristic zero
only, our computation of the determinants allows us also to establish the weak
Lefschetz property also over fields of sufficiently large characteristic. In fact,
we give an effective lower bound on the characteristic in each case. However,
in Remark 4.8 we notice that in general the maximal degree of the minimal
generators gives no indication of a such bound on the characteristic.

Last, in Section 5 we show, using also our results from Section 4, that
every level Artinian monomial almost complete intersection R/I has a peaked
strictly unimodal Hilbert function; that is, if h is the Hilbert function of R/I ,
then

h(0) < · · · < h(s) = · · · = h(s + t − 1) > h(s + t) > · · · > h(e),

where s, . . . , s + t − 1 are the peak degrees and e is the socle degree of R/I .
This result in turn gives a partial answer to Question 8.2(1) from [9]. It shows
that for these algebras the knowledge of the Hilbert function does not allow
one to decide whether the algebra has the weak Lefschetz property or not.

2. A conjecture

Throughout this note, we assume K is an arbitrary field unless otherwise
specified.

We consider level Artinian monomial almost complete intersections in R =
K[x, y, z]. These are precisely the ideals of the form

(2.1) I =
(
xα+t, yβ+t, zγ+t, xαyβzγ

)
,

where 0 < t and, after a change of variables, 0 ≤ α ≤ β ≤ γ, as shown in
Section 6 of [9].
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Given known results and extensive computations, the authors of [9] made
the following conjecture.

Conjecture 2.1. Let K be an algebraically closed field of characteristic
zero and let I ⊂ R = K[x, y, z] be a level Artinian monomial almost complete
intersection, that is,

I =
(
xα+t, yβ+t, zγ+t, xαyβzγ

)
,

where 0 < t and 0 ≤ α ≤ β ≤ γ. Then:

(i) R/I has the weak Lefschetz property if any of the following conditions
hold:
(a) α = 0,
(b) α + β + γ is not divisible by 3,
(c) γ > 2(α + β), or
(d) t < 1

3 (α + β + γ).
(ii) R/I does not have the weak Lefschetz property if (α,β, γ, t) is either

(2,9,13,9) or (3,7,14,9).
(iii) Assuming the parameters fail all conditions in (i) and are not as in (ii),

then R/I does not have the weak Lefschetz property if and only if t is
even and any of the following conditions hold:
(a) α is even, α = β, and γ − α ≡ 3 (mod 6);
(b) α is odd, α = β, and γ − α ≡ 0 (mod 6); or
(c) α is odd, β = γ, and γ − α ≡ 0 (mod 3).

Notice that the conditions in part (iii) of Conjecture 2.1 can be restated in
a more compact form.

Conjecture 2.2. Under the assumptions as in part (iii) of Conjecture 2.1,
then R/I does not have the weak Lefschetz property if and only if t is even,
α + β + γ is odd, and either α = β or β = γ.

In order to begin working on this conjecture, the authors in [9] established a
particular matrix in Theorem 7.2 and the corresponding Corollary 7.3, whose
determinant completely determines if the ring R/I has the weak Lefschetz
property.

Theorem 2.3. Let K be an arbitrary field and let I be as in (2.1) with the
additional assumptions as in Conjecture 2.1, part (iii). Consider the square
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integer matrix M of size t + 1
3 (α + β − 2γ):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( γ
1
3 (α+β+γ)

) ( γ
1
3 (α+β+γ)−1

)
· · ·

(
γ

γ−t+1

)
( γ

1
3 (α+β+γ)+1

) ( γ
1
3 (α+β+γ)

)
· · ·

(
γ

γ−t+2

)
...(

γ
t−1

) (
γ

t−2

)
· · ·

( γ
1
3 (2γ−α−β)

)
(

γ+t
t+β−1

) (
γ+t

t+β−2

)
· · ·

( γ+t
1
3 (2(β+γ)−α)

)
(

γ+t
t+β−2

) (
γ+t

t+β−3

)
· · ·

( γ+t
1
3 (2(β+γ)−α)−1

)
...( γ+t

t+ 1
3 (β+γ−2α)

) ( γ+t
t−1+ 1

3 (β+γ−2α)

)
· · ·

(
γ+t

γ−α+1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then detM ≡ 0 (mod charK) if and only if R/I fails to have the weak Lef-
schetz property.

Notice that the matrix M has two distinct portions: a top part which has
t − 1

3 (α + β + γ) rows and a bottom part which has 1
3 (2(α + β) − γ) rows.

This will be especially useful in Section 4.
A large portion of Conjecture 2.1 has been proven; the results are sum-

marised as follows.

Remark 2.4. Part (i) of Conjecture 2.1 is true by Corollary 6.3, Lemma 6.6,
and Lemma 6.7 in [9]. Part (ii) is true by direct computation (e.g., using a
computer algebra system such as [5] or [6]). Furthermore, the sufficiency of
part (iii) holds by Corollary 7.4 in [9]. Hence, only the necessity of part (iii)
remains to be shown.

3. Some straightforward cases

We establish necessary and sufficient numerical conditions for the weak
Lefschetz property to hold in three families, all of which have the property
α = β = γ.

Proposition 3.1. Suppose α = β = γ = 1 and t ≥ 1. Let M be the matrix
defined in Theorem 2.3. Then

detM =

{
0, if t is even;
2, if t is odd.
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Proof. Notice, M ∈ Z
t×t is the matrix⎡

⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0

...
0 0 0 · · · 0 1 1(

t+1
t

) (
t+1
t−1

) (
t+1
t−2

)
· · ·

(
t+1
3

) (
t+1
2

) (
t+1
1

)

⎤
⎥⎥⎥⎥⎥⎦ ,

hence we need only t − 1 elimination steps along the bottom row to make this
matrix upper triangular.

For the first step, subtract
(
t+1

t

)
copies of the first row from the last row,

so the first entry in the last row becomes 0 and the second entry becomes(
t+1
t−1

)
−

(
t+1

t

)
. For the second step, subtract

(
t+1
t−1

)
−

(
t+1

t

)
copies of the second

row from the (new) last row, so the second entry becomes 0 and the third
entry becomes

(
t+1
t−2

)
−

(
t+1
t−1

)
+

(
t+1

t

)
. Continuing in this way, we see that after

i elimination steps, the first i entries of the last row are 0 and the (i + 1)st
entry of the last row is

(
t+1

t−i+1

)
−

(
t+1

t−i+2

)
+ · · · + (−1)i

(
t+1

t

)
.

Thus, t − 1 elimination steps of this form yield the t × t matrix

M̃ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0

...
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 �

⎤
⎥⎥⎥⎥⎥⎦ ,

where � =
(
t+1
1

)
−

(
t+1
2

)
+ · · · + (−1)t−1

(
t+1

t

)
. Using the identity

t+1∑
i=0

(−1)i

(
t + 1

i

)
= 0,

we see that detM = � = 1 + (−1)t+1. �

Now the following is immediate using Theorem 2.3.

Corollary 3.2. Suppose I = (xt+1, yt+1, zt+1, xyz) where t ≥ 1. Then the
algebra R/I has the weak Lefschetz property if and only if t is odd and the
characteristic of K is not 2.

Proposition 3.3. Suppose α = β = γ = 2 and t ≥ 2. Let M be the matrix
defined in Theorem 2.3. Then

detM =

{
−t2(t + 3), if t is even;
(t + 2)2(t − 1), if t is odd.
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Proof. Notice, M ∈ Z
t×t is given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0

...
0 0 0 0 · · · 0 1 2 1(

t+2
t+1

) (
t+2

t

) (
t+2
t−1

) (
t+2
t−2

)
· · ·

(
t+2
5

) (
t+2
4

) (
t+2
3

) (
t+2
2

)
(
t+2

t

) (
t+2
t−1

) (
t+2
t−2

) (
t+2
t−3

)
· · ·

(
t+2
4

) (
t+2
3

) (
t+2
2

) (
t+2
1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will eliminate the first t − 2 entries in the last two rows, independently,
starting with the penultimate row.

For the first step, subtract
(
t+2
t+1

)
copies of the first row from the penultimate

row, so the first entry becomes 0, the second entry becomes
(
t+2

t

)
− 2

(
t+2
t+1

)
,

and the third entry becomes
(
t+2
t−1

)
−

(
t+2
t+1

)
. For the second step, subtract(

t+2
t

)
− 2

(
t+2
t+1

)
copies of the second row from the (new) penultimate row, so

the second entry becomes 0, the third entry becomes(
t + 2
t − 1

)
−

(
t + 2
t + 1

)
− 2

[(
t + 2

t

)
− 2

(
t + 2
t + 1

)]

=
(

t + 2
t − 1

)
− 2

(
t + 2

t

)
+ 3

(
t + 2
t + 1

)
,

and the fourth entry becomes(
t + 2
t − 2

)
−

[(
t + 2

t

)
− 2

(
t + 2
t + 1

)]
=

(
t + 2
t − 2

)
−

(
t + 2

t

)
+ 2

(
t + 2
t + 1

)
.

Continuing in this way, after i elimination steps, the first i entries of the
penultimate row are 0, the (i + 1)st entry is(

t + 2
t − i + 1

)
− 2

(
t + 2

t − i + 2

)
+ 3

(
t + 2

t − i + 3

)
+ · · · + (−1)i+1(i + 1)

(
t + 2
t + 1

)
and the (i + 2)nd entry is(

t + 2
t − i

)
−

(
t + 2

t − i + 2

)
+ 2

(
t + 2

t − i + 3

)
+ · · · + (−1)ii

(
t + 2
t + 1

)
.

Noticing that the penultimate and ultimate rows only differ by the lower
index of the binomial coefficient, then we also see that after i elimination
steps of the last row, analogous to the elimination of the penultimate row
given above, the first i entries of the ultimate row are 0, the (i + 1)st entry is(

t + 2
t − i

)
− 2

(
t + 2

t − i + 1

)
+ 3

(
t + 2

t − i + 2

)
+ · · · + (−1)i(i + 1)

(
t + 2

t

)
and the (i + 2)nd entry is(

t + 2
t − i − 1

)
−

(
t + 2

t − i + 1

)
+ 2

(
t + 2

t − i + 2

)
+ · · · + (−1)ii

(
t + 2

t

)
.
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Thus, after t − 2 elimination steps of both the penultimate and ultimate
rows of M , we get the t × t matrix

M̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0

...
0 0 0 0 · · · 0 1 2 1
0 0 0 0 · · · 0 0 p q
0 0 0 0 · · · 0 0 r s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where

p =
(

t + 2
3

)
− 2

(
t + 2

4

)
+ 3

(
t + 2

5

)
+ · · · + (−1)t−2(t − 1)

(
t + 2
t + 1

)
,

q =
(

t + 2
2

)
−

(
t + 2

4

)
+ 2

(
t + 2

5

)
+ · · · + (−1)t−2(t − 2)

(
t + 2
t + 1

)
,

r =
(

t + 2
2

)
− 2

(
t + 2

3

)
+ 3

(
t + 2

4

)
+ · · · + (−1)t−2(t − 1)

(
t + 2

t

)
, and

s =
(

t + 2
1

)
−

(
t + 2

3

)
+ 2

(
t + 2

4

)
+ · · · + (−1)t−2(t − 2)

(
t + 2

t

)
.

Notice that for n ≥ 2,
n∑

j=0

(−1)j

(
n

j

)
j = n

n∑
j=1

(−1)j

(
n − 1
j − 1

)
= −n

n−1∑
j=0

(−1)j

(
n − 1

j

)
= 0.

Thus,
∑n

j=0(−1)n
(
n
j

)
f(j) = 0 for n ≥ 2 and any linear polynomial f , and we

then see that

p = (−2)
(

t + 2
0

)
− (−1)

(
t + 2

1

)
+ (−1)tt

(
t + 2

t

)
= (−1)tt + t,

q = (−3)
(

t + 2
0

)
− (−2)

(
t + 2

1

)
+ (−1)t(t − 1)

(
t + 2

t

)
= (−1)t(t − 1) + 2t + 1,

r = 1
(

t + 2
0

)
+ (−1)tt

(
t + 2
t + 1

)
+ (−1)t+1(t + 1)

(
t + 2
t + 2

)
= (−1)t

(
t2 + t − 1

)
+ 1, and

s = 2
(

t + 2
0

)
+ (−1)t(t − 1)

(
t + 2
t + 1

)
+ (−1)t+1t

(
t + 2
t + 2

)
= (−1)t

(
t2 − 2

)
+ 2.

Hence, as detM = detM̃ = ps − qr, the claim follows. �
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Corollary 3.4. Suppose I = (xt+2, yt+2, zt+2, x2y2z2) where t ≥ 2. Then
the algebra R/I has the weak Lefschetz property if the characteristic of K is
zero or greater than t + 3.

This reduction generalises nicely.

Remark 3.5. In the general case when 1 ≤ α = β = γ ≤ t, then the associ-
ated matrix M defined in Theorem 2.3 can be reduced to a diagonal matrix
with entries 1 on the diagonal except for the bottom-right α × α matrix.
Hence, finding detM can be reduced to finding the determinant of an α × α
matrix.

Using this technique, we have been able to verify that when α = β = γ = 3
and t ≥ 3, then

detM =

{
0, if t is even;
− 1

4 (t − 1)2(t + 1)(t + 2)(t + 4)2, if t is odd.

Thus, if I = (xt+3, yt+3, zt+3, x3y3z3) where t ≥ 3, then the algebra R/I fails
to have the weak Lefschetz property if t is even. Further, R/I has the weak
Lefschetz property if t is odd and either the characteristic of K is zero or
greater than t + 4.

It is important to notice how the results in this section verify parts of
Conjecture 2.2:

Remark 3.6. For this remark, assume K is a field of characteristic zero.
In Corollary 3.2 and Remark 3.5, we have α+β + γ is odd, α = β = γ, and

R/I has the weak Lefschetz property if and only if t is odd. This confirms
Conjecture 2.2 for their respective cases.

Further still, in Corollary 3.4 we have that α+β +γ is even and R/I always
has the weak Lefschetz property. This also confirms Conjecture 2.2 for the
case α = β = γ = 2.

4. Two extremal cases

In this section, we consider two extremal cases for the parameters in Conjec-
ture 2.2 where the weak Lefschetz property can be shown to hold. We do this
by computing the determinants of the associated matrices from Theorem 2.3.

A nice concept that will allow a drastic simplification in the following de-
terminants is the hyperfactorial.

Notation 4.1. Let n ≥ 0 be an integer. Then define the hyperfactorial of
n to be

H(n) =
n−1∏
i=0

i!

where it is important to notice that the product goes to n − 1 and H(0) = 1.
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We need the following formula.

Lemma 4.2. Let T ≥ B ≥ 0 be integers and let N be an n × n matrix with
entry (i, j) given by

N(i,j) =
(

T

B + i − j

)
(1 ≤ i, j ≤ n).

Then

detN =
H(n)H(B)H(T − B)H(T + n)

H(B + n)H(T − B + n)H(T )
.

Proof. This follows by an application of Lemma 3 in [8] as described there
on page 8. We have written the result more conveniently, in particular, making
use of the hyperfactorial form. �

We consider the case of R/I as in Conjecture 2.2 where γ is maximal
with respect to given α and β, that is, γ = 2(α + β). Notice here, that the
parameters α,β, γ, satisfy the conditions of Theorem 2.3.

Theorem 4.3. Let 1 ≤ α ≤ β,γ = 2(α+β), and let t ≥ 1
3 (α+β+γ) = α+β.

Set n = t − (α + β). Then the matrix M from Theorem 2.3 is a n × n matrix
which has entry (i, j) given by

M(i,j) =
(

γ

α + β + i − j

)
(1 ≤ i, j ≤ n),

and determinant

detM =
H(n)H2(α + β)H(γ + n)

H(γ)H2(t)
.

Proof. First, notice that since γ = 2(α + β) the bottom part of M from
Theorem 2.3 has zero rows, so only the top part remains. This gives precisely
the matrix defined above.

Setting B = 1
2γ = α + β and T = γ = 2(α + β), then applying Lemma 4.2

provides

detM =
H(n)H(α + β)H(γ − (α + β))H(γ + n)

H(α + β + n)H(γ − (α + β) + n)H(γ)

=
H(n)H2(α + β)H(γ + n)

H(γ)H2(t)
,

where we use that γ − (α + β) = α + β and α + β + n = t. �
As noted before, the parameters satisfy the conditions of Theorem 2.3.

Corollary 4.4. Let 1 ≤ α ≤ β,γ = 2(α + β), and let t ≥ 1
3 (α + β + γ) =

α + β. Consider the ideal given by

I =
(
xα+t, yβ+t, zγ+t, xαyβzγ

)
⊂ R = K[x, y, z].

Then R/I has the weak Lefschetz property if charK = 0 or charK ≥ t+α+β.
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Proof. Given the closed form of the determinant in Theorem 4.3, it is clear
that determinant is never 0. Further still, we see that detM is not divisible
by any prime greater than or equal to t + α + β. �

We now consider the case of R/I as in Conjecture 2.2 where t is minimal
with respect to given α,β, and γ, that is, t = 1

3 (α +β + γ). If we assume that
1 ≤ α ≤ β ≤ γ ≤ 2(α + β) and α + β + γ is divisible by 3, then the parameters
satisfy the conditions of Theorem 2.3.

Theorem 4.5. Let 1 ≤ α ≤ β ≤ γ ≤ 2(α+β) such that α+β +γ is divisible
by 3 and let t = 1

3 (α + β + γ). Set n = 1
3 (2(α + β) − γ). Then the matrix M

from Theorem 2.3 is a n × n matrix which has entry (i, j) given by

M(i,j) =
(

γ + t

β + t + 1 − i − j

)
(1 ≤ i, j ≤ n),

and determinant

detM = (−1)(
n
2) H(2t − γ)H(2t − β)H(2t − α)H(α + β + γ)

H(α + t)H(β + t)H(γ + t)
.

Proof. First, notice that since t = 1
3 (α + β + γ) then the top part of M

from Theorem 2.3 has zero rows, so only the bottom part remains. This gives
precisely the matrix defined above.

In order to compute the determinant, we must first “flip” the matrix up-
side down. This can be done in

(
n
2

)
operations (it can be done with fewer

operations, but this does not matter here) yielding the matrix M̄ such that
detM = (−1)(

n
2) detM̄ . More importantly, the matrix M̄ has, for 1 ≤ i, j ≤ n,

entry (i, j) given by

M̄(i,j) =
(

γ + t

β + t − n + i − j

)
.

Setting B = β + t − n and T = γ + t, then applying Lemma 4.2 provides

detM̄ =
H(n)H(β + t − n)H(γ − β + n)H(n + γ + t)

H(β + t)H(γ − β + 2n)H(γ + t)

=
H(2t − γ)H(2t − α)H(2t − β)H(α + β + γ)

H(β + t)H(α + t)H(γ + t)
,

where we use that γ + n = 2t and α + β = n + t. �

As noted before, the parameters satisfy the conditions of Theorem 2.3.

Corollary 4.6. Let 1 ≤ α ≤ β ≤ γ ≤ 2(α + β) such that α + β + γ is
divisible by 3 and let t = 1

3 (α + β + γ). Consider the ideal given by

I =
(
xα+t, yβ+t, zγ+t, xαyβzγ

)
⊂ R = K[x, y, z].

Then R/I has the weak Lefschetz property if charK = 0 or charK ≥ α+β +γ.
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Proof. Given the closed form of the determinant in Theorem 4.5, it is clear
that the determinant is never 0. Further still, we see that detM is not divisible
by any prime greater than or equal to α + β + γ because α + β + γ − 1 is the
maximum of the multiplicands in the numerator of the determinant. �

It is important to notice how the two results in this section verify parts of
Conjecture 2.2.

Remark 4.7. Consider the case presented in Theorem 4.3. Notice that
β < γ and if α = β then α+β +γ = 6α is even, and this verifies Conjecture 2.2
in the case of γ being maximal.

Consider now the case presented in Theorem 4.5. Notice that t = 1
3 (α +

β + γ) is even if and only if α + β + γ is even. Hence, t cannot be even at the
same time as α + β + γ is odd, and this verifies Conjecture 2.2 for the case of
t being minimal.

Remark 4.8. We notice that in the cases of γ being maximal and t being
minimal, the characteristics of K where R/I can possibly fail to have the
weak Lefschetz property are bounded above by the maximum of the degrees
of the generators of I . However, in other cases described in Conjecture 2.2,
this is not true.

For example, consider the case (α,β, γ, t) = (2,9,13,12) where the maxi-
mum degree of a generator of I is 25. In this case,

detM = −410893744849276115319750

= −2 · 32 · 53 · 114 · 135 · 19 · 233 · 29 · 5011.

Hence, when charK = 5011 (or any other prime divisor of detM ) the algebra
R/I fails to have the weak Lefschetz property.

There is a natural explanation why the determinants in Theorems 4.3
and 4.5 are non-trivial. The determinants compute the number of certain
combinatorial objects. More specifically, let a, b, c be positive integers and
consider a hexagon with side lengths a, b, c, a, b, c with angles 120◦; a hexagon
as described is called an (a, b, c)-hexagon. A lozenge is a rhombus of unit
side-length with angles 60◦ and 120◦.

The number of lozenge tilings is familiar (see Equation (1.1) in [4]).

Proposition 4.9. Let a, b, c ∈ N. Then the number of lozenge tilings of an
(a, b, c)-hexagon) is

H(a)H(b)H(c)H(a + b + c)
H(a + b)H(a + c)H(b + c)

.

Notice that if we set a = n, b = B, and c = T − B then the determinant found
in Lemma 4.2 counts the number of lozenge tilings of an (a, b, c)-hexagon, i.e.
an (n,B,T − B)-hexagon. This connection is noted in both [4] and [8]. See
Figure 1 for an example tiling of a hexagon.
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Figure 1. A (2,4,3)-hexagon tiled by lozenges.

In particular, the matrix M associated to the case when γ is maximal
(resp., t is minimal) in Theorem 4.3 (resp., Theorem 4.5) has determinant
whose modulus counts the number of lozenge tilings of (α+β, t − α − β,α+β)-
hexagons (resp., (2t − α,2t − β,2t − γ)-hexagons).

This observation raises some natural questions:
(i) Can the connection above be extended in some way to all matrices M

appearing in Theorem 2.3?
(ii) More generally, can any such combinatorial connection be found?
(iii) Is there some natural property of the level Artinian monomial almost

complete intersections which directly associates to the tilings of hexagons
by lozenges?

5. The Hilbert function is peaked strictly unimodal

The Hilbert function is strongly tied to many properties of graded alge-
bras. If a graded algebra A has the weak Lefschetz property, then its Hilbert
function is unimodal as shown in [7]. Ahn and Shin strengthened this result
for level graded algebras.

Proposition 5.1 ([1], Theorem 3.6). Let A be a level artinian standard
graded K-algebra with the weak Lefschetz property. Then the Hilbert function
of A is peaked strictly unimodal.

We have seen that some level artinian monomial almost complete intersec-
tions in three variables fail to have the weak Lefschetz property. Nevertheless,
we show in Lemma 5.3 that their Hilbert functions are always peaked strictly
unimodal regardless whether the quotient has the weak Lefschetz property or
not.
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First, we recall the form of a free resolution of level artinian monomial
almost complete intersections in three variables ([9], Proposition 6.1).

Proposition 5.2. Let I be as in (2.1) and let σ = α + β + γ. Then R/I
has a free resolution of the form

(5.1) 0 → R3(−σ − 2t) →

R3(−σ − t)
⊕

R(−α − β − 2t)
⊕

R(−α − γ − 2t)
⊕

R(−β − γ − 2t)

→

R(−σ)
⊕

R(−α − t)
⊕

R(−β − t)
⊕

R(−γ − t)

→ R → R/I → 0.

Furthermore, if α > 0 then this resolution is minimal.

We are ready to prove the following key result.

Lemma 5.3. Let 1 ≤ α ≤ β ≤ γ < 2(α+β), t > 1
3 (α+β+γ), and let α+β+γ

be divisible by 3. Consider the ideal

I =
(
xα+t, yβ+t, zγ+t, xαyβzγ

)
⊂ R = K[x, y, z].

Then the Hilbert function of R/I is peaked strictly unimodal with exactly two
peaks in degrees s = 2

3 (α + β + γ) + t − 2 and s + 1.

Proof. Let h be the Hilbert function of R/I , that is, h(d) = dimK [R/I]d
for d ∈ Z.

By Proposition 5.2 the socle-degree of R/I is e = α + β + γ + 2t − 3 and
the Cohen–Macaulay type of R/I is 3. This implies h(e) = 3 and h(d) = 0 for
d > e.

Further, setting s = 2
3 (α+β +γ)+ t − 2, then, by Lemma 7.1 in [9], h(s) =

h(s+1). Moreover, since 2(α+β) > γ and as α+β + γ is divisible by 3, then

(5.2) 2(α + β) − γ ≥ 3.

Now the proof is carried out in two steps.
Step 1: Strict increase for 0 ≤ d ≤ s. First, notice that since d ≤ s, then

α+β +γ + t > s ≥ d and further α+β +2t > 1
3 (4α+4β +γ)+ t > s ≥ d. This

implies that the ultimate and penultimate free modules in the Resolution (5.1)
yield no contribution to the Hilbert function in degree d. Hence, if d ≤ s, we
have that h(d) is given by(

2 + d

2

)
−

(
2 + d − α − β − γ

2

)

−
[(

2 + d − α − t

2

)
+

(
2 + d − β − t

2

)
+

(
2 + d − γ − t

2

)]
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and thus h(d + 1) − h(d) is(
2 + d

1

)
−

(
2 + d − α − β − γ

1

)

−
[(

2 + d − α − t

1

)
+

(
2 + d − β − t

1

)
+

(
2 + d − γ − t

1

)]
.

For 0 ≤ d < s, when considering h(d + 1) − h(d), there are eight possible
cases where the different binomial terms are non-zero in h(d+1) − h(d). Fur-
thermore, these eight cases are broken into two families: when d+1 < α+β+γ
and when α + β + γ ≤ d + 1.

Assume d + 1 < α + β + γ.
(i) If d + 1 < α + t, then

h(d + 1) − h(d) = 2 + d

≥ 2.

(ii) If α + t ≤ d + 1 < β + t, then

h(d + 1) − h(d) = 2 + d − (2 + d − α − t)
= α + t

≥ 3 (as t ≥ 2 and α ≥ 1).

(iii) If β + t ≤ d + 1 < γ + t, then

h(d + 1) − h(d) = 2 + d −
[
(2 + d − α − t) + (2 + d − β − t)

]
= α + β + 2t − (2 + d)

≥ α + β + t − γ (since γ + t > d + 1)

≥ 2
3
(
2(α + β) − γ

)
+ 1

(
as t >

1
3
(α + β + γ)

)
≥ 3

(
by Inequality (5.2)

)
.

(iv) If γ + t ≤ d + 1, then

h(d + 1) − h(d) = 2 + d

−
[
(2 + d − α − t) + (2 + d − β − t) + (2 + d − γ − t)

]
= α + β + γ + 3t − 2(2 + d)

≥ α + β + γ + 3t − 2(s + 1)
(

as t >
1
3
(α + β + γ)

)

= t − 1
3
(α + β + γ) + 2

(
since s =

2
3
(α + β + γ) + 2t − 2

)

≥ 3
(

again by t >
1
3
(α + β + γ)

)
.

Assume α + β + γ ≤ d + 1.
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(i) If d + 1 < α + t, then

h(d + 1) − h(d) = 2 + d − (2 + d − α − β − γ)
= α + β + γ

≥ 3 (as γ ≥ β ≥ α ≥ 1).

(ii) If α + t ≤ d + 1 < β + t, then

h(d + 1) − h(d) = 2 + d −
[
(2 + d − α − β − γ) + (2 + d − α − t)

]
= 2α + β + γ + t − (2 + d)

≥ 2α + γ (as γ + t ≥ β + t > d + 1, since γ ≥ β)

≥ 3 (since γ ≥ α ≥ 1).

(iii) If β + t ≤ d + 1 < γ + t, then

h(d + 1) − h(d) = 2 + d

−
[
(2 + d − α − β − γ) + (2 + d − α − t) + (2 + d − β − t)

]
= 2α + 2β + γ + 2t − 2(2 + d)

≥ 2α + 2β − γ (as γ + t > d + 1)

≥ 3
(
by Inequality (5.2)

)
,

where the second inequality uses Inequality (5.2).
(iv) If γ + t ≤ d + 1, then

h(d + 1) − h(d) = 2 + d −
[
(2 + d − α − β − γ) + (2 + d − α − t)

]
−

[
(2 + d − β − t) + (2 + d − γ − t)

]
= 2(α + β + γ) + 3t − 3(2 + d)

≥ 2(α + β + γ) + 3t − 3(s + 2) + 3 (as s > d)

= 3
(

since s =
2
3
(α + β + γ) + t − 2

)
.

Thus, we have that h(d + 1) − h(d) > 0 for all 0 ≤ d < s implying that the
Hilbert function is strictly increasing from degree 0 to degree s.

Step 2: Strict decrease for s + 1 ≤ d ≤ e. Let k be the Hilbert function
of the K-dual of R/I , that is of (R/I)∨. Then k(d) = dimK [(R/I)∨]d, so
h(d) = k(−d) for all d ∈ Z.

Since d ≥ s+1, then α+β+γ ≤ s+1 ≤ d and, using Inequality (5.2), α+t ≤
β + t ≤ γ + t ≤ s + 1 ≤ d. This implies that the ultimate and penultimate free
modules in the resolution of (R/I)∨ (which is dual to the Resolution (5.1))
yield no contribution to the Hilbert function of (R/I)∨ in degree −d. Hence,
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if s + 1 ≤ d, we have that k(−d) is

3
(

−d − 1 + α + β + γ + 2t

2

)
− 3

(
−d − 1 + α + β + γ + t

2

)

−
[(

−d − 1 + β + γ + 2t

2

)
+

(
−d − 1 + α + γ + 2t

2

)

+
(

−d − 1 + α + β + 2t

2

)]
and thus k(−d) − k(−d − 1) is

3
(

−d − 2 + α + β + γ + 2t

1

)
− 3

(
−d − 2 + α + β + γ + t

1

)

−
[(

−d − 2 + β + γ + 2t

1

)
+

(
−d − 2 + α + γ + 2t

1

)

+
(

−d − 2 + α + β + 2t

1

)]
.

For s + 1 ≤ d < e, when considering h(d) − h(d + 1) = k(−d) − k(−d − 1),
there are eight possible cases where the different binomial terms are non-zero
in k(−d) − k(−d − 1). Furthermore, these eight cases are broken into two
families: when d + 1 ≤ α + β + γ + t − 2 and when α + β + γ + t − 2 < d + 1.

Assume α + β + γ + t − 2 < d + 1.
(i) If β + γ + 2t − 2 < d + 1, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t)

≥ 3
(

−(e − 1) − 2 + α + β + γ + 2t
)

(as e > d)
= 6,

where we use d + 1 ≤ e = α + β + γ + 2t − 3.
(ii) If α + γ + 2t − 2 < d + 1 ≤ β + γ + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − (−d − 2 + β + γ + 2t)
= 3α + 2β + 2γ + 4t − 4 − 2d

≥ 3α + 2 (since β + γ + 2t − 2 ≥ d + 1)

≥ 5 (as α ≥ 1).

(iii) If α + β + 2t − 2 < d + 1 ≤ α + γ + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − (−d − 2 + β + γ + 2t)

− (−d − 2 + α + γ + 2t)
= 2α + 2β + γ + 2t − 2 − d

≥ α + 2β + 1 (since α + γ + 2t − 2 ≥ d + 1)

≥ 4 (as β ≥ α ≥ 1).
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(iv) If s + 1 < d + 1 ≤ α + β + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − (−d − 2 + β + γ + 2t)

− (−d − 2 + α + γ + 2t) − (−d − 2 + α + β + 2t)
= α + β + γ

≥ 3 (as γ ≥ β ≥ α ≥ 1).

Assume α + β + γ + t − 2 < d + 1.
(i) If β + γ + 2t − 2 < d + 1, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t)

− 3(−d − 2 + α + β + γ + t)
= 3t

≥ 6 (since t ≥ 2).

(ii) If α + γ + 2t − 2 < d + 1 ≤ β + γ + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − 3(−d − 2 + α + β + γ + t)

− (−d − 2 + β + γ + 2t)
= t + d + 2 − β − γ

≥ 3t + α − β (since d + 1 > α + γ + 2t − 2)

≥ 3 + 2α + γ

(
as t >

1
3
(α + β + γ)

)
≥ 6 (since γ ≥ β ≥ α ≥ 1),

where the second inequality uses that t > 1
3 (α + β + γ).

(iii) If α + β + 2t − 2 < d + 1 ≤ α + γ + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − 3(−d − 2 + α + β + γ + t)

− (−d − 2 + β + γ + 2t) − (−d − 2 + α + γ + 2t)
= 2d + 4 − α − β − 2γ − t

≥ α + β − 2γ + 3t (as d + 1 > α + β + 2t − 2)

≥ 2α + 2β − γ + 3
(

since t >
1
3
(α + β + γ)

)
≥ 6

(
by Inequality (5.2)

)
,

where the second inequality uses that t > 1
3 (α + β + γ), and the third

inequality uses Inequality (5.2).
(iv) If s + 1 < d + 1 ≤ α + β + 2t − 2, then

k(−d) − k(−d − 1) = 3(−d − 2 + α + β + γ + 2t) − 3(−d − 2 + α + β + γ + t)

− (−d − 2 + β + γ + 2t) − (−d − 2 + α + γ + 2t)

− (−d − 2 + α + β + 2t)
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= 3d + 6 − 2(α + β + γ) − 3t

≥ 3
(

as d + 1 > s + 1 and s =
2
3
(α + β + γ) + 2t − 2

)
.

Hence, we have that h(d) − h(d+1) = k(−d) − k(−d − 1) > 0 for all s+1 ≤
d < e implying that the Hilbert function is strictly decreasing from s + 1 to
the socle degree e. �

This provides the following result which gives an affirmative answer to (part
of) Question 8.2(1) in [9].

Theorem 5.4. Let I ⊂ R = K[x, y, z] be a level Artinian monomial almost
complete intersection. Then R/I has a peaked strictly unimodal Hilbert func-
tion.

Proof. In case (i) of Conjecture 2.1, Remark 2.4 guarantees the weak Lef-
schetz property of R/I , so the claim follows by Proposition 5.1.

Similarly, we conclude in case (iii) of Conjecture 2.1, when γ is maximal or
t is minimal by using Corollaries 4.4 and 4.6.

In all the remaining cases of Conjecture 2.1, we conclude by Lemma 5.3. �
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