PRESPECTRAL OPERATORS

E. Berkson! axp H. R. Dowson
1. Introduction

It does not seem to have attracted much attention that certain basic proper-
ties of spectral operators established in [5] are invalid or uncertain for pre-
spectral operators. As can be seen from the proof of Theorem 5 of [5], if T
is a spectral operator then a bounded operator commuting with 7' also com-
mutes with any strongly countably additive resolution of the identity for T
However, Example 2.7 of [8] shows that there exist on I a prespectral operator
T with a resolution of the identity E(-) of class I* and a bounded operator
A which commutes with 7' but not with every value of E(-). The failure of
the commutativity theorem for prespectral operators rules out direct applica-
tion to such operators of the theory in [5] based onit. Thus it is not known
in general if a prespectral operator of class I' necessarily has a unique resolu-
tion of the identity of class T'.

The purpose of this paper is to obtain results of fairly broad applicability
which help to overcome the difficulties with prespectral operators arising from
the failure of the commutativity theorem. Results which do not depend on
special assumptions about the spectrum are presented in §3. Prespectral
operators with totally disconnected spectrum are discussed in §4, and in §5
we consider scalar-type prespectral operators whose spectra are B-sets. Some
new aspects and consequences of the example of Fixman, referred to above,
are considered in §6. The paper concludes with a brief section on the litera-
ture which has appeared concerning prespectral operators.

2. Preliminaries

Throughout the paper, X is a complex Banach space with dual space X*.
We write (z, o) for the value of the functional ¢ in X™ at the point z of X. For
brevity the term “operator” is used to mean “bounded linear operator”. The
spectrum and resolvent set of an operator T are denoted by ¢(7T) and p(T')
respectively. The Banach algebra of operators on X is denoted by L(X).
The complex plane is denoted by p and =, denotes the o-field of Borel subsets
of p. Let K be a compact Hausdorff space. C(K) denotes the Banach
algebra of complex functions continuous on K under the supremum norm.

A family T' © X™is called total if and only if y e X, (y, f) = 0 for all f in
T imply y = 0. Let Z be a o-field of subsets of an arbitrary set @ with Q e .
Suppose that a mapping E( - ) from Z into a Boolean algebra of projections on
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X satisfies the following conditions:

(1) E(&) + E(8:) — E(&)E(8:) = E(61 u 62),
(ll) E(BI)E(ch) = E’(Bl n 62), o1, O € E,
(iii) EQ\8) =1 — E(§),86¢Z,
(iv) E(Q) =1,
(v) thereis M > Osuch that || E(5)|| < M forallsin Z,
(vi) there is a total linear manifold T' © X™ such that (E(- )z, y) is count-
ably additive on Z for each z in X and each y in T'.

Then E(-) is called a spectral measure of class (2, T'). An operator T, in
L(X), is called a prespectral operator of class T'if and only if the following condi-
tions («) and (B) are satisfied.

(a) There is a spectral measure E(-) of class (2,, I') with values in
L(X) such that
TE(8) = E(8)T, 6¢Z,.

This condition implies that the closed subspaces E(§)X, d € 2, , are invariant
under T'.

B) a(T|E(B)X)CS6,8e%,,

i.e., the spectrum. of the restriction of T to E(8)X is contained in the closure of
é.

The spectral measure E( - ) is called a resolution of the identity (of class T') for
T. An operator in L(X) is called a spectral operator if and only if it is pre-
spectral of class X*. It is a consequence of the Banach-Orlicz-Pettis theorem
that T is a spectral operator if and only if 7" has a resolution of the identity
which is countably additive in the strong operator topology. In this connec-
tion, it is well known that a prespectral operator on a weakly complete Banach
space is automatically spectral. This can be seen for example from Lemmas
2.3 and 2.9 of [1].

Dunford initiated the study of prespectral operators in [5], but since then
the majority of authors have concentrated on the case of spectral operators.
The following result shows that prespectral operators arise naturally in the
study of spectral operators.

2.1 TaeoreEM. Let T, in L(X), be a spectral operator with resolution of the
didentity E(-) of class X*. Then T™ is prespectral on X™* with resolution of the
identity E*(-) of class X.

This result was proved in [6; pp. 250-1]. We shall study this class of pre-
spectral operators in more detail in the next section.

22. Nowlet T e L(X) and let z ¢ X. An X-valued function f, , defined
and analytic on an open subset D (f,) of p such that
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is called a pre-imaging function for x and T. It is easily shown that f,(¢) =
(¢ — T) 'z whenever ¢ e p(T) n D(f,). If for all z in X and all pairs 15°,
& of pre-imaging functions for « and T we have

2(5) =25, ¢ DY) n DY),

then T is said to have the single-valued extension property. In this case there
is a unique pre-imaging function with maximal domain p(z), an open set con-
taining p(7"). The values of this function are denoted by {x(£) : £ € p(z)}.
Let o(x) = p\p(x). Clearly o(z) € o(T). The following results concerning
these concepts were proved in [5; pp. 325-9].

2.3 TurorEM. (i) A prespeciral operator has the single-valued extension
property.

(i) Let T, L(X), be a prespectral operator with a resolution of the identity
E(-)of classT. Then E(¢(T)) = I. More generally if 6 is a closed subset of
p then

E()X ={xeX :0(x) 8.

The theory of integration with respect to a spectral measure was developed
in [5]. The reader is referred to pp. 330-1 and pp. 340-1 of [5] for a complete
discussion. However the main consequences of the theory will be specifically
recalled in §3.

3. General results

We begin this section by observing that if 7' is a spectral operator, and E( - )
is a strongly countably additive resolution of the identity for T', then the com-
mutativity theorem [5; p. 329] is valid for 7" and E(-). Thus if F(-) is a
resolution of the identity of class T for 7', then {F(7) : 7 € Z,} commutes with
{E(7) : 7€ Z,}, and the proof of Theorem 6 [5; p. 330] shows that F(+) = E(r),
7€¢Z2,. Hence all resolutions of the identity of a spectral operator, no matter
what their class, are identical and countably additive in the strong operator
topology. In the case of a prespectral operator 7, the argument of Theorem 6
of [5] shows that if F(-) and G(-) are commuting resolutions of the identity
of class T for T, then F(7) = G(7), 7 € 2,. In general it is not known that
two resolutions of the identity of the same class for 7' commute, and so the
problem of uniqueness of resolution of the identity of class T for a prespectral
operator of class I' is unresolved. In view of this, Lemma 6 of [5; p. 341]
requires a slight change in wording. We give a preliminary definition and
then state the amended version of the result, which will be required later.

Derintrions. Let S be a prespectral operator with a resolution of the
identity E(-) of class T' such that S = [, AE(d\). Then S is called a
scalar-type operator of class T, and E( ) is called an s-resolution of the identity
of class T for S.
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3.1 TuroREM. Let Z be a o-field of subsets of a set Q, with Q@ e Z. Let E(-)
be a spectral measure of class (Z, T'), and let f ¢ B(Q), the set of bounded complex
Z-measurable functions defined on Q.

Define

W = [ s,
Then there is a constant v(E) such that
¥ | < v(E) supwee [ f(w) ], [eB(Q).

For each f in B(Q) the operator ¢ (f) s a prespectral operator with an s-resolution
of the identity F(-) of class T where

F(r) = B((r)), 7eZy.

Let T be a prespectral operator with a resolution of the identity E(-) of
class . Assume || E(7) || £ M, r ¢ Z,. Note that by Lindelof’s theorem
[10; p. 49], the union p of all open sets v in p such that E(v) = 0 can be ex-
pressed as a union of countably many such open sets. It follows that E(p) =
0. The complement of p, which we denote by K, is called the support of
E(-). By22,E(p(T)) = 0andso K C o(T). However E(K) = I, and
s0 o(T) = o(T | E(K)X) € K. Therefore K = o(T), and so o(T) is the
intersection of all closed subsets & such that E(6) = I. Let f ¢ C(a(T)).
Then by 3.1 ¢(f) = f.,m FOME(dN) has a resolution of the identity F(-)
given by

F(r) = E(f (1)), 7¢Z5.

c(¥(f)) =N{6:6 isclosed, and F(3) = I}
=N{6:6 isclosed, and E(f7(8)) = I}.

However if 6 is closed and E(f(8)) = I, then since f(8) is a closed subset
of o(T),

Therefore

o(T) S f7(8) S o(T).
Hence

c((f) = N{s:6 closed, and f(8) = o(T)}.

There follow the familiar facts that ¢ (¥ (f)) = f(a(T)), and that the spectral

radius of ¢(f) is supres(ry | F(N) |-
From this and Theorem 7 of [5],

sup |f(N) | <

Nea(T)

[, 100E@) | <43 sup 15001, FeCto(T),

[ i0emm@) = [ f00E@) [ g0B@Y, g6 (D),
a(T) a(T) a(T)

Hence ¢ is a bicontinuous algebra isomorphism from C(a(7)) into L(X).
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Every resolution of the identity of a prespectral operator T yields an algebra
of operators equivalent to C(o(T)) in this way. It is not known in general
whether different algebras of operators may be obtained from different resolu-
tions of the identity of 7. A useful criterion for uniqueness of the resolution
of the identity of a particular class may be given in these terms.

3.2 Lemma. Let T be a prespectral operator with resolutions of the identity
Ei( ) and Ey(-) of class T such that

[, 1o0m@) = [ f00B@), fec6(r).
Then Ey(7) = Ex(1), 7€Z,.
Proof. LetxeX,yeT,and pe(8) = (Ex(8)z,y),0€Z,,k = 1,2. By first

verifying the result for simple functions it follows in the usual way that

f SN u(d\) = <f FOVE(d\)z,y y, feClo(T)), k= 1,2
a(T) o(T)
Hence

[ iom@) = [ jom(@), fec(m),
a(T) a(T)

w1 and pp are finite countably additive measures with supports contained in
o(T). Hence they are regular measures, and by the Riesz representation
theorem, u; = ws . It then follows that

<E1(T)£1J, y> = <E2(T)1"7 y>3 TeEZy,T € X7 yel.

Since T is total, the conclusion of the lemma follows.

For our next result we make use of the notion of generalized hermiticity in-
troduced in [12] and [16]. We shall not devote space here to a discussion of
this concept, but instead refer the reader to §1 of [3].

A spectral measure is called hermitian if and only if all of its values are
hermitian operators.

3.3 TaEOREM. Let S be a prespeciral operator with Hermitian s-resolutions
of the identity Ey(-) and E5(-) of class T. Then Ei(7) = Eo(7), 7€ 2y .

Proof. Let R(\) and I(\) denote respectively the real and imaginary parts
of the complex number \. Define

R = f o BOOEL),

i =f TOVE(N), & =1,2.
a(8)

Then R; and J; are hermitian operators, and S = Ry + ¢/, k£ = 1, 2. It
follows from Lemma 2(c) of [16] that B, = Ry and J, = J.. By virtue of the
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standard properties of the integral with respect to a spectral measure these
equations lead to

f (A, X)El(dx)=f p(\, N)Ey(dN),
a(8) o(8)

where p is a polynomial in the two variables A\, . Then by the Stone-Weier-
strass theorem

[ soom@) = [ jo0B@), feCla()).
o (S) o(S)

The result now follows immediately from Lemma 3.2.

Remark. It is known that a bounded Boolean algebra of projections on X
can be made into a family of hermitian operators by appropriate equivalent
renorming of X. (See the proofs of Lemmas 2.2 and 2.3 of [3].) Thusif E(-)
is an s-resolution of the identity of class I' for the prespectral operator S, in
L(X), it can be made into a necessarily unique hermitian s-resolution of the
identity of clags I' for S by equivalent renorming of X. We now turn to
Theorem 8 of [5], the canonical decomposition theorem. For purposes of
comparison we state in full the form applicable to spectral operators.

3.4 THEOREM. An operator T is spectral if and only if it is the sum T = S +
N of a scalar-type speciral operator S and a quasinilpotent operator N such that
SN = NS8. Furthermore this decomposition is unique. T and S have the same
spectrum and the same resolution of the identity.

This may be proved by the arguments given in [5; pp. 333-5] or [6; pp.
226-9]. Note that in proving that the sum of a scalar-type spectral operator S
and a commuting quasinilpotent N is spectral, both proofs use the commuta-
tivity theorem to show that N commutes with the resolution of the identity of
S. This argument cannot be applied to the corresponding situation for
prespectral operators. In fact, in §6, we will construct on I” a scalar-type
operator S of class I and a nilpotent A with SA = AS such that S + A4 is
not prespectral of any class. However the arguments of [6; pp. 226-9] do
suffice to prove the following result.

3.5 Turorem. (i) Let T be prespectral with a resolution of the identity E(-)
of class T. Define S = f,,(s) NE(d\N) and N = T — S. Then S is prespectral
with an s-resolution of the identity E(-) of class T, and N 1s a quasinilpotent
operator commuting with {E(7) : 7 € Z,}. Moreover o(T) = ¢(8).

(ii) Let S be prespectral with a resolution of the identity E(-) of class T' such
that S = f o) ME(dN). Let N be a quasinilpotent operator commuting with
{E(7):7eZy}. Then S + N is prespeciral with a resolution of the identity
E(-) of class T. Moreover (S + N) = o(8).

This suggests the introduction of the following terminology.
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DerFinitioN. A sum 7' = S + N, where S is prespectral with an s-resolu-
tion of the identity E(-) of class T', and N is a quasinilpotent commuting with
{E(7) : 7 €2}, is called a Jordan decomposition of class T for T. S and N are
called respectively the scalar and radical parts of the decomposition. In this
terminology, Theorem 3.5 states that T is prespectral if and only if 7' admits a
Jordan decomposition. Every resolution of the identity of 7' then defines a
Jordan decomposition of T. It is not known, in general, whether different
resolutions of the identity of a prespectral operator T may yield different
Jordan decompositions of 7.

Let T be a spectral operator. The canonical decomposition 7' = S + N
given by Theorem 3.4 is the unique Jordan decomposition of 7. This follows
from Theorem 3.5 and the discussion on uniqueness of the resolution of the
identity of a spectral operator at the beginning of this section. In fact we
can make the following stronger assertion.

3.6 TuroreEM. Let T be a spectral operator, and let S and N be respectively
the scalar and radical parts of the canonical decomposition of T. If T = Sy +
No, where Sy is a scalar-type operator of class T, and Ny is a quasinilpotent
operator with SeNo = NoSo , then S = Spand N = N, .

Proof. S, is prespectral with an s-resolution of the identity E(-) of class
T'. Note that N, commutes with Sy and hence with 7. By the commuta-
tivity theorem, Ny commutes with the resolution of the identity of T, and
hence also with S and N. Now N — N, is quasinilpotent since it is the differ-
ence of commuting quasinilpotents. By Theorem 3.4, So = S 4+ (N — N,)
is spectral. Hence E(-) is countably additive in the strong operator to-
pology, and so S, is a scalar-type spectral operator. The result now follows
from Theorem 3.4.

Our next theorem, a generalization of a result of Dunford, leads to the main
techniques used in this section. We denote by Zx the o-field of Borel subsets
of a compact Hausdorff space K.

3.7 TuroreEM. Let K be a compact Hausdorff space, and let  be a continuous
algebra homomorphism of C(K ) into L(X ) with (1) = I. Let N, in L(X), be
a quasinilpotent commuting with ¢(f) for every f in C(K). Then there is a
spectral measure E( ) of class (2x , X ) with values in L(X™) such that

3.7(a) Y(H* = fo(x)E(dA), JeC(K),
and
3.8 N*E(7) = E(z)N*, reZk.

Moreover if S e $(C(K)), then the adjoint of T = S + N 4s prespectral of class
X, and 8* + N*is a Jordan decomposition of class X for T*.

Proof. 3.7(a) follows by the argument used to prove Theorem 18 [5; p.
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350]. LetzeX andyeX™. Define
w(r) = (Nz, E(r)y) and pe(r) = (&, BE(r)N*y), 7e3k.

Then as in the proof of Lemma, 3.2

[ 100m(@n) = @va, wn*)

= @)V = [ TN, S e Cl).

It follows that the Borel measures (Nz, E(- )y) and (z, E(- )N*y) (regular by
construction) are identical, and 3.8 is immediate. If S = y(f) for some fin
C(K) then by 3.7(a) and 3.1, 8* has an s-resolution of the identity whose
range is contained in the range of E(-). Hence by 3.8, S* + N* is a Jordan
decomposition of class X for T,

The following generalization of 3.7(a) is well known, although it does not
appear explicitly in the literature.

3.9 TueorEM. Let X be weakly complete. Let K be a compact Hausdorff
space, and let  be a continuous algebra homomorphism of C(K) into L(X ) with
Y(1) = I. Then there is a spectral measure E(-) of class (Zk, X™*) such that

WD) = [ S00B@), fe o).

Moreover for each f in C(K), (f) is a scalar-type spectral operator with resolu-
tion of the identity F (- ), where
F(r) = E(f7(7)), 7eZ,.
Outline of proof. Consider for each z in X the map T, which sends f in
C(K)into ¢(f)x. By Theorem VI. 7.6 of [7; p. 494], each T is weakly com-
pact. Hence by Theorem VI. 7.3 of [7; p. 493], the weak completeness of X

implies that for each = in X there is a vector-valued measure p.( ) countably
additive on = such that

T.f = [ S00u).

Define for each 7in Zx a map E(r) which sends ¢ into p,(7). Routine argu-
ments complete the proof that E(-) has the properties stated. The last
statement of the theorem follows from 3.1.

3.10 TurgoreEM. Let T, in L(X), be prespectral with a resolution of the
identity E(-) of class T. Then T* is prespectral on X* with a resolution of the
identity F(-) of class X such that

(fm) FONE(dN) >* = Lﬂf()x)lf’(d)x), fe Ca(T)).
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Moreover if 8 = [y NE(dN) and N = T — 8, then S* + N* is the Jordan
decomposition of T corresponding to F(-).

Proof. From 3.1, the map ¢ defined by

) = [ TVE@)

is a continuous algebra homomorphism from C(¢(T')) into L(X ), and N com-
mutes with each ¢ (f). Let Z; denote the os-field of Borel subsets of o(T).
Hence by 3.7 there is a spectral measure G( - ) of class (Zo , X ) such that

vt = [ SGEN), T Cla(D));

N*G(r) = G(+)N*, r¢€Z,.

Also from 3.1, S* is prespectral with an s-resolution of the identity F(-) of
class X, where for each 6 in 2, F(6) = G(6 na(T)). Hence

v = [ 06 = [ JO0F@), e Cle(m).
a(T) a(T)

The result now follows from 3.5.
In the case of a spectral operator more can be asserted.

3.11 TuroreMm. Let T, in L(X), be a speciral operator. Then T, pre-
speciral on X™ of class X, has a unique Jordan decomposition for resolutions of
the identity of all classes. Moreover if T is also prespectral of class T, then T™
has a unique resolution of the identity of class T'.

Proof. Let K denote the compact set ¢(7T). Note that K = o(T) =
o(T*). Let E(-) be the resolution of the identity of 7. Then by 2.1, T*
is prespectral with resolution of the identity E*(-) of class X. Let Fy(-) and
Fs(-) be resolutions of the identity of classes Ty and T respectively for T™.
By Theorem 3.10, 7™ is prespectral of class X*, and there are resolutions of
the identity G1(- ) and Gs( - ) of class X™ for T™* such that

(/. f(xm(dx))* = [ sve@n, jeom),

(fx FO)F:(dN) )* = fK FOG(AN), fe C(K).

T** is a prespectral operator on X™*, and X is a closed subspace of X™* in-
variant under T**. Moreover the restriction of T** to X is a spectral opera-
tor, and so by Theorem 2.1 of [8; p. 1032]

Gi(r)r = Go(7)e = E(7)x, xeX, TeZ,.
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Therefore

fK FONG(dN)z = fK TGNz = fK FOVEN)z, feCK), z ¢ X.

Let y e X*. Thenforr = 1,2,
<fK FOG(AN)z, y> - <fo f()\)F,(d)\)y>, FeC(K),zeX, yeX,

and so

<x, fK f<x>F1(d>\>y> = <x fK f()\)Fz(dX)y>, FeCK),zeX,yeX™
Hence

[ room@) = [ sooran, 1ecm.

From this result F;(-) and F(-) yield the same Jordan decomposition. Now
let Iy = T's = I'. It then follows from Lemma 3.2 that 7™ has a unique reso-
lution of the identity of class T'.

3.12 Cororrary. Let T, in L(X), be a spectral operator with resolution of
the identity E(-). Let S = [om \E(d\) and N = T — 8. Then T* is
prespectral on X™ with uniuge resolution of the identity E*(-) of class X. More-
over 8* 4+ N* is the unique Jordan decomposition of T* for resolutions of the
identity of all classes.

Proof. 'This result follows immediately from Theorems 2.1 and 3.11.

It was noted in §2 that in a weakly complete Banach space the classes of
prespectral operators and spectral operators coincide. Many non-weakly
complete Banach spaces have weakly complete dual spaces. (See for example
the tables in [7; pp. 374-9]). We have the following results for prespectral
operators on such spaces.

3.13 TurorEM. Let X* be weakly complete and let T, in L(X), be pre-
spectral of class T. Then T has a unique Jordan decomposition for resolutions
of the identity of all classes. Moreover T' has a unique resolution of the identity
of class T'.

Proof. By Theorem 3.10, T™ is prespectral. Since X* is weakly complete,
T* is spectral. Let Ey(- ) and Es(-) be resolutions of the identity of classes
T; and T respectively for 7. ILet F(-) be the unique resolution of the
identity for T%. Then by Theorem 3.10,

<fm) )\El(dx))* = fm NF(dN) = (fam )\E2(d)\))*,
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and hence 7 has a unique Jordan decomposition for resolutions of the identity
of all classes. Now let Ty = T';. Again by Theorem 3.10

[ oom@ny = [ 00BN, fe (),
o(T) a(T)

and so by Lemma 3.2, T" has a unique resolution of the identity of class T'.

3.14 TuroreM. Let X* be weakly complete. Let S, in L(X), be a scalar-
type operator of class T', and let N be a quasinilpotent with SN = NS. Then f
T = S + N s prespectral, every resolution of the identity of T is an s-resolution
of the identity of S, and T = S -+ N s the unique Jordan decomposition of T.
Moreover N commutes with every resolution of the identity of T.

Proof. By Theorem 3.10, T* is prespectral. Since X™ is weakly complete,
T*is spectral. Let Sy and Ny be respectively the scalar and radical parts of the
canonical decomposition of T*. Again by 3.10, S* is prespectral with an
s-resolution of the identity of class X. Hence S* is a scalar-type spectral
operator. N™is a quasinilpotent with S*N* = N*S*. From the uniqueness
of the canonical decomposition of T, we get S; = S* and N; = N*. Let
E(-) be a resolution of the identity for 7. Then by 3.10

S =8 = (fgm )\E(d)\)) )

The present theorem now follows immediately.

3.15 TuporeM. Let X* be weakly complete. Let S, in L(X), be pre-
spectral with s-resolution of the identity (- ) of class T. Let N be a quasinil-
potent operator such that SN = NS. Then S 4+ N 1s prespectral of class T if
and only if

NE(7v) = E(r)N, 7¢Z,.

Proof. The condition is certainly sufficient by 3.5. Now let S + N be
prespectral with resolution of the identity F(-) of class I'. By the preceding
theorem S is prespectral with an s-resolution of the identity F(-) of class T,
and

NF(7) = F()N, 7¢€¢Z,.

By 3.13, S has a unique resolution of the identity E(-) of class T. Hence
F(-)= E(-)and
NE(7) = E(7)N, 7€¢Z,.

To conclude this section we state a generalization of Theorem 3.13, which
may be proved in a similar way.

3.16 TuroreMm. Let T, in L(X), be a prespectral operator of class T,
Suppose that T*, prespectral on X* of class X, has a unique resolution of the
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identity of class X. Then T has a unique Jordan decomposition for resolutions
of the identity of all classes. Also T has a unique resolution of the identity of
class T.

We observe that by this theorem, if it were known that every prespectral
operator of class I' had a unique resolution of the identity of class T, then it
could be deduced that every prespectral operator had a unique Jordan de-
composition for resolutions of the identity of all classes. Also if it were known
that every scalar-type operator of class I' had a unique resolution of the
identity of class T, then it could be deduced that scalar-type operators pos-
sessed only s-resolutions of the identity. Moreover, in considering the prob-
lem of uniqueness of resolution of the identity for prespectral operators (re-
spectively scalar-type operators) it is sufficient to consider only prespectral
operators (respectively scalar-type operators) on X™* of class X.

4. Operators with totally disconnected spectra

4.1. Let T eL(X). Corresponding to each open-and-closed subset § of
o(T) there is a spectral projection for T defined by

42 46) = o= [ 1 — ) an,

2wt Jo
where C is a contour in p(7T') which encloses 8 but excludes ¢ (7' )\s. Moreover
the operator A (6) does not depend on the particular contour C chosen. The
map § <> 4 (8) is an isomorphism from the Boolean algebra of open-and-closed
subsets of ¢(T) onto a Boolean algebra of projections in L(X). For each
open-and-closed subset 6 of ¢(7T') we have TA(8) = A(8)T and
4.3 o(T|A(8)X) = a.

The reader is referred to [15; pp. 298-302] for a complete discussion and proofs
of these properties. In order to prove the first theorem of this section a
preliminary result is required. The concepts introduced in 2.2 will be used
in the proof.

44 LemMma. Let T, in L(X), be a prespectral operator with a resolution of
the identity E(-) of class T. Then for each open-and-closed subset § of o(T),
E(58) s equal to the spectral projection A (8) for T.

Proof. Letz e E(8)X. By 2.3, T has the single-valued extension property
and o(z) € 8. Therefore by 4.2,

A(a(TH\8) z = 0.
Hence A(8)x = z, and we have
4.5 A(B)E(8) = E(s).
Nowlet y e E(a(T)\8)X. By 2.3,0(y) S o(T)\s, and so by 4.2, A(6)y = 0.
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Hence
4.6 AB)E(a(T)\d) = 0.
Addition of 4.5 and 4.6 gives the required result.

DeriNITION. A subset of p is called totally disconnected if and only if the
connected component of each point is the set consisting of the point itself.

A compact set in p is totally disconnected if and only if its topology has a
base of open-and-closed subsets [9; p. 247]. Hence by Lindelof’s theorem
[10; p. 49] a compact totally disconnected subset of p has a countable base of
open-and-closed subsets.

4.7 Tueorem. Let T, in L(X), be prespectral of class T, and let o(T") be
totally disconnected. Then T has a unique resolution of the identity of class T'.
Also T has a unique Jordan decomposition for resolutions of the identity of all
classes.

Proof. Let E(-) and F(-) be resolutions of the identity of class T' for T'.
By Lemma 4.4, E(§) = F(8) for each open-and-closed subset § of o(7"). The
topology of ¢(T') has a countable base of such subsets. Hence for each rela-
tively open subset 7 of o(T')

<E(T)£l), y) = <F(T)xa y>; (EGX, yel.
Since E(a(T)) = F(o(T)) = I and T is total, it follows that
E(7) = F(7), 7€Z,.

Hence T has a unique resolution of the identity of class T'. By 3.10, T is pre-
spectral of class X. Since o(T™) is totally disconnected, 7" has a unique
resolution of the identity of class X. Application of 3.16 completes the
proof.

4.8 TuEOREM. Let S be a scalar-type operator of class T, and let o(S) be
totally disconnected. Let N be a quasi-nilpotent operator with SN = NS. Then
if T = S + N 1s prespeciral, every resolution of the identity of T is an s-resolution
of the identity of S, and T = S + N is the unique Jordan decomposition for T.
Moreover N commutes with every resolution of the identity for T

Proof. The argument of [6; pp. 227-8] shows that o(T') = ¢(S). Hence
o(T) is totally disconnected. Let F(-) be a resolution of the identity for T,
and let E(-) be the s-resolution of the identity of class I' for 8. Let 6 be an
open-and-closed subset of ¢(T'). There exist disjoint open sets Gy and G.
with 6 € Gy and o(T)\8 € G, . Define a function f by f(2) = 1,2 ¢G1, and
f(2) = 0,z €G,. Note that fis analytic on a neighborhood of ¢(T') = o(8).
It follows from Corollary VII. 6. 12 of [7; p. 592] that

0 pln) n
51y = jis + W) = SN i)
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in the usual notation. Now by 4.4, f(T') = F(8) and f(S) = E(5). Hence
F(8) = E(8). Let & > 0begiven. Since the compact set ¢(7') has a base
of open-and-closed subsets, it is easily shown that there exist a partition of
o(T) into open-and-closed subsets {6;:7 = 1, 2, ---n} and points A; in
8;,1 = 1,2, ---n, such that

l>\_)\zl<€, )\66{, 1;:1’2’..."'

Now D iy N E(8:) =2 i\ F(8;). Since ¢ is an arbitrary positive number,
it follows from 3.1 that

S = fm) NE(dN) = fm) NF (dN).

The conclusions of the theorem now follow immediately.

49 TrrorEM. Let S be a prespectral operator with an s-resolution of the
identity Li( - ) of class T, and let o(S) be totally disconnected. Let N be a quasi-
nilpotent operator with SN = NS. Then S + N is prespectral of class T' if
and only if

NE(7) = E(v)N, 71€¢Z,.

Proof. The condition is clearly sufficient by 3.5. Now let S + N be
prespectral with resolution of the identity F'(-) of class I'. By the previous
theorem, S is prespectral with an s-resolution of the identity F(-) of class T,
and

NF(7r) = F(7)N, 71¢Z,.

By 4.7, S has a unique resolution of the identity I(-) of class I'. Hence
F(-) = E(-) and
NE(7) = E(7)N, 7¢Z,.

In order to prove the next theorem we require the following well-known
elementary result.

4.10 Lemma. Let T e L(X). Let E, F be projections in L(X) such that
EF = Fand T, E, F commute. Then

o(T|FX) C o(T| EX) C o(T).

Proof. Let Nep(T). Now E commutes with 7' and hence also with
(M — T)™'. Therefore (NI — T)" leaves EX invariant, and its restriction
to that subspace is a bounded operator, clearly inverse to (M — T)| EX.
Hence N ep(T | EX), and o(T | EX) C o(T). Similarly T | EX commutes
with ¥ | EX, and o(T | FX) € o(T | EX).

4.11 TerorEM. Let T, in L(X), have totally disconnected spectrum. In
order that T be prespectral of class X it is necessary and sufficient that the set
{A(8) : & open-and-closed in o(T)} of spectral projections for T be uniformly
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bounded in norm. If this is the case, T™ has a unique resolution of the identity
E(-) of class X, where for each open-and-closed subset 8 of o(T), E(8) = A(8)*.

Proof. If T™is prespectral with resolution of the identity E(-) of class X,
then by 4.4, E(8) = A(58)*, and so the condition is necessary. In this case,
E(-)is unique by 4.7. Conversely suppose || A(8)|| < M, § open-and-closed.
Let fe C(a(T)), and let ¢ > 0 be given. Since the topology of the compact
set o(7T') has a base of open-and-closed subsets, it is easily shown that there
exist a partition of ¢(7') into open-and-closed subsets {8; : ¢ = 1,2, -+ n} and
points X\;in 4, ,¢ = 1,2, -+ - n, such that

[f()\z) —f()\)l < &, )\651', 7 = 1, 2, LRI (8

Hence the algebra A of finite linear combinations of characteristic functions
of disjoint opgn—and-closed subsets of ¢(7") is dense in C(a(7T")). Define a
map ¢ from A into L(X) by

1[/(2?:1 a; x(1:)) = tmaiA(r), mNrj=0 if 57,

where x(7:) denotes the characteristic function of 7;. It is easy to see that
¢ is well defined and that

I ¥(NOI < 4M supreocny | F(N)], feg

Therefore ¢ can be extended to a continuous homomorphism from C(o(T'))
into L(X). Let 2, denote the o-field of Borel subsets of ¢(T). By 3.7(a)
there is a spectral measure Eo( - ) of class (2, X ) such that

412 WO = [ TOVE@N), fe (D).
Define E(-) on =, by
E(6) = Eo(6na(T)), 6€Zy.

Then E(-) is a spectral measure of class (2,, X). Let = be an open-and-
closed subset of o(T). By 4.12, A(7)* = E(7). Also

(T, E(r)y) = (Tz, A(r)*y) = (o, B(r)T™y), zeX, yeX".

The topology of ¢(T') has a countable base of open-and-closed subsets. Since
E(o(T)) = I, it follows that the regular measures (Tz, E(-)y) and
(z, E(-)T*y) are identical for all z in X, y in X*. Hence

T*E(3) = E()T*, 6¢Z,.

Finally let 6 ¢=,, and let 7 be an open-and-closed subset of o(7) with
5no(T) S 7. Then, since A(r)* = E(r), it follows from 4.10 and 4.3 that

o(T* | E(3)X*) C o(T* | EGno(T))X*) C o(T* | E(r)X¥) = 7

Now since o(T) is totally disconnected, § n o(T') is equal to the intersection
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of all open-and-closed subsets = of ¢(T) with §n ¢(T) C 7. Hence
o(T* | E(3)X*) S éna(T)C 8, 6eZ,.

By using Theorem 3.9 instead of 3.7 (a) at the appropriate stage of the
proof, we can obtain the following result by similar arguments.

4.13 TuEorEM. Let X be weakly complete and let T, in L(X), have totally
disconnected spectrum. In order that T be a spectral operator it is mecessary
and sufficient that the set {A(8) : & open-and-closed in o(T)} of spectral pro-
Jections for T be uniformly bounded in norm.

Dunford [6; p. 252] proved this theorem by a different method.

5. Scalar-type operators whose spectra are R-sets

In order to prove the main result of this section a preliminary lemma, due
to Lumer, is required.

5.1 LemMmA. Let A and B be commuting hermitian operators. Let N be a
quasinilpotent operator with N = A 4+ iB. Then A = B = 0.

Proof. By Lemma 15 of [13; p. 82], B = 0. Since <N is quasinilpotent,
similar reasoning applied to the equation

iIN = —B 44
yields 4 = 0.

DeriniTION. A compact subset K of p is called an R-set if and only if the
rational functions with poles in p\K are uniformly dense in C(K).

We observe that every R-set is nowhere dense, but that there exist nowhere
dense compact subsets of p which are not E-sets. If a compact subset of p
has plane Lebesgue measure 0, or if it is nowhere dense and its complement
has a finite number of components, then it is an R-set.

5.2 TuroreEM. Let S, in L(X), be a scalar-type operator of class T, and
let o(8) be an R-set. Then every resolution of the identity for S 7s an s-resolution
of the identity. Also S has a unique resolution of the identity of class T.

Proof. Let E(-) be an s-resolution of the identity of class I' for S, and let
F(-) be a resolution of the identity of class Ty for S. Let So = [os M(dN),
and let 8§ = Sy + N be the Jordan decomposition of S corresponding to F(-).
Define

R = f L EVB@), T = f o TVE@Y),

Ro = f o EOF@N), Jo= f & TF(AN).
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Since ¢(S) is an R-set, there are sequences {r,} and {j,} of rational functions
with poles outside o(S) converging uniformly on ¢(S) to R(-) and I(-)
respectively. It follows from 3.1 that in the uniform operator topology

m(S) = R, 1.(8S0)—=Ro, ju(8)—J and 7.(So)— Jo.

From this and the relation S8, = SoS it is clear that the operators R, Ry, J
and Jo, commute. Since each of these four operators can be made hermitian by
equivalent renorming of X [3; Theorem 2.5], and since these operators com-
mute, it follows from Corollary 7 of [13; p. 78] that after some appropriate
equivalent renorming of X they are simultaneously hermitian. We assume
that this renorming has been carried out. By applying Lemma 5.1 to the
equation

N = (R — Ry) + i(J — Jo)

we obtain N = 0. Hence S = [, MF(d\). For every rational function
¢ with poles outside ¢(S) we have

o(8) = [ o IVE@) = [ o SV,

By hypothesis such rational functions are uniformly dense in C(s(8)), and
so by 3.1

[ soom@) = [ j00F@), feco(s)).
a(8) o (8)

If F(-) is also of class T' then, by 3.2, F(-) = E(-). This completes the
proof.

5.3 TugorEM. Let S e L(X), and let o(S) be an R-set. In order that S*
be a scalar-type operator of class X it is necessary and sufficient that there exist
a constant M > 0 such that for each rational funciion g with poles outside o(S)

1 9(8)]l < M supreocsy | g(N)]-

Proof. Necessity is obvious, since if S* is prespectral with an s-resolution
of the identity E( ) of class X, then

g(8)* = f

a(

5 g\ E(dN).

Conversely suppose the condition is satisfied. It follows that the map
r — (S ), which sends a rational function in C(¢(S)) into an element of L(X),
is well defined. Since ¢(8) is an R-set, this map can be extended to a con-
tinuous algebra homomorphism from C(¢(8)) into a subalgebra of L(X)
containing 8. The conclusion now follows at once from Theorem 3.7.

The next result, the last in this section, may be deduced in a similar manner
from Theorem 3.9.



308 E. BERKSON AND H. R. DOWSON

5.4 TurorEM. Lel X be weakly complete, and let S e L(X). Let o(S) be
an R-set. Then S is a scalar-type spectral operator if and only if there is a
constant M > 0 such that for each rational function g with poles outside o(S)

g(S)l < M supreocsy | g(N)]-

6. The Fixman example

This section is devoted to simplifying Fixman’s example 2.7 [8; pp. 1035-6]
and developing some further consequences. On the subspace of I” consisting
of convergent sequences, the map which assigns to each such sequence its
limit is a linear functional of norm 1. Throughout this section L denotes a
fixed linear functional on [” with || L || = 1 such that for each convergent
sequence {£,}

L({£.)}) = lim, {&}.
Define operators S and A on {” by

S{t} = {9.}, wheren, = & ,ifn = lor2,

T2 =345
n—1

A{En} = {L({En} ), L({gn} ): 0,0,0,-- '}‘

The operators S and A here defined are modifications of those employed in [8]

and are more convenient to our purposes. Clearly || 4 || = 1 and A* = 0.
Also
S{t} = {&) — {va), where v, = 0,ifn = 1,2,
1

= 2,,,ifn=3,4,5,-~
n—1

Since L({vs}) = 0, then AS8{&} = A{&}. It is easy to see that

S4{t,} = A{t.}, and hence
AS = SA.

o(8) is the totally disconnected set consisting of 1 and the numbers
(n—2)/(n—1)forn = 3,4,5,---. By regarding S as the adjoint of an
operator on I' it follows from Theorem 4.11 that S is prespectral with a
unique resolution of the identity E(-) of class I satisfying

E({l}){&} = {51;52,07();0)"'})
6.1
E<{n — 2}) {Ek} = {Bknglc} fOI' n = 37 4) ttty

n—1

where 6, = 1if n = k, and 8, = 0if n # k. Define the sequence {\.} by
setting

Mm=1if n=1,2; My=(n—2)/(n—1) if n=3,45,--
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Then it is easy to see from 6.1 that for = in Z,, E(7) is the operator which
multiplies the n™* term of a sequence by 1 if A, e 7 and by 0 if N\, ¢ 7. The
sequence {f.} of functions on ¢(S), given by

) =N if N<(n—2)/(n—1),
=1 i AN>(n—2)/(n—1),

forn = 3,4, 5, -+, converges uniformly to the function identically equal to
N on o(8). One sees directly that [, fo(A\)E(d\) converges to S in the
uniform operator topology, and hence

S = NE(dN).

a(8)

Observe that:

(i) 8 is a scalar-type operator on I” of class I', and ¢(,8) is an R-set;

(ii) 8 is the adjoint of a scalar-type spectral operator by 5.3 and 5.4;
(iii) (I°)* is weakly complete by IV. 8.16 and IV. 9.9 of [7];

(iv) o(8) is totally disconnected.

It follows from any one of the Theorems 3.11, 3.13, 4.7 and 5.2 that every
resolution of the identity for S is an s-resolution of the identity, and any two
resolutions of the identity of the same class for S are identical. Also by 2.1,
E( -) arises from the resolution of the identity of a scalar-type spectral operator
on [' by taking adjoints. Since

AE({]'} ){11 L1, } = {O’ 0, 0, }
and

E({l} )A{ly L1, } = {17 1,0, "'}
we have

6.2 A commutes with S but not with the resolution of the identity of class I'
for S.

Next we define 77 = S + A. Thus T} is the sum of S and a nilpotent com-
muting with S. Itis clear from 6.2 and Theorem 4.9 that T} is not prespectral
of class I'. In fact we shall show

6.3. T, 1s not prespectral of any class.

Suppose to the eontrary that G(-) is a resolution of the identity of class T'
for Ty . By either 3.14 or 4.8, G( - ) is an s-resolution of the identity of class T
for S, and 4 commutes with every value of G(-). Now by 2.3 the projec-
tions G({1} ) and E({1}) have the same range. Also

G, 1,1, -} e E({1})I7
and
AG ({1} ){11 1,1, "'} = {0) 0, 0, }’
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However
A{ly 17 17 } = {17 17 0) } GE({I} )lw = G({l})lm
and
G({l})A{L 1> 1? } = {1) 1, 0: '}

This gives a contradiction, and so 6.3 is established.
If A were to commute with some resolutionof the identity for S, then
Theorem 3.5 would give a contradiction to 6.3. Thus

6.4. A does not commute with any resolution of the identity for S.

Resolutions of the identity other than E(-) can be constructed for S by the
method of Fixman. Define

6.5 F(r) = E(v) + AE(r) — E(r)A, 7€¢Z,.

Using the relations A* = 0 and AE(7)A = 0, 7 € Z,, it is easily verified that
F(-) is a homomorphism from =, into a Boolean algebra of projections on 1
with F(a(8)) = I. Vlearly || F(7)|| £ 3, 7¢Z,.

For each positive integer 7 let ¢, in I' be given by e, = {8u}re1 , and let ey
be the corresponding linear functional on I°. Let T'; be the total linear mani-
fold in (I”)* generated by ef — L, es — L, and {en : n = 3,4, 5, --+}. Since
for cach rin 2, and z in I”

<F(T)$, e:> = <E(T)(L‘, 6:), n = 3’ 4; 55 Tt
(F(r)e,en — L) = x:(1)w, en — L), n = 1,2,
where x; is the characteristic function of r, it follows that F( - ) is I';-countably
additive. Since E(-) and A commute with S, elementary algebra shows that
F(7)8S = SF(7), 7¢Z,. In order to prove that F(-) is a resolution of the
identity for S it remains only to show that ¢(S | F(7)l*) & 7, 7€Z,. By
virtue of Lemma, 4.10 it suffices to prove this inclusion when 7 is a closed sub-
set of o(S). Again by Lemma 4.10, and the fact that ¢(S) is totally dis-
connected, it is sufficient to prove the inclusion for an open-and-closed subset
7 of ¢(8). It is easy to see from the definition of F(-) that E(-) and F(-)
agree on finite subsets of ¢(S)\{1}. Since every open-and-closed subset of

a(8) is such a set or the complement in ¢(8) of such a set, F(-) and E(-)
agree on open-and-closed subsets of 6(S). Therefore

o(S|F(r)*) =o(S|E()")C 7
for = open-and-closed in ¢(S). (This is simpler than the proof given in [8]).
In establishing 6.2 it was shown that 4 and E({1}) do not commute. Hence

from 6.5, F({1}) % E({1}). Therefore F(-) and E(-) are distinet.
In contrast to the property of A stated in 6.4 we show

6.6. There is a nilpotent N commuting with E(-) but not with F({1}).
We define N on I” by setting

N(Eﬂ} = {52’0,0)03 }
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Then || N || = 1, N* = 0 and N commutes with E(-). Moreover
F1){1,%1,1,1, ---} = {0, —%,0,0,0, --+};

NF({I}){]-’ %7 L, 11, "'} = {_%, 0, 0) O; 01"'}'
However
N{L%) L, L1, "'} = {%307070,0) "'};

F({l})N{I; %7 1, 1; 1, "'} = {%; 0,0, 070; '}

Therefore 6.6 is demonstrated.

Define T = S 4+ N. Since N commutes with E(-), T, is prespectral of
class I' by Theorem 3.5. By either 3.14 or 4.8, every resolution of the identity
of T, is an s-resolution of the identity of S. Now T does not commute with
F(-), and so S has an s-resolution of the identity F(-) which is not a resolu-
tion of the identity of T,. Moreover, if in the statements of Theorems 3.15
and 4.9 the words “of class T’ are deleted in both places, then the theorems
fail.

To round off the considerations in 6.4 and 6.6 we show:

6.7. If Q is a quasinilpotent commuting with every resolution of the identity
for S, then @ = 0.

Since forn = 3,4, 5, -- -,

o (=)

is a quasinilpotent on a 1-dimensional space, it is 0. Therefore

on({i=1)) -0
and so
63 E({%—Z——?})Q=O, n=345 -

Let {&} €17, and let Q{&} = {n:}. Then from 6.8 it follows that

0-n ({’; = f}) Qle) = (um) .

Hence 9, = 0forn > 3. If further &4 = & = 0 then clearly
QE({I} ){Ek} = Q{Sl ) & ’ 0’ 07 0) . '} = O)
and so in this case

0= E({l})Q{Ek} = {7713 772’0’ O: 07 "'}1

which gives

(6.9) Qe =0 if & =6=0.
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Now we consider @ | E({1})!”. Representing this operator by the matrix

“ %

relative to the basis {1,0,0, - - -} and {0, 1,0, 0, - - -}, we observe that for any
{Ek} in l°°,

Q4,£,0,0,0, -} = {ats + by, ¢ty + d5, 0,0,0, - -},

Hence by 6.9,

Qe = Ql&,£,0,0,0,---} +@Q0,0,&, &, &, -}
6.10 = Qf&,£,0,0,0, -}

= {a& + b&, ¢k + d&,0,0,0, ---}.
Direct computation with 6.5 shows that
F({1}){1,0,1,1,1,.-.} = {0, —1,0,0,0, - - -},

and we see with the aid of (6.10) that
6.11 QF({1}){1,0,1,1,1,---} = {—=b, —d,0,0,0, ---}.

However
Q{l’ 0, 1, 1, 1, } = {a’ c 0, O’ }

The right-hand member of this last equation belongs to the range of F({1}).
Therefore

F({1})@{1,0,1,1,1,---} = {a,¢,0,0,0, ---}.
Since @ commutes with F( - ) it follows from this equation and 6.11 that
6.12 a+b=0, c+d=0.
Define an operator 4; on I” by
Aifed = {L({&}), 0, 0,0, ---}.

Asin the proof of the corresponding results for A we have A3 = 0, 4,8 = S4;,
and 4; E({1}) s E({1})4;. Denote by T'; the total linear manifold in (I°)*
generated by er — L, {en:n=23,4,.- -}; the set function H( - ) defined by

H(r) = E(7) + A1 E(7) — E(7)A:1, 71€Z,p,

is a resolution of the identity of class I'; for S. From the definition of H(-)
we obtain

H({l} ){17 1,1, 17 1, -- '} = {0) 1, 0, 0) 0, -- '}'
Therefore

6.13 QH({I} ){ly 1, 1, 1: 1, - '} = {by d; 07 0: 0’ '}



PRESPECTRAL OPERATORS 313

However by 6.10 and 6.12,
Q{l, L, 1,1,1, "'} = {a+b:c+d,010y07 } = 0.

Using this last fact and the relation QH ({1}) = H({1})Q, we deduce from
6.13 that b = d = 0. Therefore by 6.12 and 6.10, Q = 0.

7. Comments on the literature

The problems with prespectral operators (as opposed to spectral operators)
mentioned in §1 have not always been taken into account in the literature,
with the result that errors have oceurred in various places. Without attempt-
ing a general analysis of this situation, we shall take up some of these errors
in this section.

In the work of E. Berkson, one non-trivial error occurs. This concerns
Theorem 3.3 of [3; p. 370-1]. Although this theorem was intended to apply
to a scalar-type operator S on X of arbitrary class T, its proof depends on
knowing that S* has a unique resolution of the identity of class X. With T'
arbitrary it is not known if S* has a unique s-resolution of the identity of
class X (which would be enough for the proof). However, by Corollary 3.12
above, the proof of Theorem 3.3 of [3] is valid if S is of class X*. Thus the
statement of Theorem 3.3 of [3] must be revised to include the additional
hypothesis that S is of class X*. It should be mentioned that this theorem
is subsequently applied in [3] and [4] only to scalar-type spectral operators,
and so no further difficulty arises from it. For another proof of Theorem 3.3
of [3] when &8 is of class X*, see also Proposition 9 of [13].

In conclusion we consider the following proposition from [2; p. 858].

7.1 THEOREM. Let A be a commutative Banach algebra with radical R such
that for some compact Hausdorff space Q, the algebra A /R s isomorphic to C(Q).
If A is the direct sum of a closed subalgebra B and the radical R, then the closed
subalgebra B is uniquely determined.

There are two difficulties with the proof of 7.1 as presented in [2]. These
are:

7.2. The sum of a scalar-type operator and a commuting quasinilpotent
need not be prespectral of any class by 6.3;

7.3. The decomposition of a prespectral operator into the sum of a scalar-
type operator of the same class and a commuting quasinilpotent is not known
to be unique.

However 7.1 is valid by virtue of the following proof based on the notion of
generalized hermiticity. We do not assume in this proof that the algebra A
has an identity.

Proof of 7.1. Let B; and B, be closed subalgebras of 4 complementary to
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R. We shall denote by T, the image of @ in A under the extended left regular
representation of A in 4; . (See [14; p. 4] for this terminology and notation.)
If x is an element of an arbitrary Banach algebra, we use the symbol Ey(z)
to denote the element D a—1z"/n!. We shall show that B, & B, ; similar
reasoning gives the reverse inclusion. Since each of the algebras B, , B; is
algebraically equivalent to C(Q), each is topologically isomorphic to C(2) by
the Corollary [11; p. 77].

Let by e By. Then b; can be written by = b, + r where b; ¢ By, r ¢ R, and
we wish to show that » = 0. It is known that the hermitian elements (in the
Vidav sense) of a C*-algebra with identity are precisely those elements which
are self-adjoint with respect to the given involution. (See the proof of
Theorem 21 of [12; p. 41].) Further, it is known that if % is a hermitian ele-
ment of an arbitrary Banach algebra (possessing an identity of norm 1), then
the set {Eo(dtu) : ¢ is real} is uniformly bounded in norm [16; Hilfssatz 1].
Applying these facts about generalized hermiticity to C(2) and using the
Banach algebra equivalence of each of B; and B, with C(Q), we find that there
are elements u;, v;,7 = 1, 2, such that

74:(3,) bj= ’U/j-]-’ivj, Uj,'vjéBj;
7.4(b) the set {||Eo(dtu;)|| + || Eo(dtv;)|| : ¢ is real} is bounded.

From the equation b; = b, + 7 we obtain
Tu; + iT‘vl = Tu2 + ’I:T’ug + TT .

From the boundedness condition 7.4(b) and Theorem 6 of [13; p. 77], it fol-
lows that the underlying space 4, can be renormed with an equivalent Banach
space norm which makes the operators T, , Tw,, Tb, , T, simultaneously
hermitian. Let such an equivalent renorming be carried out. Then

(Tuy — Tuy) + e(Toy, — Toy) = T,

Since T, is quasinilpotent it follows from Lemma 5.1 that T, = 0. Hence
r = 0.

We observe that in the above proof of 7.1, it is clear from the reasoning in
[2] that T, is a scalar-type operator of class A; . Since this operator is equal
to T4, + T¥ , the latter is trivially prespectral of class A;. Moreover by
3.7, Ty, + T7 is a Jordan decomposition of class 4; for T4, . Thus the diffi-
culty 7.2 can be overcome in the proof given in [2]. By reducing the problem
to the case in which the spectrum of T;,'; is real, the other difficulty 7.3 can be
circumvented by appealing to Theorem 5.2. This reduction can be effected,
because B; is equivalent to C(2). We omit the details.
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