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DUALITY, UNIFORMITY, AND LINEAR LOCAL
CONNECTIVITY

SHANSHUANG YANG

Abstract. Using Väisälä’s metric duality on joinability of sets,
we show, among other things, that in R

3 if the complementary

domains of a surface are LLC, they are also uniform. As an appli-
cation, we show that an Ahlfors regular topological sphere that

admits a quasiconformal reflection is quasisymmetrically equiva-
lent to the standard sphere.

1. Introduction and main results

In this paper, we use the metric duality theory, developed by Väisälä [9], to
study the connection between uniformity and LLC properties of domains in
the Euclidean space R

3. In particular, we investigate under what conditions
the following well known implications of domain properties can be reversed
for domains in R

3:

(1) Uniform ⇒ Sobolev extension ⇒ QED ⇒ LLC.

In [12], we constructed a domain that is the image of the upper half space
under a global homeomorphism of R

3 and is a Sobolev extension domain
(and hence LLC). But, it is not uniform. This example shows that the above
implications cannot be reversed under the strongest possible topological con-
ditions. Other geometric conditions are needed. As noted in [12, 3.11], the
complementary domain D∗ of the constructed domain D is not linearly locally
connected (or LLC). A natural question to ask is if both D and D∗ are LLC,
are they also uniform? We give a positive answer to this question.

In order to formulate the main results, we need the following preliminaries.
The standard Euclidean n-space (n ≥ 2) will be denoted by R

n and its one
point compactification by R̄

n. Let B(a, r) denote the ball centered at a of
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radius r. The boundary and closure of a set A will be denoted by ∂A and Ā,
respectively.

Definition 1.1. A domain D in R̄
n (n ≥ 2) is said to be uniform if there

exists a constant c = c(D), 1 ≤ c < ∞, such that each pair of points x1, x2 ∈
D ∩ R

n can be joined by a continuum (or, equivalently, a curve) β in D for
which

(2) dia(β) ≤ c|x1 − x2| and min
j=1,2

|xj − x| ≤ cd(x,∂D)

for each x ∈ β. Here dia(β) denotes the diameter of β and d(x,∂D) the
distance from x to the boundary ∂D.

Definition 1.2. For c ≥ 1, a set A in R̄
n is said to be c-LLC1 if for each

finite point a ∈ R
n and r > 0, each pair of points in A ∩ B(a, r) can be joined

by a continuum in A ∩ B(a, cr). Similarly, A ⊂ R̄
n is said to be c-LLC2 if for

each finite point a ∈ R
n and r > 0, each pair of points in A \ B̄(a, cr) can be

joined by a continuum in A \ B̄(a, r). Finally, A ⊂ R̄
n is said to be linearly

locally connected (or LLC ) if it is both c-LLC1 and c-LLC2 for some c.

Uniform domains and LLC domains (along with several other classes of
domains such as Sobolev extension domains and QED domains) have played
important roles in geometric function theory and PDE theory, largely due to
the fact that certain functions defined on these domains have special prop-
erties such as extension property and injectivity. These classes of domains
have been extensively studied in recent years. Since we will not deal with
Sobolev extension domains or QED domains directly in this paper, we omit
the definitions here and refer the reader to [5], [13], [8] for further definitions
and discussions of various related classes of domains.

The main results of this paper can be stated as follows.

Theorem 1.1. Let D and D∗ be complementary domains in R̄
3 with trivial

homology groups and such that ∂D = ∂D∗. Then D and D∗ are uniform if
and only if D and D∗ are LLC.

Theorem 1.2. Let D and D∗ be complementary domains in R̄
3 with trivial

homology groups and such that ∂D = ∂D∗. Let D be locally collared along ∂D.
Then D and D∗ are uniform if and only if ∂D is LLC.

A domain D is said to be locally collared along ∂D if each point x ∈ ∂D ∩ R
n

has a neighborhood U such that U ∩ D̄ is homeomorphic to the intersection
of a ball and the closure of the upper half space.

Before proving Theorems 1.1 and 1.2 in Section 3, we recall and reformulate
in Section 2 Väisälä’s metric duality results on joinability and LLC property
in the forms as they are needed in this paper. As applications, in Section 4,
we study uniformity of higher orders, quasiconformal reflection domains, and
quasisymmetric parametrizations of topological spheres.
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2. Metric duality

In this section, we recall Väisälä’s metric duality theory for joinability,
which plays an essential role in this paper.

2.1. Topological and algebraic terminology. First, we need to establish
some topological and algebraic terminology. For a set X ⊂ R̄

n, we let Hp(X)
and Hp(X) denote, respectively, the reduced singular homology groups and
reduced Čech cohomology groups of X with coefficients in a fixed nontriv-
ial Abelian group (the integer group Z, for example). Next, we say that a
sequence of Abelian groups and homomorphisms

A
α−→ B

β−→ C

is fast if ker(βα) = ker(α) or, equivalently, ker(βα) ⊂ ker(α). Dually, the se-
quence is said to be slow if im(βα) = im(β) or, equivalently, im(β) ⊂ im(βα).

2.2. Joinability. Väisälä’s metric duality theory is based on the concept of
joinability, which is a p-dimensional version of the LLC property. Suppose
that A ⊂ R̄

n, a ∈ R
n, r > 0 and c ≥ 1. For each integer p ≥ 0, consider the

following four sequences induced by inclusions:

Hp

(
A ∩ B(a, r)

)
−→ Hp

(
A ∩ B(a, cr)

)
−→ Hp(A),(a)

Hp

(
A \ B̄(a, cr)

)
−→ Hp

(
A \ B̄(a, r)

)
−→ Hp(A),(b)

Hp(A) −→ Hp
(
A ∩ B̄(a, cr)

)
−→ Hp

(
A ∩ B̄(a, r)

)
,(c)

Hp(A) −→ Hp
(
A \ B(a, r)

)
−→ Hp

(
A \ B(a, cr)

)
.(d)

If the above sequence (a) is fast for every a ∈ R
n and r > 0, we say that

A is homologically outer (p, c)-joinable. If (b) is fast for all a, r, then A is
homologically inner (p, c)-joinable. Similarly, if sequence (c) is slow for all
a, r, then A is cohomologically outer (p, c)-joinable. If (d) is slow for all a, r,
then A is cohomologically inner (p, c)-joinable.

As in [9], we shall abbreviate the words ‘homologically’ and ‘cohomologi-
cally’ by hlog and cohlog, respectively. We say that A is hlog (p, c)-joinable if
A is both hlog outer (p, c)-joinable and hlog inner (p, c)-joinable. If A is hlog
outer (p, c)-joinable for some c ≥ 1, we say that A is hlog outer (p)-joinable,
and similarly for the other joinability properties. As a convention to further
simplify notation, we shall omit the word ‘hlog’ if the set A is open and omit
the word ‘cohlog’ if the set A is closed.

One of the main ingredients in this paper is the following duality result
due to Väisälä [9, Theorem 2.7] on joinability. It is proved by using exact
Mayer–Vietoris sequences and Alexander duality on homology and cohomol-
ogy groups.

Lemma 2.1. Suppose that U is an open set in R̄
n and that p is an interger

with 0 ≤ p ≤ n − 2. Let X = R̄
n \ U and q = n − 2 − p. Then
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(a) U is outer (p, c)-joinable if and only if X is inner (q, c)-joinable;
(b) U is inner (p, c)-joinable if and only if X is outer (q, c)-joinable;
(c) U is (p, c)-joinable if and only if X is (q, c)-joinable.

2.3. Joinability and LLC. The above joinability concept seems to be
very abstract. But the homological joinability properties can be defined
more explicitly in terms of cycles and chains. For example, an open set U
is outer (p, c)-joinable if and only if, for any a ∈ R

n and r > 0, a p-cycle in
U ∩ B(a, r) that bounds in U also bounds in U ∩ B(a, cr). In particular,
since 0-dimensional simplexes and 0-dimensional chains can be represented
by points, (0)-joinability of a set is closely related to the LLC property. We
collect the following results as they are needed in this paper.

Lemma 2.2. Let U be an open set in R̄
n. Then U is hlog (0, c)-joinable if

and only if every component of U is c-LLC.

Lemma 2.3. Let A be a compact set in R̄
n. If A is cohlog (0, c)-joinable,

then every component of A is c′-LLC for any c′ > c. Conversely, if every
component of A is c-LLC, then A is cohlog (0, c′)-joinable for any c′ > c.

The first lemma follows from [9, Theorem 3.5], and the fact that, for an open
set, pathwise connectedness and continuumwise connectedness are equivalent.
The second lemma follows from [9, Theorem 3.10].

2.4. Joinability and uniformity. Next, we consider the relation between
joinability and uniformity of order p. Suppose that U is an open set in R̄

n,
0 ≤ p ≤ n − 2 and c ≥ 1. Following Väisälä’s definition, we say that U is weakly
(p, c)-uniform if for every p-cycle z bounding in U there is a (p + 1)-chain g
with ∂g = z such that

(L) d(x, |z|) ≤ cd(x,∂U) for all x ∈ |g|
and

(T) dia(|g|) ≤ cd(|z|).
The condition (L) is often referred to as the lens condition and (T) the turning
condition. A domain U is said to be (p, c)-uniform if it is weakly (p, c)-uniform
and Hp(U) = 0. In other words, a domain U is (p, c)-uniform if for every p-
cycle z in U there is a (p+1)-chain g with ∂g = z that satisfies the conditions
(L) and (T).

We note that a domain U is (0, c)-uniform if and only if it is uniform in the
ordinary sense. Uniformity of higher order is a relatively new concept. In [7],
we studied uniform domains of order p based on homotopy in connection with
quasiconformal reflections. Alestalo and Väisälä considered both homotopical
and homological versions of uniformity of order p [1], [2]. It is easy to see
that a domain D ⊂ R

n is homologically (p, c)-uniform in the sense of [1] if
and only if it is (p, c)-uniform in the above sense. We also note that, as
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shown in [9, 5.5], U is weakly (p, c)-uniform if and only if U \ ∞ is weakly
(p, c)-uniform. Another major ingredient we need is the following connection
between joinability and uniformity due to Väisälä [9, 5.22].

Lemma 2.4. Let 0 ≤ p ≤ n − 2 and U be an open set in R̄
n. If U is (k, c)-

joinable for p ≤ k ≤ n − 2 and Hk(U) = 0 for p + 1 ≤ k ≤ n − 1, then U is
weakly (p, c′)-uniform with c′ = c′(c,n, p).

3. Uniformity and LLC

In this section, we study the relation between uniformity and the LLC
property of domains and their complements in R̄

n. As a consequence, we
derive the main results stated in Section 1. Another ingredient needed is the
following ‘push to the boundary’ result on the LLC property, which we believe
has its own interest. A slightly different form of this result was established in
[11]. But, we give a proof here for completeness.

Theorem 3.1. Let an open set U in R̄
n be c-LLC. Then its closure Ū is

c′-LLC for any c′ > c.

Proof. To show that Ū is LLC1, we let a ∈ R
n, r > 0 and fix x, y ∈ Ū ∩

B(a, r). For any ε > 0, choose x′ ∈ U ∩ B(x, εr) and y′ ∈ U ∩ B(y, εr). Then
x′, y′ ∈ U ∩ B(a, (1 + ε)r). Since U is c-LLC, there is a continuum E with

x′, y′ ∈ E ⊂ U ∩ B
(
a, c(1 + ε)r

)
.

Next, choose a sequence xn ∈ U with x1 = x′ and |xn − x| < εr
n for n = 1,2, . . . .

By the c-LLC property of U again, there is a sequence of continua Fn with

xn, xn+1 ∈ Fn ⊂ U ∩ B(x, cεr).

Then the set F =
⋃

F̄n is a continuum with

x′, x ∈ F ⊂ Ū ∩ B̄(x, cεr) ⊂ Ū ∩ B
(
a, c(1 + ε)r

)
.

Similarly, one can obtain a continuum F ′ ⊂ Ū ∩ B(a, c(1 + ε)r) connecting
y′ and y. Thus, the set F ∪ E ∪ F ′ is a continuum connecting x and y in
Ū ∩ B(a, c(1 + ε)r). This shows that Ū is c′-LLC1 for any c′ > c.

To show that Ū is LLC2, we let a ∈ R
n, r > 0 and fix x, y ∈ Ū \ B̄(a, r).

Similar to the above argument, one can choose sequences xn, yn ∈ U \ B̄(a, r)
with xn → x and yn → y. Thus, by invoking the c-LLC2 property of U ,
one can construct as above continua E,F,F ′ ⊂ Ū \ B(a, r/c) with x1, y1 ∈ E,
x,x1 ∈ F and y1, y ∈ F ′. Thus, the set F ∪ E ∪ F ′ is a desired continuum
connecting x and y in Ū \ B(a, r/c). This shows that Ū is c′-LLC2 for any
c′ > c and completes the proof of Theorem 3.1. �

Theorem 3.1 can be thought of as a ‘push to the boundary’ result on LLC.
Conversely, we also have the following ‘push to the inside’ result on LLC,
which will also be needed.
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Theorem 3.2. Let D be a domain in R̄
n that is locally collared along the

boundary (as defined in Section 1). If D̄ is c-LLC, then D is also c-LLC.

Proof. Let r > 0 and x0 ∈ R
n. Fix x1, x2 ∈ D ∩ B(x0, r). Since D̄ is c-LLC,

there is a continuum E ⊂ D̄ ∩ B(x0, cr) with x1, x2 ∈ E. We shall construct
a continuum joining x1 and x2 in D ∩ B(x0, cr) by pushing E into D using
local collars.

Since D is locally collared at the boundary, for each y ∈ E ∩ ∂D, there is a
neighborhood Uy ⊂ B(x0, cr) such that Uy ∩ D̄ is homeomorphic to B(0,1) ∩ H̄,
the intersection of the unit ball and the closure of the upper half space. We
may further assume that x1, x2 /∈ Uy for each y. Next, we fix a finite open
cover {Uyk

}m
k=1 for the compact set E ∩ ∂D. For each yk, let

fk : Uyk
∩ D̄ → B(0,1) ∩ H̄

be a homeomorphism. Then we can fix an embedding g : B(0,1) ∩ H̄ →
B(0,1) ∩ H such that g is identity on the upper half unit sphere and that
B(0,1) ∩ H̄ is mapped into B(0,1) ∩ H. Thus, we obtain an embedding

Fk = f −1
k ◦ g ◦ fk : Uyk

∩ D̄ → Uyk
∩ D

which is identity when x approaches ∂Uyk
∩ D.

Finally, define maps Gk : E → D̄ as follows.

G1(x) =

{
x, x /∈ Uy1 ,

F1(x), x ∈ Uy1 ,

Gk(x) =

{
Gk−1(x), x /∈ Uyk

,

Fk(x), x ∈ Uyk
.

Then one can see that E1 = G1(E) is a continuum in D̄ ∩ B(x0, cr) which does
not intersect the boundary ∂D in Uy1 . By induction, the set Em = Gm(E) is
a continuum joining x1 and x2 in D ∩ B(x0, cr). This shows that D is c-LLC1.
Similarly, one can also show that D is c-LLC2. This completes the proof of
Theorem 3.2. �

Note that the result proved above is stronger than a similar result for n-
manifolds in R

n established by Väisälä [10, Lemma 5.8], in the sense that
Theorem 3.2 requires that ∂D is only locally collared in D. With these pre-
liminary results, we can proceed to prove the main results stated in the In-
troduction.

Proof of Theorem 1.1. It suffices to show that if D and D∗ are LLC, then
they are also uniform. Assume that D and D∗ are c-LLC. By Lemma 2.2,
they are (0)-joinable. Furthermore, it follows from Theorem 3.1 that D̄ and
D̄∗ are LLC. Thus, Lemma 2.3 yields that D̄ and D̄∗ are also (0)-joinable.

Invoking Lemma 2.1, the metric duality result with p = 1 and q = 0, we
conclude that D and D∗ are both (1)-joinable. Therefore, Lemma 2.4 implies
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that D and D∗ are weakly (p)-uniform for p = 0,1, and hence uniform as
desired. �

Proof of Theorem 1.2. Assume that D and D∗ are uniform. Then they are
LLC and, by Theorem 3.1 and Lemma 2.3, D̄ and D̄∗ are also (0)-joinable.
Thus, it follows from Lemma 2.1 that D∗, D, and hence D ∪ D∗ are (1)-
joinable. By the metric duality again, ∂D is (0)-joinable, and therefore LLC.

For the converse, assume that ∂D is LLC. Then it is (0)-joinable. Applying
the metric duality (Lemma 2.1) repeatedly, we deduce that D,D∗ are (1)-
joinable and that D̄ and D̄∗ are (0)-joinable. Since D is locally collared at
∂D, Theorem 3.2 implies that D,D∗ are also (0)-joinable. Finally, Lemma 2.4
yields that D,D∗ are (p)-uniform for p = 0,1. In particular, they are uniform
in the ordinary sense. �

4. Examples and applications

4.1. Uniformity of higher order. Recall that a domain D is (p, c)-uniform
(in homology sense) if for every singular p-cycle z in D there is a singular
(p + 1)-chain g with ∂g = z that satisfies the lens condition (L) and turning
condition (T) as defined in Section 2. Similarly, according to [7] and [1], a do-
main D is homotopically (p, c)-uniform if each pair of maps f1, f2 : Sp → D
are homotopical to each other by a homotopy F that satisfies a lens condi-
tion and a turning condition, or, equivalently, if each map f : Sp → D has an
extension g : B̄p+1 → D satisfying a lens condition and a turning condition.

It was shown by Alestalo [1, Theorem 1.7] that if a domain D is homotopi-
cally (1)-uniform, then it is also homologically (1)-uniform. But the converse
is not true. As shown in [1, Section 5], the complement D of a wild bounded
turning arc in R

n, n ≥ 4, is homologically (1)-uniform. However, such a do-
main D is not homotopically (1)-uniform due to the fact that its fundamental
group π1(D) is nontrivial. We will illustrate an example which shows that
the converse is not true even for domains with trivial fundamental group π1.
First, we state two corollaries which follow directly from the proofs of Theo-
rems 1.1 and 1.2. We say that a triple (D,D∗, ∂D) is a homologically trivial
partition of R̄

3 if D and D∗ are complementary domains in R̄
3 with trivial

homology groups such that ∂D = ∂D∗.

Corollary 4.1. Let (D,D∗, ∂D) be a homologically trivial partition of
R

3. If D and D∗ are LLC, then they are both uniform and homologically
(1)-uniform.

Corollary 4.2. Let (D,D∗, ∂D) be a homologically trivial partition of R
3

with D being locally collared at ∂D. If ∂D is LLC, then D and D∗ are both
uniform and homologically (1)-uniform.

The following example shows that the domains D and D∗ in the above
corollaries may fail to be homotopically (1)-uniform even if the partition
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(D,D∗, ∂D) is homotopically trivial (i.e., D and D∗ have trivial homotopy
groups). According to [7, Example 6.6], there is a domain D in R

3 which has
the following properties:

(a) (D,D∗, ∂D) is a homotopically trivial partition of R
3;

(b) both D and D∗ are homeomorphic to an open half space;
(c) D∗ is bi-Lipschitz equivalent to an open half space;
(d) D is uniform, but not homotopically (1)-uniform.

By Corollary 4.1, both D and D∗ are homologically (1)-uniform. This
seems to be the first example where homological uniformity does not imply
homotopical uniformity even with trivial fundamental groups.

4.2. Quasiconformal reflection domains. A domain D in R̄
n is called

a quasiconformal (QC) reflection domain if there is an orientation reversing
quasiconformal mapping f : R̄

n → R̄
n such that f(D) = D∗(= R̄

n \ D̄) and
that f is identity on ∂D. In this case, we also say that ∂D admits a QC
reflection. In the plane, these domains are precisely quasi-disks [4]. In higher
dimensions, they were studied in connection with uniformity [7], [14]. Here,
we deduce another result in this direction by using the duality.

Theorem 4.1. Let Σ be a topological sphere in R
3 that admits a QC reflec-

tion. Then the complementary domains D and D∗ are homologically (p, c)-
uniform for p = 0,1.

Proof. Since Σ is a topological sphere, it follows from the Alexander duality
that (D,D∗, ∂D) is a homologically trivial partition of R̄

3. Furthermore, by
[14, Theorem 3.1], D and D∗ are uniform domains, and hence LLC. Hence, it
follows from Corollary 4.1 that they are also homologically (1)-uniform. �

4.3. Quasisymmetric parameterizations. Finally, we close this paper
with an application in quasisymmetric parameterization. The problem of
characterizing topological (or metric) spheres that admit a quasisymmetric
(QS) parameterization by the standard sphere has drawn considerable atten-
tion in recent years due to its role in analysis, geometry and topology (see
[6], [3]). In the positive direction, Bonk and Kleiner showed that an Ahlfors
2-regular metric sphere Σ admits a QS parameterization by the standard 2-
sphere S2 if and only if it is LLC. A metric measure space (X,μ) is called
(Ahlfors) n-regular if C−1Rn ≤ μ(BR) ≤ CRn for some constant C ≥ 1 and
for all closed balls BR of radius 0 < R < diamX . We shall derive that certain
topological spheres in R

3 that admit quasiconformal (QC) reflections are QS
equivalent to S2. A topological 2-sphere in R

3 is said to be 2-regular if it is
2-regular with respect to the 2-dimensional Hausdorff measure in the above
sense.
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Theorem 4.2. Let Σ be a 2-regular topological sphere in R
3 that admits a

QC reflection. Then Σ admits a QS parametrization by the standard sphere
S2.

Proof. Let D1 and D2 denote the two complementary domains to Σ. By
[14, Theorem 3.1], D1 and D2 are uniform, and hence LLC. Thus, by invoking
Theorem 3.1 and Lemma 2.1, we deduce that D1 and D2 are (1)-joinable, and
hence D1 ∪ D2 is also (1)-joinable. By duality (Lemma 2.1) again, we conclude
that Σ, as the complement of D1 ∪ D2, is (0)-joinable (or LLC). Finally, [3,
Theorem 1.1] implies that Σ is QS equivalent to S2 as desired. �
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