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FROBENIUS SPLITTING AND DERIVED CATEGORY
OF TORIC VARIETIES

L. COSTA AND R. M. MIRÓ-ROIG

Abstract. In this paper, we will use the splitting of the Frobe-
nius direct image of line bundles on toric varieties to explicitly

construct an orthogonal basis of line bundles in the derived cate-
gory Db(X) where X is a Fano toric variety with (almost) max-
imal Picard number.

1. Introduction

Let Y be a smooth projective variety defined over an algebraically closed
field K of characteristic zero and let Db(Y ) = Db(OY -mod) be the derived
category of bounded complexes of coherent sheaves of OY -modules. Db(Y ) is
one of the most important algebraic invariants of a smooth projective variety
Y and we would like to know whether Db(Y ) is freely and finitely generated
or, more precisely, whether there exists a full strongly exceptional collection of
coherent sheaves on Y . In spite of the increasing interest in understanding the
structure of Db(Y ), very little progress has been achieved. The existence of
a full strongly exceptional collection of coherent sheaves on a smooth projec-
tive variety Y is very restrictive for Y , for example, the Grothendieck group
K0(Y ) = K0(OY -mod) has to be a finitely generated Abelian group. There
exists a nice class of algebraic varieties, the class of smooth projective toric
varieties, satisfying this condition on the Grothendieck group and King [13]
conjectured the following.

Conjecture 1.1. Every smooth complete toric variety has a full strongly
exceptional collection of line bundles.

There are a lot of contributions to the above conjecture. For instance,
it turns out to be true for projective spaces [2], multiprojective spaces ([6];
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Proposition 4.16), smooth complete toric varieties with Picard number ≤ 2
([6]; Corollary 4.13) and smooth complete toric varieties with a splitting fan
([6]; Theorem 4.12 and [7]). Nevertheless, some restrictions are required be-
cause, recently, in [11], Hille and Perling constructed an example of smooth
non Fano toric surface which does not have a full strongly exceptional collec-
tion made up of line bundles. It is quite natural to conjecture the following.

Conjecture 1.2. Every smooth complete Fano toric variety has a full
strongly exceptional collection of line bundles.

There are some numerical evidences towards the above conjecture (see, for
instance, [8]). So far only partial results are known and we want to point out
that the hypothesis Fano is not necessary. In fact, in [6]; Theorem 4.12, we
constructed full strongly exceptional collections of line bundles on families of
smooth complete toric varieties none of which is entirely of Fano varieties.

The goal of this paper is to investigate the structure of Db(X) where X
is a smooth Fano toric variety with (almost) maximal Picard number and to
prove that for such kind of varieties always exists a full strongly exceptional
collection of line bundles (see Theorem 3.11). Hence, our main result provides
new evidences towards Conjecture 1.2. In order to get a good candidate to
be a full strongly exceptional collection of line bundles and to achieve our
main result we use, as a main tool, the splitting of the Frobenius direct image
of line bundles on smooth complete toric varieties. This approach will give
us a full collection of line bundles on X and, in the last part of the work,
we will apply Bondal’s criterium (see Proposition 3.8) to conclude that such
collection can be ordered in such a way that we get a full strongly exceptional
collection on X .

Next, we outline the structure of this paper. In Section 2, we fix the
notation and we summarize the basic facts on toric varieties needed in the
sequel. In particular, we recall the classification of smooth Fano toric varieties
with (almost) maximal Picard number and we explicitly describe the splitting
of the Frobenius image of line bundles on toric images. Section 3 contains the
main result of this work. We first briefly review the notions of exceptional
sheaves, exceptional collections of sheaves and strongly exceptional collections
of sheaves as well as the facts on derived categories needed later. At the end,
we prove the existence of an orthogonal basis in Db(X) made up of lines
bundles, where X is an n-dimensional smooth Fano toric variety with Picard
number 2n − 1 ≤ ρ(X) ≤ 2n if n is even; and ρ(X) = 2n − 1 if n is odd (see
Theorem 3.11).

2. Toric varieties and Frobenius splitting

In this section, we deal with d-dimensional toric varieties X with (almost)
maximal Picard number. We first recall their classification (Theorem 2.2 and
Proposition 2.3) and we use it to explicitly describe the splitting of the direct
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image (πp)∗(OX) where πp is the Frobenius morphism. To start with, we fix
the notation and we recall the facts on toric varieties that we will use along
this paper refereing to [10] and [17] for more details.

Let Y be a smooth complete toric variety of dimension n over an alge-
braically closed field K of characteristic zero characterized by a fan Σ := Σ(Y )
of strongly convex polyhedral cones in N ⊗Z R where N is the lattice Z

n, i.e.
N is a free Abelian group of rank n and we will denote by e0, . . ., en−1 a
Z-basis of N . Let M := HomZ(N,Z) denote the dual lattice and ê0, . . . , ên−1

the dual basis of e0, . . . , en−1. If σ is a cone in N , the dual cone σ̌ is the set
of vectors in M that are nonnegative in σ. This determines a commutative
semigroup σ̌ ∩ M and we set

Uσ = Spec(K[Sσ])

to denote the open affine toric subvariety.
For any 0 ≤ i ≤ n, we put Σ(i) := {σ ∈ Σ | dim(σ) = i}. In particular, to

any 1-dimensional cone σ ∈ Σ(1) there is a unique generator v ∈ N , called ray
generator, such that σ ∩ N = Z≥0 · v. We label the set of generators in N of
the 1-dimensional cones by {vi | i ∈ J }. There is a one-to-one correspondence
between such ray generators {vi | i ∈ J } and simple toric divisors {Zi | i ∈ J }
on Y . The following notion is due to V. V. Batyrev (see [1]).

Definition 2.1. Let Y be a smooth toric variety. A set of toric divisors
{Z1, . . . ,Zk } on Y is called a primitive set if Z1 ∩ · · · ∩ Zk = ∅ but Z1 ∩ · · · ∩
Ẑj ∩ · · · ∩ Zk �= ∅ for all j, 1 ≤ j ≤ k. Equivalently, this means 〈v1, . . . , vk 〉 /∈ Σ
but 〈v1, . . . , v̂j , . . . , vk 〉 ∈ Σ for all j and we call P = {v1, . . . , vk } a primitive
collection.

If S := {Z1, . . . ,Zk } is a primitive set, the element v := v1 + · · · + vk lies in
the relative interior of a unique cone of Σ, say the cone generated by v′

1, . . . , v
′
s

and v1 + · · · +vk = a1v
′
1 + · · · +asv

′
s with ai > 0 is the corresponding primitive

relation.

If Y is a smooth toric variety of dimension n (hence, n is also the dimension
of the lattice N ) and m is the number of toric divisors of Y (and hence, the
number of 1-dimensional rays in Σ) then the Picard number of Y is ρ(Y ) =
m − n and the anticanonical divisor −KY is given by −KY = Z1 + · · · + Zm.
A smooth toric Fano variety Y is a smooth toric variety with the anticanonical
divisor −KY ample.

It is well known that isomorphism classes of d-dimensional smooth Fano
toric varieties correspond to isomorphism classes of smooth Fano d-polytopes,
that is, fully dimensional convex lattice polytopes in R

d such that the origin
is in the interior of the polytopes and the vertices of every facet is a basis of
the integral lattice Z

d ⊂ R
d. Smooth Fano d-polytopes have been intensively

studied during the last decades and completely classified up to dimension 4
([1] and [18]). In higher dimension, they are classified under some additional
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assumptions; for instance, when the polytopes have few vertices (see [14]),
maximal number of vertices (see [4] and [16]) or some extra symmetries (see
[5]).

In our works [8] and [6]; we described the bounded derived category of
smooth Fano d-dimensional polytopes with few vertices (see [6]; Corolla-
ry 4.13) and, in this paper, we will deal with smooth Fano d-dimensional
polytopes with maximal number of vertices. It is known that 3d is an upper
bound for the number of vertices of a Fano d-polytope and in the following
theorem we recall the classification of smooth Fano d-polytopes with maxi-
mal, if d is odd, and (almost) maximal, if d is even, number of vertices. This
classification turns out to be the classification of smooth Fano d-dimensional
toric varieties with maximal, if d is odd, and (almost) maximal, if d is even,
Picard number.

Theorem 2.2. Let P ⊂ NR be a smooth Fano polytope and e0, . . . , ed−1 a
basis of the lattice Z

d. The following holds:
(1) The number of vertices of P is bounded by 3d if d is even and by 3d − 1

if d is odd.,
(2) If d is even and P has exactly 3d vertices, then P is the convex hull of

the 3d points

±e0, ±e1, . . . , ±ed−2, ±ed−1,

±(e0 − e1), ±(e2 − e3), . . . , ±(ed−2 − ed−1).
(3) If d is even and P has exactly 3d − 1 vertices, then P is the convex hull

of the 3d − 1 points

e0, ±e1, . . . , ±ed−2, ±ed−1,

±(e0 − e1), ±(e2 − e3), . . . , ±(ed−2 − ed−1).
(4) If d is odd and P has 3d − 1 vertices, then P is the convex hull of the

(3d − 1) points
e0, ±e1, . . . , ±ed−1,

e1 − e0, ±(e1 − e2), ±(e3 − e4), . . . , ±(ed−2 − ed−1)
or the convex hull of the (3d − 1) points

±e0, ±e1, . . . , ±ed−1,

±(e1 − e2), ±(e3 − e4), . . . , ±(ed−2 − ed−1).

Proof. See [16]; Theorem 1 and [4]; Theorem 1. �

Recall that the Picard number of a d-dimensional smooth Fano toric variety
is equal to the number of vertices of the associated Fano polytope minus d.
So, if we denote by S2 the blow up of P

2 at two torus-invariant points and
by S3 the blow up of P

2 at three torus-invariant points, the above classifying
result can be read off in the following way.
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Proposition 2.3. Let X be a d-dimensional smooth Fano toric variety
with Picard number ρX . Then,

(1) If d is even, ρX ≤ 2d and there is up to isomorphism only one X with
ρX = 2d, namely (S3)

d
2 , and one with ρX = 2d − 1, namely S2 × (S3)

d−2
2 .

(2) 2) If d is odd, ρX ≤ 2d − 1 and there are up to isomorphism precisely two
X with ρX = 2d − 1, namely P

1 × (S3)
d−1
2 or a unique determined toric

(S3)
d−1
2 -fiber bundle over P

1.

Proof. See [16] and [15]; Proposition 4.1. �

The main goal of the next section is to give an orthogonal basis made
up of line bundles for the derived category Db(X) of bounded complexes
of coherent sheaves on the toric varieties X described in Proposition 2.3,
mainly on smooth Fano toric varieties of dimension d with (almost) maximal
Picard number ρX . If d is even and 2d − 1 ≤ ρX ≤ 2d or d is odd, ρX =
2d − 1 and X isomorphic to P

1 × (S3)
d−1
2 then, applying [6]; Theorem 4.17,

we will see that there is an orthogonal basis for the derived category Db(X)
of bounded complexes of coherent sheaves on X made up of line bundles.
For the remaining case, namely a toric (S3)

d−1
2 -fiber bundle over P

1 we will
explicitly compute such basis. To this end, we need to fix some notation and
to develop some technical results.

From now on, for any odd integer d ≥ 3, we will denote by Xd the toric
(S3)

d−1
2 -fiber bundle over P

1 quoted in Proposition 2.3.
For any smooth projective toric variety X , we denote by PX(t) its Poincaré

polynomial. It is well known that the topological Euler characteristic of X ,
χ(X) verifies

χ(X) = PX(−1)

and χ(X) coincides with the number of maximal cones of X , that is, with the
rank of the Grothendieck group K0(X) of X . On the other hand, since Xd is
a (S3)

d−1
2 -fiber bundle over P

1 we have ([10]; pp. 92–93):

PXd
(t) = P

(S3)
d−1
2

(t)PP1(t).

Thus, putting altogether we deduce

(2.1) rank(K0(Xd)) = P
(S3)

d−1
2

(−1)PP1(−1) = 2 · 6
d−1
2 .

By Theorem 2.2 and Proposition 2.3, Xd is the toric variety associated to
the convex hull of the (3d − 1) points

e0, ±e1, . . . , ±ed−1,

e1 − e0, ±(e1 − e2), ±(e3 − e4), . . . , ±(ed−2 − ed−1),



654 L. COSTA AND R. M. MIRÓ-ROIG

e0, . . . , ed−1 being a basis of the lattice Z
d. Denote by

v0 = e0, v2k−1 = ek, v2k = −ek for 1 ≤ k ≤ d − 1 = 2l,

w0 = e1 − e0, w2j−1 = e2j−1 − e2j , w2j = e2j − e2j−1 for 1 ≤ j ≤ l,

the ray generators of the fan Σd associated to Xd. For a later use, it is
convenient to remark that the following is the list of all primitive collections
on Xd, d = 2l + 1 (see [5]; Section 2)

(2.2)

{v2k−1, v2k } for 1 ≤ k ≤ 2l,

{w2j−1,w2j } for 1 ≤ j ≤ l,

{w2j−1, v4j−2} for 1 ≤ j ≤ l,

{w2j−1, v4j−1} for 1 ≤ j ≤ l,

{w2j , v4j−3} for 1 ≤ j ≤ l,

{w2j , v4j } for 1 ≤ j ≤ l,

{w0, v0}.

For the rest of the work, we will use the following notation when we will
deal with toric divisors on Xd, for d = 2l + 1 ≥ 3. We will denote by
• Z+

i the toric divisor associated to ei, 0 ≤ i ≤ d − 1,
• Z−

i the toric divisor associated to −ei, 1 ≤ i ≤ d − 1,
• D0 the toric divisor associated to e1 − e0,

• D+
j the toric divisor associated to e2j−1 − e2j , 1 ≤ j ≤ l,

• D−
j the toric divisor associated to −(e2j−1 − e2j), 1 ≤ j ≤ l.

Given any smooth complete toric variety Y , Bondal described a method
to produce a candidate collection of line bundles on Y , which for certain
classes of Fano toric varieties is expected to be an orthogonal basis of the de-
rived category Db(Y ) of bounded complexes of coherent sheaves on Y . This
method requires to compute the different summands appearing on the Frobe-
nius splitting of the tautological line bundle which will be achieved applying
the algorithm that we will describe now.

For any smooth complete toric variety Y of dimension n with an n-dimen-
sional torus T acting on it and for any integer � ∈ Z, there is a well-defined
toric morphism

π� : Y −→ Y

which restricts, on the torus T , to the map

π� : T −→ T, t 
→ t�.

The map π� is the factorization map with respect to the action of the group
of � torsion of T . We fix a prime integer p � 0. By [12]; Theorem 1 and
Proposition 2, (πp)∗(OY )∨ is a vector bundle of rank pn which splits into a
sum of line bundles

(πp)∗(OY )∨ =
⊕

χ

OY (Dχ),
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where the sum is taken over the group of characters of the p-torsion subgroup
of T . Moreover,

c1((πp)∗(OY )∨) = OY

(
− pn−1(p − 1)

2
KY

)
,

where KY is the canonical divisor of Y .
For sake of completeness, we recall here the algorithm described by Thom-

sen in [12] that we will apply later in order to get explicitly the summands of
the splitting of (πp)∗(OXd

).
Given any smooth complete toric variety Y of dimension n, Picard number

ρ (hence, n + ρ toric divisors) and Group of Grothendieck K0(Y ) of rank s
(hence, s maximal cones), we consider {σ1, . . . , σs} the set of maximal cones
of the fan Σ associated to Y and we denote by vi1 , . . . , vin the generators of
σi. Recall that since Y is smooth, every rational cone σ ∈ Σ is generated by
a part of a Z-basis of N . For each index i, 1 ≤ i ≤ s, we form the matrix
Ai ∈ GLn(Z) having as the jth row the coordinates of vij expressed in the
basis e1, . . . , en of N . Let Bi = A−1

i ∈ GLn(Z) and we denote by wij the jth
column vector in Bi. Introducing the symbols Y ê1 , . . . , Y ên , we form the ring

R = K[(Y ê1)±1, . . . , (Y ên)±1]

which is the coordinate ring of the torus T ⊂ Y and for any i, 1 ≤ i ≤ s, the
coordinate ring of the open affine subvariety Uσi of Y corresponding to the
cone σi is the subring

Ri = K[Y wi1 , . . . , Y win ] ⊂ R,

where we use the notation

Y w := (Y ê1)w1 · · · (Y ên)wn

if w = (w1, . . . ,wn). For simplicity, we will also write Yij := Y wij .
For each i and j, we denote by Rij the coordinate ring of σi ∩ σj and we

define

Iij := {v ∈ Mn×1(Z) | Y v
i is a unit in Rij },(2.3)

Cij := B−1
j Bi ∈ GLn(Z),(2.4)

where we use the notation Y v
i := (Yi1)v1 · · · (Yin)vn being v a column vector

with entries v1, . . . , vn.
For every p ∈ N and w ∈ Iij , we define

Pn
p := {v ∈ Mn×1(Z) | 0 ≤ vi < p}

and the maps
hw

ijp : Pn
p → Rij ,

rw
ijp : Pn

p → Pn
p
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by means of the following equality: for any v ∈ Pp

Cijv + w = p · hw
ijp(v) + rw

ijp(v).

By [12]; Lemma 2 and Lemma 3, these maps exist and they are unique.
Recall that any toric Cartier divisor D on Y can be represented in the form

{(Uσi , Y
ui
i )}σi ∈Σ, ui ∈ Mn×1(Z) (see [10]; Chapter 3.3). Once fixed the set

{(Uσi , Y
ui

i )}σi ∈Σ which represents a toric Cartier divisor D, we define

uij = uj − Cijui.

Notice that if OY (D) = OY is the trivial line bundle, then for any pair i, j,
we have uij = 0.

For any p ∈ Z and any toric Cartier divisor D on Y , (πp)∗(OY (D))∨ is
defined as follows: we fix a set {(Uσi , Y

ui
i )}σi ∈Σ representing D and we choose

an index l of a cone σl ∈ Σ. Let Dv , v ∈ Pn
p , denote the Cartier divisor

represented by the set {(Uσi , Y
hi

i )}σi ∈Σ where, by definition

hi = hv
i := huli

lip (v).

Then, we have

(2.5) (πp)∗(OY (D))∨ =
⊕

v∈P n
p

OY (Dv).

Remark 2.4. Recall that if hi = (hi1, . . . , hin) and αj
i1, . . . , α

j
in are the entries

of the jth column vector of Bi, then by definition

Y hi
i = (Y ê1

α1
i1 · · · Y ên

α1
in)hi1(Y ê1

α2
i1 · · · Y ên

α2
in)hi2 · · · (Y ê1

αn
i1 · · · Y ên

αn
in)hin .

We denote by

lσi = (α1
i1hi1 + α2

i1hi2 + · · · + αn
i1hin)ê1

+ (α1
i2hi1 + α2

i2hi2 + · · · + αn
i2hin)ê2 + · · ·

+ (α1
inhi1 + α2

inhi2 + · · · + αn
inhin)ên ∈ M.

According to this notation, if Dv is the Cartier divisor represented by the set
{(Uσi , Y

hi

i )}, then
Dv = β1

vZ1 + · · · + βn+ρ
v Zn+ρ,

where
βj

v = −lσk
(vj)

for any maximal cone σk containing the ray generator vj associated to the
toric divisor Zj . Indeed, for any pair of maximal cones σk and σk′ containing
vj , lσk

(vj) = lσk′ (vj).

Using this algorithm, we are going to prove the following proposition.
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Proposition 2.5. Let Xd be the toric (S3)
d−1
2 -fiber bundle over P

1, d =
2l + 1 and p � 0 a prime integer. With the above notations the different
summands of (πp)∗(OXd

)∨ are

T3 ⊗
l⊗

k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)
,

where

T3
∼= O ⊕ O(D0) ⊕ O(Z−

1 + D−
1 ) ⊕ O(Z−

1 + D−
1 + D0)

⊕ O(Z−
2 + D+

1 ) ⊕ O(Z−
2 + D+

1 + D0)

⊕ O(Z−
1 + Z−

2 ) ⊕ O(Z−
1 + Z−

2 + D+
1 )

⊕ O(Z−
1 + Z−

2 + D−
1 ) ⊕ O(Z−

1 + Z−
2 + D0)

⊕ O(Z−
1 + Z−

2 + D+
1 + D0) ⊕ O(Z−

1 + Z−
2 + D−

1 + D0).

Proof. By [12]; Theorem 1 and Proposition 2, (πp)∗(OXd
)∨ is a vector

bundle of rank pd which splits into a sum of line bundles

(2.6) (πp)∗(OXd
)∨ =

⊕
vd ∈P d

p

OX(Dvd)

and using the above algorithm, we will determine all these different summands
OXd

(Dvd) moving vd ∈ P d
p . To this end, we will proceed by induction on

odd d.
Assume d = 3. Take e0, e1, e2 be a Z-basis of the lattice Z

3 and denote by

v0 = e0, v1 = e1, v2 = −e1, v3 = e2, v4 = −e2

w0 = e1 − e0, w1 = e1 − e2, w2 = e2 − e1

the ray generators of the fan Σ3 associated to X3.
It follows from Remark 2.4 that in order to get all the different summands

appearing in the splitting (2.6), it is enough to determine lσ1 , lσ2 and lσ3 where
σ1, σ2 and σ3 are three maximal cones of Σ3 involving all the ray generators
vi, 0 ≤ i ≤ 4 and wi, 0 ≤ i ≤ 2. We choose the following three maximal cones
of Σ3:

σ1 := 〈v0, v1, v3〉, σ2 := 〈v2,w0,w2, 〉, σ3 := 〈v0, v4,w1〉.
The matrices Ai, 1 ≤ i ≤ 3, having as the jth row the coordinates of the

j-vector of σi expressed in the basis e0, e1, e2 are:

A1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , A2 =

⎛
⎝ 0 −1 0

−1 1 0
0 −1 1

⎞
⎠ , A3 =

⎛
⎝1 0 0

0 0 −1
0 1 −1

⎞
⎠



658 L. COSTA AND R. M. MIRÓ-ROIG

and their inverses are given by

B1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , B2 =

⎛
⎝−1 −1 0

−1 0 0
−1 0 1

⎞
⎠ , B3 =

⎛
⎝1 0 0

0 −1 1
0 −1 0

⎞
⎠ .

Fix the index l = 1 corresponding to the cone σ1. By (2.4),

C1i = (Bi)−1B1 = Ai

and, as we pointed out before, if {Uσj ,X
uj

j }σj ∈Σ3 represents the zero divisor
then for any pair i, j,

u1i = ui − C1iu1 = 0.

Hence, for any v ∈ P 3
p , hv

i := hu1i
1ip(v) is defined by the relation

Ai · v = p · hv
i + r1ip(v)

for a unique r1ip(v) ∈ P 3
p . For any v = (a0, a1, a2) ∈ P 3

p , we define

d1 := A1 · v = (a0, a1, a2),
d2 := A2 · v = (−a1, −a0 + a1, −a1 + a2),
d3 := A3 · v = (a0, −a2, a1 − a2).

Notice that if v ∈ P 3
p , then d1 ∈ P 3

p . Hence, we have hv
1 = 0 and lσ1 = 0.

Therefore, we obtain

lσ1(u) = 0 for u ∈ σ1 = 〈v0, v1, v3〉.
So, by Remark 2.4, we deduce that for any v ∈ P 3

p ,

Dv = β1Z
−
1 + β2Z

−
2 + β3D0 + β4D

+
1 + β5D

−
1 ,

where

β1 = −lσ2(v2), β2 = −lσ3(v4), β3 = −lσ2(w0)
β4 = −lσ3(w1), and β5 = −lσ2(w2).

To determine these coefficients, we will consider different cases.
Case 1: a0 = a1 = a2 = 0.
In that case, Dv = 0.
Case 2: a1 = a2 = 0 and a0 �= 0.
In that case, d2 = (0, −a0,0) and d3 = (a0,0,0). Therefore, hv

2 = (0, −1,0),
hv

3 = 0, lσ2 = ê0, lσ3 = 0 and thus lσ2(v2) = 0, lσ2(w0) = −1 and lσ2(w2) = 0
which gives us

Dv = D0.

Case 3: a0 = a2 = 0 and a1 �= 0.
In that case, d2 = (−a1,0, −a1) and d3 = (0,0, a1). Therefore, hv

2 = (−1,0,
−1), hv

3 = 0, lσ2 = ê0 + ê1, lσ3 = 0 and thus lσ2(v2) = −1, lσ2(w0) = 0 and
lσ2(w2) = −1 which gives us

Dv = Z−
1 + D−

1 .
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Case 4: a0 = a1 = 0 and a2 �= 0.
In that case, d2 = (0,0, a2) and d3 = (0, −a2, −a2). Therefore, hv

2 = 0, hv
3 =

(0, −1, −1), lσ3 = ê2, lσ2 = 0 and thus lσ3(v4) = −1, lσ3(w1) = −1 which gives
us

Dv = Z−
2 + D+

1 .

Case 5: a0, a1 �= 0 and a2 = 0.
In that case, d2 = (−a1, −a0 + a1, −a1) and d3 = (a0,0, a1). Therefore,

hv
2 = (−1,0, −1) and hv

3 = 0 if −a0 + a1 ≥ 0 or hv
2 = (−1, −1, −1) and hv

3 = 0
if −a0 + a1 < 0. The first case do not contribute with a new summand and in
the second case lσ2 = 2ê0 + ê1 and lσ3 = 0. Thus lσ2(v2) = −1, lσ2(w0) = −1
and lσ2(w2) = −1 which gives us

Dv = Z−
1 + D0 + D−

1 .

Case 6: a0, a2 �= 0 and a1 = 0.
In that case, d2 = (0, −a0, a2) and d3 = (a0, −a2, −a2). Therefore, hv

2 =
(0, −1,0), hv

3 = (0, −1, −1), lσ2 = ê0 and lσ3 = ê2. Thus, lσ2(v2) = 0, lσ2(w0) =
−1, lσ2(w2) = 0, lσ3(w1) = −1 and lσ3(v4) = −1 which gives us

Dv = Z−
2 + D0 + D+

1 .

Case 7: a1, a2 �= 0 and a0 = 0.
In that case, d2 = (−a1, a1, −a1 +a2) and d3 = (0, −a2, a1 − a2). Therefore,

the possibilities that we have are

hv
2 = (−1,0,0), hv

3 = (0, −1, −1) if a1 − a2 < 0;
hv

2 = (−1,0,0), hv
3 = (0, −1,0) if a1 − a2 = 0;

hv
2 = (−1,0, −1), hv

3 = (0, −1,0) if a1 − a2 > 0.

Arguing as before the three news summands that we get are

Dv = Z−
1 + Z−

2 + D+
1 , Dv = Z−

1 + Z−
2 , Dv = Z−

1 + D−
1 + Z−

2 .

Case 8: a0, a1, a2 �= 0.
In that case, d2 = (−a1, −a0 + a1, −a1 + a2) and d3 = (a0, −a2, a1 − a2).

Arguing as before, the three news summands that we get are

Dv = Z−
1 + Z−

2 + D0 + D+
1 , Dv = Z−

1 + Z−
2 + D0,

Dv = Z−
1 + D−

1 + Z−
2 + D0.

Putting all cases together, we get that the different summands appearing
in (2.6) for d = 3 are

T3
∼= O ⊕ O(D0) ⊕ O(Z−

1 + D−
1 ) ⊕ O(Z−

1 + D−
1 + D0)

⊕ O(Z−
2 + D+

1 ) ⊕ O(Z−
2 + D+

1 + D0)

⊕ O(Z−
1 + Z−

2 ) ⊕ O(Z−
1 + Z−

2 + D+
1 )

⊕ O(Z−
1 + Z−

2 + D−
1 ) ⊕ O(Z−

1 + Z−
2 + D0)

⊕ O(Z−
1 + Z−

2 + D+
1 + D0) ⊕ O(Z−

1 + Z−
2 + D−

1 + D0)



660 L. COSTA AND R. M. MIRÓ-ROIG

and this concludes this initial case d = 3.
For 3 < d = 2l + 1 take e0, . . . , ed−1 be a Z-basis of the lattice Z

d with the
convention that if e0, . . . , ed−3 is a Z-basis of Z

d−2, we complete it to get
e0, . . . , ed−3, ed−2, ed−1 a Z-basis of Z

d. Recall that

v0 = e0, v2k−1 = ek, v2k = −ek for 1 ≤ k ≤ d − 1 = 2l,

w0 = e1 − e0, w2j−1 = e2j−1 − e2j , w2j = e2j − e2j−1 for 1 ≤ j ≤ l,

are the ray generators of the fan Σd associated to Xd.
As we have seen in Remark 2.4, to get all the different summands appearing

in the splitting (2.6) it is enough to determine lσd
1
, lσd

2
and lσd

3
where σd

1 , σd
2

and σd
3 are three maximal cones of Σd that altogether contain all the ray

generators vi, 0 ≤ i ≤ 2d − 2 and wi, 0 ≤ i ≤ 2l. We choose the following three
maximal cones of Σd:

σd
1 := 〈v0, v1, v3, . . . , v2(d−3)−1, v2d−5, v2d−3〉,

σd
2 := 〈v2, v6, . . . , v2(d−4),w0,w2, . . . ,w2(l−1), v2(d−2),w2l〉,

σd
3 := 〈v0, v4, . . . , v2(d−3),w1,w3, . . . ,w2l−3, v2(d−1),w2l−1〉.

Notice that the set of ray generators of Σd can be seen as the set of ray genera-
tors of Σd−2 together with the ray generators v2d−5, v2d−3, v2(d−2),w2l, v2(d−1),
w2l−1 and that the following recursive relation holds:

σd
1 = 〈σd−2

1 , v2d−5, v2d−3〉,
σd

2 = 〈σd−2
2 , v2(d−2),w2l〉,

σd
3 = 〈σd−2

3 , v2(d−1),w2l−1〉,
where σd−2

1 , σd−2
2 and σd−2

3 are the corresponding maximal cones of Σd−2 that
contain all its ray generators.

Thus, the matrices Ad
i , 1 ≤ i ≤ 3, having as the jth row the coordinates of

the j-vector of σd
i expressed in the basis e0, . . . , ed−1 are:

Ad
1 =

⎛
⎝Ad−2

1 0

0
1 0
0 1

⎞
⎠ , Ad

2 =

⎛
⎝Ad−2

2 0

0
0 −1
1 −1

⎞
⎠ ,

Ad
3 =

⎛
⎝Ad−2

3 0

0
−1 0
−1 1

⎞
⎠ ,

where the Ad−2
i , 1 ≤ i ≤ 3, are the matrices having as the jth row the co-

ordinates of the j-vector of σd−2
i expressed in the basis e0, . . . , ed−3. Their

inverses are given by Bd
1 = Ad

1,

Bd
2 =

⎛
⎝Bd−2

2 0

0 −1 0
−1 1

⎞
⎠ and Bd

3 =

⎛
⎝Bd−2

3 0

0 −1 1
−1 0

⎞
⎠ ,
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where the matrix Bd−2
i , 1 ≤ i ≤ 3, is the inverse of the matrix Ad−2

i .
Fix the index l = 1 corresponding to the cone σd

1 . By (2.4),

Cd
1i = (Bd

i )−1Bd
1 = Ad

i

and, as we pointed out before, if {Uσj ,X
uj

j }σj ∈Σd
represents the zero divisor

then for any pair i, j,
u1i = ui − C1iu1 = 0.

Hence, for any vd ∈ P d
p , hvd

i := hu1i
1ip(vd) is defined by the relation

Ad
i · vd = p · hvd

i + r1ip(vd)

for a unique r1ip(vd) ∈ P d
p .

For any vd = (a0, . . . , ad−3, ad−2, ad−1) ∈ P d
p , we define

dd
1 := Ad

1 · vd,

dd
2 := Ad

2 · vd,

dd
3 := Ad

3 · vd.

Notice that we can see vd as vd = (vd−2, ad−2, ad−1) and hence we have

dd
1 = (dd−2

1 , ad−2, ad−1),

dd
2 = (dd−2

2 , −ad−2, −ad−2 + ad−1),

dd
3 = (dd−2

3 , −ad−1, ad−2 − ad−1).

Notice that if vd ∈ P d
p , then dd

1 ∈ P d
p . Hence, we have hvd

1 = 0 and lσd
1

= 0.
Therefore, it only remains to determine, for any vd ∈ P d

p , the functions lσd
2

and lσd
3

and to write down the corresponding OXd
(Dvd). To this end, we will

proceed by induction on odd d and we will consider four different cases.
Case 1: ad−2 = ad−1 = 0.
In that case, for i = 2,3 we have

hvd

i = (hvd−2

i ,0,0).

Therefore, lσd
3

= lσd−2
3

, lσd
3

= lσd−2
3

and using induction the different summands
that we get are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O.

Case 2: ad−2 �= 0 and ad−1 = 0.
In that case, we have

hvd

2 = (hvd−2

2 , −1, −1) and

hvd

3 = (hvd−2

3 ,0,0).
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Therefore, lσd
2

= lσd−2
2

+ êd−2 and lσd
3

= lσd−2
3

. Thus, using induction, the
different summands that we get in this case are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O(Z−
2l−1 + D−

l ).

Case 3: ad−1 �= 0 and ad−2 = 0.
In that case, we have

hvd

2 = (hvd−2

2 ,0,0) and

hvd

3 = (hvd−2

3 , −1, −1).

Therefore, lσd
2

= lσd−2
2

and lσd
3

= lσd−2
3

+ êd−1. Thus, using induction, the
different summands that we get in this case are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O(Z−
2l + D+

l ).

Case 4: ad−1 �= 0 and ad−2 �= 0.
In that case the following possibilities can occur:

hvd

2 = (hvd−2

2 , −1, −1) and hvd

3 = (hvd−2

3 , −1,0);(4.1)

hvd

2 = (hvd−2

2 , −1,0) and hvd

3 = (hvd−2

3 , −1,0);(4.2)

hvd

2 = (hvd−2

2 , −1,0) and hvd

3 = (hvd−2

3 , −1, −1).(4.3)

If (4.1) occurs, then lσd
2

= lσd−2
2

+ êd−2 and lσd
3

= lσd−2
3

+ êd−2 + êd−1 and the
different summands that we get in this case are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O(Z−
2l−1 + Z−

2l + D−
l ).

If (4.2) occurs, then lσd
2

= lσd−2
2

+ êd−2 + êd−1 and lσd
3

= lσd−2
3

+ êd−2 + êd−1

and the different summands that we get in this case are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O(Z−
2l + Z−

2l−1).
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Finally, if 4.3 occurs, then lσd
2

= lσd−2
2

+ êd−2 + êd−1 and lσd
3

= lσd−2
3

+ êd−1

and the different summands that we get in this case are

T3 ⊗
l−1⊗
k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

⊗ O(Z−
2l + Z−

2l−1 + D+
l ).

Putting together the four cases, we obtain that the different summands
appearing in the splitting (2.6) are precisely

T3 ⊗
l⊗

k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)

which proves what we want. �

3. Orthogonal basis

This section contains the main theorem of this work and it has as a main
goal to construct a full strongly exceptional collection of line bundles in the
derived category Db(X), that is an orthogonal basis made up of line bun-
dles, where X is a smooth Fano toric variety with (almost) maximal Picard
number. We will start recalling the notions of exceptional sheaves, excep-
tional collections of sheaves, strongly exceptional collections of sheaves and
full strongly exceptional collections of sheaves as well as the facts on derived
categories needed in the rest of the paper.

Definition 3.1. Let Y be a smooth projective variety.
(i) A coherent sheaf F on Y is exceptional if Hom(F,F ) = K and Exti

OY
(F,

F ) = 0 for i > 0,
(ii) An ordered collection (F0, F1, . . . , Fm) of coherent sheaves on Y is an

exceptional collection if each sheaf Fi is exceptional and Exti
OY

(Fk, Fj) = 0
for j < k and i ≥ 0.

(iii) An exceptional collection (F0, F1, . . . , Fm) is a strongly exceptional col-
lection if in addition Exti

OY
(Fj , Fk) = 0 for i ≥ 1 and j ≤ k.

(iv) An ordered collection (F0, F1, . . . , Fm) of coherent sheaves on Y is a
full (strongly) exceptional collection if it is a (strongly) exceptional collection
and F0, F1, . . . , Fm generate the bounded derived category Db(Y ).

Remark 3.2. The existence of a full strongly exceptional collection (F0, F1,
. . . , Fm) of coherent sheaves on a smooth projective variety Y imposes a
rather strong restriction on Y , namely that the Grothendieck group K0(Y ) =
K0(OY -mod) is isomorphic to Z

m+1.
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It is natural to ask whether Db(Y ) is freely and finitely generated. More
precisely, we are lead to consider the following problem.

Problem 3.3. To characterize smooth projective varieties Y which have a
full strongly exceptional collection of coherent sheaves and, even more, if there
is one made up of line bundles.

This problem is far from being solved and in this paper we will restrict
our attention to the particular case of toric varieties. Toric varieties admit
a combinatorial description which allows many invariants to be expressed
in terms of combinatorial data. We will use this fact to describe the derived
category of smooth Fano toric varieties with (almost) maximal Picard number
and, in particular, we will give positive contributions to the above problem
and to the following conjecture.

Conjecture 3.4. Every smooth complete Fano toric variety X has a full
strongly exceptional collection of line bundles.

So far, only partial results are known but there are some numerical ev-
idences towards Conjecture 1.2. (For detailed information about Conjec-
ture 1.2, the reader can consult [9], [6], [8] and the references quoted there).

Let us start dealing with smooth Fano d-dimensional toric varieties with
Picard number 2d or 2d − 1 which are products of toric varieties of smaller
dimension. In that case, we will use the following result.

Proposition 3.5. Let X1 and X2 be two smooth projective varieties and let
(F i

0, F
i
1, . . . , F

i
ni

) be a full strongly exceptional collection of locally free sheaves
on Xi, i = 1,2. Then

(F 1
0 � F 2

0 , F 1
1 � F 2

0 , . . . , F 1
n1

� F 2
0 , . . . , F 1

0 � F 2
n2

, F 1
1 � F 2

n2
, . . . , F 1

n1
� F 2

n2
)

is a full strongly exceptional collection of locally free sheaves on X1 × X2.

Proof. See [6]; Proposition 4.16. �

Applying this result we get the following proposition.

Proposition 3.6. Let X be a d-dimensional smooth Fano toric variety
which is isomorphic to either (S3)

d
2 or S2 × (S3)

d−2
2 if d is even, and P

1 ×
(S3)

d−1
2 if d is odd. Then, X has a full strongly exceptional collection made

up of line bundles.

Proof. It is well known that P
1 has a full strongly exceptional collection

made up of line bundles. On the other hand, by [6]; Proposition 4.19, S2 and
S3 both have a full strongly exceptional collection of line bundles. Thus, we
can conclude by applying reiteratively Proposition 3.5. �

Now we will deal with the remaining case of a d-dimensional smooth Fano
toric variety X with Picard number 2d − 1 ≤ ρX ≤ 2d, namely d will be odd
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and X isomorphic to Xd: a toric (S3)
d−1
2 -fiber bundle over P

1. In this case,
we will apply Bondal’s criterium. Roughly speaking, this criterium asserts
that, under certain restrictions, the different summands of the splitting of
the Frobenius direct image (πp)∗(OXd

) of the tautological line bundle can be
ordered in such a way that they form a full strongly exceptional collection of
line bundles. We are going to recall it after fixing some notation.

Notation 3.7. For any irreducible toric curve C in an n-dimensional toric
variety X , we denote by DC

1 , . . . ,DC
n−1 the irreducible toric divisors containing

C and we denote by (aC
1 , . . . , aC

n−1) the corresponding intersections numbers
of the divisors DC

i with C.

Proposition 3.8 (Bondal’s criterium). Let X be a smooth n-dimensional
toric variety. Assume that for any irreducible toric curve C on X , the co-
efficients aC

i verify aC
i ≥ −1 for 1 ≤ i ≤ n − 1 and that no more than one is

equal to −1. Then, for p � 0, a suitable order of the different summands of
(πp)∗(OX)∨ form a full strongly exceptional collection of line bundles on X .

Proof. See [3]. �
Remark 3.9. Let X be a smooth toric variety of dimension d and let C be
an irreducible toric curve. Let us compute the numerical invariants aC

i . To
this end, we consider u1, . . . , un−1 the generators of the cone corresponding
to C and let u+, u− be the additional generators of the two maximal cones
adjacent to it. Then, there is a relation

u+ + u− +
n−1∑
i=1

aC
i ui = 0

in which the coefficients aC
i are the required intersection numbers.

Theorem 3.10. Let Xd be a toric (S3)
d−1
2 -fiber bundle over P

1. Then, a
suitable order of the summands of

T3 ⊗
l⊗

k=2

(
O ⊕ O(Z−

2k + D+
k ) ⊕ O(Z−

2k−1 + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k)

⊕ O(Z−
2k−1 + Z−

2k + D−
k ) ⊕ O(Z−

2k−1 + Z−
2k + D+

k )
)
,

where

T3
∼= O ⊕ O(D0) ⊕ O(Z−

1 + D−
1 ) ⊕ O(Z−

1 + D−
1 + D0)

⊕ O(Z−
2 + D+

1 ) ⊕ O(Z−
2 + D+

1 + D0)

⊕ O(Z−
1 + Z−

2 ) ⊕ O(Z−
1 + Z−

2 + D+
1 )

⊕ O(Z−
1 + Z−

2 + D−
1 ) ⊕ O(Z−

1 + Z−
2 + D0)

⊕ O(Z−
1 + Z−

2 + D+
1 + D0) ⊕ O(Z−

1 + Z−
2 + D−

1 + D0)

form a full strongly exceptional collection of line bundles on Xd.
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Table 1. Two dimensional cones σC associated to any irre-
ducible toric curve C and the additional generators u+, u−
of the two 3-dimensional cones adjacent to it

σC u+ u− σC u+ u−
1 〈v1, v3〉 v0 w0 10 〈v3,w0〉 v1 w2

2 〈v1, v0〉 v3 w1 11 〈v3,w2〉 v0 w0

3 〈v1,w0〉 v3 w1 12 〈v4, v0〉 v2 w1

4 〈v1,w1〉 v0 w0 13 〈v4,w0〉 v2 w1

5 〈v2, v4〉 v0 w0 14 〈v4,w1〉 v0 w0

6 〈v2, v0〉 v4 w2 15 〈v0,w1〉 v1 v4

7 〈v2,w0〉 v4 w2 16 〈v0,w2〉 v2 v3

8 〈v2,w2〉 v0 w0 17 〈w1,w0〉 v1 v4

9 〈v3,w0〉 v1 w2 18 〈w2,w0〉 v2 v3

Proof. First of all, notice that we have exactly 2 · 6 d−1
2 summands which by

(2.1) is the rank of the Grothendieck group K0(Xd). Hence, the cardinality
of any full strongly exceptional collection on Xd is 2 · 6

d−1
2 (see Remark 3.2).

By Theorem 2.5 and Proposition 3.8, we will conclude if we prove that Xd

verifies Bondal’s criterium. To this end, let e0, . . . , ed−1 be a Z-basis of the
lattice Z

d and denote by

(3.1) v0 = e0, v2k−1 = ek, v2k = −ek for 1 ≤ k ≤ d − 1 = 2l,

w0 = e1 − e0, w2j−1 = e2j−1 − e2j ,(3.2)
w2j = e2j − e2j−1 for 1 ≤ j ≤ l,

the ray generators of the fan Σd associated to Xd. We will proceed by induc-
tion on odd d.

Let d = 3. In Table 1, we write down the two-dimensional cones σC associ-
ated to any irreducible toric curve C ⊂ Xd and the additional generators u+,
u− of the two 3-dimensional cones adjacent to it.

By Remark 3.9, we have to check that for any irreducible toric curve C in
the above table the coefficients of the relation

(3.3) u+ + u− + aC
1 u1 + aC

2 u2 = 0

being u1, u2 the ray generators of σC , are greater or equal to −1 and at most
there is one equal to −1.

Consider the first case. If

v0 + w0 + aC
1 v1 + aC

2 v3 = 0

then by (3.1) and (3.2), we must have aC
1 = −1 and aC

2 = 0. Hence, the
condition is verified. The remaining cases can also be checked by direct com-
putation, and we left the details to the reader.
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Let d > 3 be an odd integer. Let C be any irreducible toric curve, denote
by u1, . . . , un−1 the generators of the cone σC corresponding to C and let
u+, u− be the additional generators of the two maximal cones adjacent to it.
Then, there is a unique relation

(3.4) u+ + u− +
n−1∑
i=1

aC
i ui = 0

and by Remark 3.9 we have to prove that all the coefficients aC
i of this relation

are greater or equal to −1 and at most there is one equal to −1.
First of all, notice that σ+ := 〈u+, u1, . . . , ud−1〉 is a maximal cone in Σd.

Thus, it contains at least two vectors, z1, z2 belonging to the set

(3.5) S := { ±ed−2, ±ed−1, ±(ed−2 − ed−1)}.

But it follows from (2.2) that this set does not contain three vectors defining
a 3-dimensional cone in Σd. Thus, σ+ contains exactly two vectors z1, z2

belonging to the set S and moreover, the only possibilities for the pair (z1, z2)
are

(3.6)
(ed−2, ed−1), (−ed−2, −ed−1),
(ed−2, ed−2 − ed−1), (−ed−2, ed−1 − ed−2),
(ed−1, −ed−2 + ed−1), (−ed−1, ed−2 − ed−1)

because, by (2.2), any other pair is a primitive collection. The same argu-
ment shows that σ− := 〈u−, u1, . . . , ud−1〉 contains exactly two vectors z′

1, z
′
2

belonging to the set S and the only possibilities for the pair (z′
1, z

′
2) are the

ones in (3.6).
From the definition is clear that the sets {z1, z2} and {z′

1, z
′
2} coincide or

they have at least one vector in common. Keeping in mind this remark, we
will distinguish two cases.

Case 1: {z1, z2} = {z′
1, z

′
2}.

In that case, necessarily z1, z2 ∈ {u1, . . . , ud−1}. Renumbering if necessary,
we can assume that z1 = ud−2 and z2 = ud−1. Since the relation (3.4) must
be verified, z1 has to be canceled against z2. But (z1, z2) is one of the pairs
(3.6). Therefore, the only possibility is aC

d−2 = aC
d−1 = 0 and the relation (3.4)

turns to be

u+ + u− +
d−3∑
i=1

aC
i ui = 0.

Hence, by hypothesis of induction, the coefficients aC
i are greater or equal to

−1 and at most one is equal to −1.
Case 2: {z1, z2} and {z′

1, z
′
2} have one vector in common.

In that case, renumbering, if necessary, the only possibility is z1 = ud−1 =
z′
1, z2 = u+ and z′

2 = u−. Thus, we must have z2 + z′
2 + aC

d−1z1 = u+ + u− +
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aC
d−1ud−1 = 0. Therefore, the only possibility is aC

d−1 = 0, 1 or −1 and we get
the relation

d−2∑
i=1

aC
i ui = 0.

If in this relation there is one ui of type ui = ej − ej−1, then it should be
canceled with −ej and ej−1; or ej and −ej−1; or ej and ej−1; or −ej and
−ej−1. But according to the list of primitive collections (2.2), none of this
possibilities can occur since none of them define a 3-dimensional cone. So, the
relation only contains vectors ui of type ±ei and thus, the only possibility is
aC

i = 0 for all 1 ≤ i ≤ d − 2.
Therefore, for any irreducible toric curve C ⊂ Xd, Bondal’s condition is

verified and therefore, the collection can be ordered in such a way that we get
a full strongly exceptional collection of line bundles. �

Summing up we get our main result.

Theorem 3.11. Let X be a smooth Fano d-dimensional toric variety with
Picard number ρX with 2d − 1 ≤ ρX ≤ 2d. Then, X has a full strongly excep-
tional collection of line bundles.

Proof. It follows from Proposition 2.3, Proposition 3.6 and Proposi-
tion 3.10. �
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