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ON HOEFFDING DECOMPOSITION IN Lp

STANIS�LAW KWAPIEŃ

Abstract. We give a new proof of a result by J. Bourgain
which says that if (Ω, F , P ) is a product of probability spaces

then Vd—the orthonormal in L2(Ω, F , P ) projection on the space

spanned by those X ∈ L2(Ω, F , P ) which depend on most of d-
variables is a bounded operator in Lp(Ω, F , P ) for 1 < p < ∞.

We prove that for X ∈ Lp(Ω, F , P ) E|Vd(X)|p ≤ Cp,dE|X|p with

Cp,d = (c p̂
ln p̂

)dp, where p̂ = max{p, p
p−1

} and c is an universal
constant.

1. Introduction and definitions

The Hoeffding decomposition of U-statistics of order d into sums of canon-
ical statistics of order k ≤ d plays a crucial role in proving limit theorems
for U-statistics of order d. The reason is that usually in limit theorems
each canonical statistic of order k requires a renormalization which depends
on order k. The decomposition formula and its basic properties, for ran-
dom variables with finite variances, were given by W. Hoeffdinig in 1948,
[6]. The purpose of the present paper is to extend the Hoeffding decom-
position to the class of random variables with finite pth moment and to
prove basic estimates. The definition of Hoeffding projections, which we
give below is somewhat unorthodox. It is put in more abstract and gen-
eral form which is more convenient for our purposes. Let (Ω, F , P ) be a
fixed probability space and (Fi)i∈I a family of independent σ-subfields of F
such that F = σ{Fi, i ∈ I}, that is, F is the σ-field generated by

⋃
i∈I Fi.

Equivalently, we can assume that (Ω, F , P ) =
⊗

i∈I(Ωi, Fi, Pi) is a proba-
bility product space, and Fi is identified with events which depend on the
ith coordinate. For each J ⊂ I , we put FJ = σ{Fi, i ∈ J }. For a Hilbert
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space H , we will denote by Lp(J,H) = Lp(Ω, FJ , P ;H) the space of all ran-
dom variables X with values in H , with a separable range, FJ -measurable
and such that ‖X‖p = (E|X|p) 1

p < ∞, where | · | = ‖ · ‖H is the norm in H .
Lp(J,H) is a closed subspace of Lp(I,H). The space Lp(I,H) will be de-
noted simply by Lp(H) or Lp when H = R. |J | denotes the cardinality of
J , J = {J ∈ I : |J | < ∞} and Jd = {J ⊂ I : |J | = d}. By E|J(X), we will
abbreviate the conditional expectation E(X| FJ) and by EJ(X) the integra-
tion with respect to the variables in J , that is, EJ(X) = E(X| FI\J). For
1 ≤ p ≤ ∞ the operator E|J : Lp(H) → Lp(J,H) is a projection of norm 1 and
“onto”. For 1 ≤ p < ∞, its adjoint operator is again the operator E|J . More-
over E|JE|K = E|J ∩K for each J,K ⊂ I . Therefore, there is a unique family
(QJ)J ∈J of projections in Lp(H) such that E|J =

∑
K⊂J QK for each J ∈ J

and QJQK = 0 for each different J,K ∈ J . An easily verifiable formula for
QJ , J ∈ J is

QJ =
∑
K⊂J

(−1)|J |+|K|E|K .

By the martingale convergence theorem for each 1 ≤ p < ∞, X ∈ Lp(H)

X = lim
J ∈J

E|J(X) = lim
J ∈J

∑
K⊂J

QK(X),

where limJ ∈J is the generalized limit in Lp(H) over the directed, by inclusion,
set—J . The formula on QJ proves that the projections QJ , J ∈ J are selfad-
joint operators in L2(H). Hence, it follows that they are projections of norm
1 and that for each X ∈ L2(H) the family QK(X),K ∈ J is orthogonal in
Hilbert space L2(H). Thus, for each X ∈ L2(H) we have X =

∑
K∈J QK(X)

and the convergence in L2(H) is unconditional, that is, it does not depend on
order of the summation. In particular for each X ∈ L2(H), we obtain

X =
∞∑

d=0

Ud(X), where Ud(X) =
∑

J ∈Jd

QJ(X)

and the convergence of the both sums is in L2(H) unconditional. This is what
is called the Hoeffding decompostion of random variable X into canonical U-
statistics. Ud(X) is called canonical U-statistic of order d associated to X .

We easily see that U0(X) = EX and for d ≥ 1 the recurrence formula holds

Ud(X) =
∑

J ∈Jd

E|J
(
X − Ud−1(X)

)
.

A more explicit formula for Ud can be written in the case of the following
example:

Example. Let (εi)i∈I be a family of independent random variables each
of them having two values and Eεi = 0, Eε2

i = 1. Let Fi = σ{εi} for i ∈ I
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and for J ∈ J let wJ =
∏

i∈J εi. In this case, we check easily that for X ∈ L2

Ud(X) =
∑

J ∈Jd

wJE(wJX).

In this paper, we investigate which of the above properties of the Hoeffding
decomposition can be saved if we take Lp instead of L2. The main result of
the paper is the following theorem.

Theorem. For each nonnegative integer d and 1 < p < ∞, X ∈ Lp the
sum

Ud(X) =
∑

J ∈Jd

QJ(X),

is well defined and the convergence in Lp is unconditional. Moreover,
‖Ud(X)‖p ≤ Cp,d‖X‖p, where (c p̂

ln p̂ )d, p̂ = max{p, p
p−1 } and c is an universal

constant.

Also we will show that in general theorem is false for p = 1 and for p 	= 2
it is not true that X =

∑∞
d=0 Ud(X) for all X ∈ Lp. Except for the constant

theorem was proved by a different method by J. Bourgain, [1] which yields
the constant Cp,d = (c p̂

5
2

ln2 p̂
)d. For d = 1, the theorem was proved in [2] and we

follow the method from that paper.

2. Rosenthal type inequalities for canonical U-statistics

A random variable X in Lp(H) is said to be a finite canonical U-statistics
of order d if X can be written in the form X =

∑
J ∈A XJ for some finite set

A ⊂ Jd and the family (XJ)J ∈A fulfills XJ ∈ Lp(J ;H) and E{j}XJ = 0 for
each j ∈ J ∈ Jd. The last two properties of XJ are the same as XJ = QJ(X).
Thus, the above representation of X is unique and we can equivalently say
that X is a finite canonical U-statistic of order d if QJ(X) is nonzero only for a
finite collection of J ∈ Jd and X = Ud(X) =

∑
J ∈Jd

QJ(X). The proof of the
theorem is based on the Proposition, given below, which in the case of d = 1
coincides with the well known Rosenthal inequality for sums of independent
random variables. Also, it is strongly related to Theorem 2.3 from [4] and
Theorem 2 from [5], where only symmetric U-statistics are considered and
the estimate is expressed in terms which complicate its usefulness for a proof
of our main theorem. To specify constants in the proposition as well for
its proof, we need to recall the Burkholder inequality, cf. [3], which is a
martingale version of the Rosenthal Inequality. It states that for p ≥ 2 there
are constants a(p), b(p) such that for each martingal (Mj)j∈N with values in
a Hilbert space, with respect to a filtration (Gj)j∈N , Δj = Mj − Mj−1 and
M = limj Mj we have

E|M |p ≤ a(p)E

( ∞∑
j=1

E(|Δj |2| Gj−1)

) p
2

+ b(p)
∞∑

j=1

E|Δj |p.
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For different possible choices of the constants a(p), b(p), we refer to [8]. In
particular, we can have a(p) = b(p) = (c p

lnp )p and c is an universal constant.
For a fixed choice of the constants, let us put c(p, d, k) =

(
d
k

)
a(p)d−kb(p)k.

Proposition. Let 2 ≤ p < ∞ and let d be a fixed nonnegative integer num-
ber. If X ∈ Lp(H) and XJ = QJ(X) for J ∈ Jd, then

d∑
k=0

c(p, d, k)
∑

K∈Jk

E

( ∑
K⊂J ∈Jd

E|K |XJ |2
) p

2

≤ 2d
(
a(p) + b(p)

)d
E|X|p.

If in addition X is a finite canonical U-statistics of order d, then

E|X|p ≤
d∑

k=0

c(p, d, k)
∑

K∈Jk

E

( ∑
K⊂J ∈Jd

E|K |XJ |2
) p

2

.

Proof. We will prove the second inequality, while the proof of the first will
be postponed until the next section where it will be given together with a proof
of theorem. Without lost of generality, we can assume that I = {1,2, . . . }.
For J ∈ J , j ∈ I let maxJ = max{j : j ∈ J } and Mj =

∑
J ∈Jd,maxJ ≤j XJ .

Then (Mj)j∈I is a martingale with values in H with respect to the filtra-
tion Gj = σ(Fi, i ≤ j). Its martingale differences are equal to Δj = Mj −
Mj−1 =

∑
J ∈Jd,maxJ=j XJ . Since X is a finite U-statistic X = Mj for large

enough j. Therefore to complete the proof of the first inequality it is enough
to estimate the right side of of the above martingale inequality by the right
side of the second inequality stated in the proposition. We will prove it
by induction. For d = 0, it is trivial. For d = 1, we have that Δj = Xj

and the two right sides of the inequalities coincide. Assume that propo-
sition holds true for d. For the purpose of the proof, it is more conve-
nient to view the probability space (Ω, F , P ) as a product of probability
spaces as explained in the Introduction. For each j ∈ I when we fix the
jth coordinate the variable Δj is a canonical U-statistics of order d − 1
and then by the inductive assumption E|{j} |Δj |p ≤

∑
maxK<j,|K|<d c(p, d −

1, |K|)E|{j}(
∑

K∪{j} ⊂J ∈Jd
E|K∪{j} |XJ |2) p

2 . Hence, summing the inequalities
over j ∈ I and taking K ∪ {j} as K we get

∑
j∈I

E|Δj |p ≤
d∑

k=1

c(p, d − 1, k − 1)
∑

K∈Jk

( ∑
K⊂J ∈Jd

E|K |XJ |2
) p

2

.

To estimate the first sum on the right side of the martingale inequality, let us
notice that E(|Δj |2| Gj−1) = E{j} |Δj |2 and thus E(

∑∞
j=1 E(|Δj |2| Gj−1))

p
2 =

E‖Δ̃‖p

H̃
where: H̃ = l2(L2(H)), that is, it is the space of all families of random

variables (Yj)j∈I in L2(H) such that ‖(Yj)j∈I ‖H̃ = (
∑

j∈I E‖Yj ‖2
H)

1
2 < ∞,

Δ̃ = (Δ̃j)j∈I and where for a random variable Y ∈ L2(H) and j ∈ I the
random variable Ỹj ∈ L2(L2(H)) is defined by Ỹj((ωi)i∈I))((ω′

i)i∈I)) = (Y −
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E{j}Y )((ω′ ′
i )i∈I) where ω′ ′

j = ω′
j and ω′ ′

i = ωi for i 	= j. We easily check that
Δ̃ is a finite canonical U-statistics of order d − 1 with values in H̃ and for each
J ∈ Jd−1 it is Δ̃J = (Wj)j∈I where Wj = (X̃J ∪{j})j if maxJ < j and Wj = 0
otherwise. Again by the inductive assumption we get

E‖Δ̃‖p

H̃
≤

∑
K∈J ,|K|<d

c(p, d − 1, |K|)E
( ∑

K⊂J ∈Jd−1

E|K ‖Δ̃J ‖2
H̃

) p
2

=
∑

K∈J ,|K|<d

c(p, d − 1, |K|)

× E

( ∑
K⊂J ∈Jd−1

E|K

( ∑
j>maxJ

E{j} |XJ ∪{j} |2
) p

2
)

=
∑

K∈J ,|K|<d

c(p, d − 1, |K|)E
( ∑

K⊂J ∈Jd−1

E|K

( ∑
j>maxJ

|XJ ∪{j} |2
) p

2
)

≤
∑

K∈J ,|K|<d

c(p, d − 1, |K|)E
( ∑

K⊂J ∈Jd

E|K |XJ |2
) p

2

.

Thus, we obtain

E

( ∞∑
j=1

E(|Δj |2| Gj−1)
) p

2

≤
d−1∑
k=0

c(p, d − 1, k)
∑

K∈Jk

E

( ∑
K⊂J ∈Jd

E|K |XJ |2
) p

2

.

The above inequality and the one proved earlier complete the induction step
since c(p,0)c(p, d − 1, k) + c(p,1)c(p, d − 1, k − 1) = c(p, d, k) for d = 2, . . . and
0 ≤ k ≤ d (where we put c(p, d, −1) = 0 = c(p, d, d + 1)). Thus, the second
inequality of the proposition is proved. �

3. Proof of the Theorem and of the first inequality of the
Proposition

For K ⊂ I and a Hilbert space H let H ′ = L2(L2(H)) and DK : L2(H) →
L2(H ′) be defined by (DK(Y )(ω))(ω′) = Y (ω′ ′) where for ω = (ωi)i∈I , ω′ =
(ω′

i)i∈I , ω′ ′ = (ωi)i∈I is defined by ω′ ′
i = ω′

i for i ∈ K and ω′ ′
i = ωi for i ∈

I \ K. For a fixed k ∈ N let (Jk, Ak, λk) be a measure space where Ak is
the family of all subsets of Jk and λk is the counting measure on Jk. On
the product of measure spaces (Ω × Jk, F ⊗ Ak, P ⊗ λk) let us consider the
space Lp = Lp(Ω × Jk, F ⊗ Ak, P ⊗ λk;H ′) of Bochner p-integrable functions
on Ω × Jk with values in H ′. For 1 ≤ p ≤ ∞ Lp is a Banach space. Next, for
0 ≤ k ≤ d we define an operator Tk : L2(H) → L2 to be given by the formula
Tk(X)(ω,K) = DK(

∑
K⊂J ∈Jd

QJ(X)) for ω ∈ Ω, K ∈ Jk. To compute the
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norm of Tk let us observe that for any X ∈ L2(H) it is

‖Tk(X)‖2
L2

=
∑

K∈Jk

E

∣∣∣∣ ∑
K⊂J ∈Jd

QJ(X)
∣∣∣∣
2

=
∑

K∈Jk

∑
K⊂J ∈Jd

E|QJ(X)|2

≤
(

d

k

) ∑
J ∈Jd

E|QJ(X)|2 ≤
(

d

k

)
E|X|2.

The last inequality was explained in Introduction. Thus, ‖T ‖2
L2,L2

≤
(

d
k

)
. For

X ∈ L∞(H), we have that

‖Tk(X)‖2
L ∞ = sup

K∈Jk

ess supE|K

∣∣∣∣ ∑
K⊂J ∈Jd

QJ(X)
∣∣∣∣
2

≤ sup
K∈Jk

ess supE|K |X|2 ≤ ‖X‖2
L∞ .

Thus, ‖Tk ‖2
L∞,L ∞

≤ 1. Hence, by the complex interpolation theorem we ob-
tain that ‖Tk ‖p

Lp,Lp
≤

(
d
k

)
for 2 ≤ p ≤ ∞. Hence, it follows that for each X ∈ Lp

we have
∑

K∈Jk
E(

∑
K⊂J ∈Jd

E|K |QJ(X)|2) p
2 = ‖T p

k (X)‖p
L ∞

≤
(

d
k

)
E|X|p and

therefore
∑d

k=0 c(p, d, k)
∑

K∈Jk
E(

∑
K⊂J ∈Jd

E|K |QJ(X)|2) p
2 ≤

∑d
k=0 c(p, d,

k)
(

d
k

)
E|X|p ≤ 2d(a(p) + b(p))d. Thus, the left side inequality of the propo-

sition is proved. Now the proof of the theorem, for 2 ≤ p < ∞, follows quickly.
Because Tk(X) = Tk(Ud(X)) for each 0 ≤ k ≤ d and since Ud(X) is a canon-
ical U -statistic of order d combining the inequalities of both sides from the
proposition, we obtain that E|Ud(X)|p ≤ (2(a(p) + b(p)))dE|X|p. Since the
adjoint operator of Ud is again Ud, we obtain that it has the same norm and
E|Ud(X)|p ≤ (2(a(q) + b(q)))d(p−1)E|X|p for 1 < p ≤ 2, where q = p

p−1 . Thus,
the inequality from the theorem is proved.

Moreover, for each family ε = (εJ )J ∈Jd
of signs the same arguments show

that for Uε
d (X) =

∑
J ∈Jd

εJQJ(X) there holds E|Uε
d (X)|p ≤ c(d, p)E|X|p with

the constant c(d, p) as before. This proves the unconditional convergence of
the series

∑
J ∈Jd

QJ(X). And the proof of the theorem is completed.

4. Concluding remarks

The fact that the theorem is not true for p = 1 and any infinite product of
nontrivial probability spaces was shown in [2]. It was proved there that in this
case we can find X ∈ L1 such that U1(X) =

∑
i∈I Q{i}(X) is not convergent

in L1. In the case of independent σ-fields considered in the example in which
we additionally assume that the random variables εi, i ∈ I are identically dis-
tributed this is an easy observation. Indeed, if we put c to be the maximal
value of |ε| then for any J ∈ Jn for the random variable X =

∏
i∈J(1+ c−1εi)

we have E|X| = 1 while U1(X) = c−1(
∑

i∈J εi) and hence E|U1(X)| ≥ c−1
√

n
2 .

The same example shows that the series
∑∞

d=0 Ud(X) need not converge in Lp
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when p 	= 2. Assume to the contrary that it is so, then by Banach–Steinhaus
theorem E|Ud(X)|p ≤ CE|X|p for some constant C and all X ∈ Lp, d ∈ N .
We will show that this leads to a contradiction. For J ∈ Jn and k ≤ n,
let Wk,J = 1√

(n
k)

∑
K∈Jk,K⊂J wK . It is known that the joint distributions of

W1,J , . . . ,Wd,J converge weakly to the joint distribution of h1(G), . . . , hd(G)
when n = |J | converge to infinity and where G is a distributed by N(0,1) and
hd, d ∈ N are the Hermite orthonormal polynomials (normalized by Eh2

d(G) =
1). If f : R → R is a continuous bounded function let X = f(W1,J) then
Ud(X) = Wd,JEWd,Jf(W1,J). The above inequality and the weak conver-
gence prove that E|hd(G)|p|Ehd(G)f(G)|p ≤ CE|f(G)|p. Since f is arbitrary
this yields (E|hd(G)|p) 1

p (E|hd(G)|q) 1
q ≤ C

1
p , where q = p

p−1 . However, this
contradicts the fact that for 1 < p, q = p

p−1 , p∗ = max{p − 1, q − 1} there

holds (E|hd(G)|p) 1
p (E|hd(G)|q) 1

q ≥ c
√

p∗ d

d for some c > 0 and large enough d

which follows form Theorem 2.1 in [7].
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