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ON MONOTONICITY OF F-BLOWUP SEQUENCES

TAKEHIKO YASUDA

Abstract. For each variety in positive characteristic, there is
a series of canonically defined blowups, called F-blowups. We

are interested in the question of whether the (e + 1)th blowup

dominates the eth, locally or globally. It is shown that the answer

is affirmative (globally for any e) when the given variety is F-
pure. As a corollary, we obtain some result on the stability of

the sequence of F-blowups. We also give a sufficient condition for
local domination.

1. Introduction

The F-blowup introduced in [15] is an interesting notion which relates, for
instance, to the desingularization problem, the G-Hilbert scheme and Gröbner
bases. The study of it has just started, and there remain various problems.
Among them, it seems important to understand the behavior of the sequence
consisting of F-blowups.

Consider a variety X in positive characteristic, that is, a separated integral
scheme of finite type over an algebraically closed field k of characteristic p > 0.
Let

Fe : Xe → X, e = 0,1,2, . . .

be the e-times iteration of the k-linear Frobenius. Then for each smooth
(closed) point x ∈ X , the fiber F −1

e (x) is a fat point of Xe of length pe·dimX .
It is considered as a reduced point of the Hilbert scheme of 0-dimensional
subschemes of Xe of this length: F −1

e (x) ∈ Hilbpe·dim X (Xe).

Definition 1.1. We define the eth F-blowup of X , FBe(X), as the closure
of the subset

{F −1
e (x)|x ∈ X(k) smooth} ⊂ Hilbpe·dim X (Xe).
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This is indeed a blowup of X , that is birational and projective over X
(Proposition 2.1).

It is natural to ask if FBe+1 X dominates FBe X , that is, if the natural
birational map

ρe : FBe+1 X ��� FBe X

has no indeterminacy. When this holds for all e, we shall say the F-blowup
sequence is monotone. The answer is generally negative (Example 5.5). One
of our main theorems provides a sufficient condition for the monotonicity.

Theorem 1.2. Suppose that X is F-pure, that is, the natural morphism
OX → (F1)∗ OX locally splits as a morphism of OX -modules. Then the F-
blowup sequence of X is monotone.

The notion of F-purity was introduced by Hochster and Roberts [9], and
is now one of important classes of F-singularities (see [11] and the references
given there).

We can consider also the local version of the above question: “Is ρe defined
at a given point of FBe+1 X?” We give a sufficient condition for this too.

Theorem 1.3. Let Z ∈ FBe+1 X be a closed point, which is identified with
a fat point of Xe+1. Suppose that

(*) the scheme-theoretic image Z̄ of Z by the natural morphism
Xe+1 → Xe belongs to FBe X .

Then ρe is defined at Z and ρe(Z) = Z̄.

Condition (*) means that Z ∈ FBe+1 X has a natural candidate Z̄ of the
image in FBe X . In fact, Theorem 1.3 is a generalization of Theorem 1.2,
since (*) always holds if X is F-pure (Proposition 4.1).

We saw in [15] that in some cases, the F-blowup sequence is bounded,
that is, all F-blowups of X are dominated by a single blowup of X . (At
this point, I do not know of any example where the sequence is unbounded.
See Example 6.3.) When both the boundedness and monotonicity hold, the
sequence stabilizes (Lemma 6.2).

It is also natural to ask what properties of variety are preserved by F-
blowups. We obtain the following result on this issue.

Proposition 1.4. There exist an F-pure (resp. normal, weakly normal)
variety X and e ∈ Z>0 such that FBe X is not F-pure (resp. normal, weak-
ly normal).

We use the toric geometry in order to construct examples and prove the
last proposition. For this purpose, we show that a toric variety is F-pure if
and only if it is weakly normal (Proposition 5.3). A similar result has been
obtained by Bruns, Li, and Römer [3, Proposition 6.2].
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Outline of the paper. In Section 2, we recall some basic facts on F-blowup
from [15]. Section 3 is devoted to the proof of Theorem 1.2. In Section 4, we
prove that Condition (*) holds whenever X is F-pure and Theorem 1.3. In
Section 5, we use the toric geometry to give some examples of F-blowups. In
Section 6, we discuss when the F-blowup sequence stabilizes. In Section 7,
we prove Proposition 1.4 by using the toric geometry and the nonnormal
G-Hilbert scheme found by Craw, Maclagan, and Thomas [4].

Conventions. Throughout the paper, we work over an algebraically closed
field k of characteristic p > 0. A variety means a separated integral scheme of
finite type over k. A point of a variety always means a closed point.

2. Preliminaries

In this section, we set up notation and recall some results from [15].1

We continue to write X for a given variety over k. All our problems are local
on X . So we may suppose X is affine; X = SpecR. Let e ∈ Z≥0 and q := pe.
Then we may identify Xe = SpecR1/q and then Fe : Xe → X corresponds
to the inclusion map R ↪→ R1/q . We also have (Fe)∗ OX = O1/q

X and Xe =
SpecX O1/q

X .
The F-blowup can be constructed also with the relative Hilbert scheme or

the Quot scheme.

Proposition 2.1 ([15, Proposition 2.4]). The F-blowup FBe(X) is canoni-
cally isomorphic to the irreducible component of Hilbqd(Xe/X) that dominates
X , and also to that of Quotqd(O1/q

X ).

Moreover, the proof of [15, Proposition 2.4] shows that the isomorphism
is the restriction of the natural morphism Hilbqd(Xe/X) → Hilbqd(Xe). It
follows that each point Z ∈ FBe(X) is included in the fiber F −1

e (x) for some
reduced point x ∈ X . Namely the scheme-theoretic image Fe(Z) ⊂ X is a
reduced point. Then the X-scheme structure of FBe(X) is given by the map

πe : FBe(X) → X, Z �→ πe(Z) := Fe(Z).

This is projective and is an isomorphism exactly over the smooth locus of X
[15, Corollary 2.5].

Being an irreducible component of the Quot scheme, FBe(X) has the fol-
lowing universal property: For a blowup f : Y → X and a coherent OX -
module F , define the torsion-free pull-back f�F the quotient of the usual
pull-back f ∗ F by the subsheaf of torsions. Then π�

e O1/q
X is flat, or equiva-

lently, locally free. Moreover, if for a blowup f : Y → X , f�O1/q
X is flat, then

f factors through FBe X .

1 In [15], the Frobenius map Rq ↪→ R, rather than R ↪→ R1/q , is considered. This causes

slight notational differences.



104 TAKEHIKO YASUDA

More generally, if G is a coherent sheaf on X and if it is generically locally
free of rank r, then its universal (birational) flattening is constructed as the
irreducible component of Quotr(G) dominating X . See for instance [10, 14]
for studies on the universal flattening of a general coherent module.

3. Proof of Theorem 1.2

We may suppose that X is affine. Then for each e, we have an isomorphism
of OX -modules

O1/pe+1

X
∼= O1/pe

X ⊕ Me

for some OX -module Me. Then the torsion-free pull-back by πe+1

π�
e+1O1/pe+1

X
∼= π�

e+1O1/pe

X ⊕ π�
e+1Me

is flat and locally free. From the characterization of flat module as a summand
of a free module [5, Corollary 6.6], π�

e+1O1/pe

X is flat. From the universality of
FBe X , we have a natural morphism FBe+1 X → FBe X . We have proved the
theorem.

4. On local domination by FBe+1 X over FBe X

Proposition 4.1. Suppose that X is F-pure. Then Condition (*) in The-
orem 1.3 holds for every e ≥ 0 and every Z ∈ FBe+1 X .

Proof. The identity map of π�
e+1O1/pe

X can be factored as

π�
e+1O1/pe

X → π�
e+1O1/pe+1

X → π�
e+1O1/pe+1

X /π�
e+1Me

∼= π�
e+1O1/pe

X .

Taking the fibers of these sheaves at Z, we obtain

idk[Z′] : k[Z ′] → k[Z] → k[Z ′].

Here Z ′ ∈ FBe X is the image of Z by the natural map FBe+1 X → FBe X ,
which exists from Theorem 1.2, and k[Z] and k[Z ′] are the coordinate rings of
fat points Z ⊂ Xe+1 and Z ′ ⊂ Xe, respectively. Hence, the map k[Z ′] → k[Z],
which is the ring homomorphism defining the natural morphism Z → Z ′, is
injective. This shows that Z ′ = Z̄ and the proposition follows. �

Proof of Theorem 1.3. We write Ze+1 := Z and Ze := Z̄. Let G ⊂
FBe+1(X) ×k FBe(X) be the closure of the graph of ρe : FBe+1(X) ���
FBe(X) and ψi : G → FBi(X), i = e, e + 1, the projections. We have to show
that ψe+1 is an isomorphism around a := (Ze+1,Ze) ∈ G.

We shall first show that set-theoretically ψ−1
e+1(Ze+1) = {a}. For i = e, e+1,

let Wi ⊂ G ×k Xi be the family of fat points over G. More precisely, this is the
pull-back of the universal family over FBi(X), which is a closed subscheme of
FBi(X) ×k Xi, by the projection ψi. Then Wi is isomorphic to the associated
reduced scheme of G ×X Xi. In other words, OWi is identified with the torsion-
free pull-back of OXi = O1/pi

X by the natural map G → X . In particular,
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Wi is reduced. Hence, We is the scheme-theoretic image of We+1 by the
natural morphism G ×k Xe+1 → G ×k Xe. If b = (Ye+1, Ye) ∈ G, then the
fiber of We+1 → G (resp. We → G) over b is Ye+1 (resp. Ye). It follows that
the scheme-theoretic image Ȳe+1 of Ye+1 in Xe is included in Ye. Now if
Ye+1 = Ze+1, then Ze := Ȳe+1 ⊂ Ye. But by assumption, both Ze and Ye have
length ped. Hence, Ze = Ye. This shows that ψ−1

e+1(Ze+1) = {a}.
Let R be the coordinate ring of X as before, zi ⊂ R1/pi

the defining ideals
of Zi and

φi : TaG → TZi FBi(X) ↪→ Hom(zi,R
1/pi

/zi)
the maps of Zariski tangent spaces (for the identification of the tangent space
to the Hilbert scheme with Hom(zi,R

1/pi

/zi), see for instance [6, Proof of The-
orem VI-29]). To show that ψe+1 is an isomorphism around a, it is enough to
show that φe+1 is injective. Take 0 	= v ∈ TaG. If φe(v) = 0, then φe+1(v) 	= 0.
So we may suppose that φe(v) 	= 0. Let

W v
e ⊂ SpecR1/pe

[t]/(t2) and W v
e+1 ⊂ SpecR1/pe+1

[t]/(t2)

be the pull back of We and We+1 by our tangent vector

v : Speck[t]/(t2) → G.

Since φe(v) 	= 0, the defining ideal of W v
e does contain an element of the form

f + gt, f ∈ ze, g ∈ R1/pe \ ze so that φe(v) ∈ Hom(ze,R
1/pe

/ze) maps f to the
class of g modulo ze, which is nonzero.

Such an element f + gt is also contained in the defining ideal of W v
e+1 and

φe+1(v) maps f to g modulo ze+1. Since by assumption ze = ze+1 ∩ R1/pe

, we
have g /∈ ze+1. Hence φe+1(v) 	= 0 and φe+1 is injective, which completes the
proof. �

5. The toric case

Let M = Z
d be a free Abelian group of rank d and A ⊂ M a finitely gen-

erated submonoid which generates M as a group. We associate to A and M
the monoid algebras k[A] ⊂ k[M ] =

⊕
m∈M k · xm and the affine toric vari-

eties X := Speck[A] ⊃ T := Speck[M ]. We shall make an additional assump-
tion that A contains no nontrivial group or equivalently the cone AR ⊂ MR

spanned by A has a vertex. This involves no loss of generality.2

Let A∨
R

⊂ M ∨
R

be the dual cone of AR, which is d-dimensional since AR

is strongly convex. The F-blowup FBe X is a (possibly nonnormal) toric

2 Conversely, suppose that A contains a nontrivial group. Let B ⊂ A be the maximal group

and let a1, . . . , am, b1, . . . , bn be generators of A such that ai /∈ B and bi ∈ B. Then there
exists a subset of {b1, . . . , bn }, say {b1, . . . , bl }, l ≤ n, which generates a monoid containing

no nontrivial group but still generates B as a group. Let A′ be the monoid generated by
a1, . . . , am, b1, . . . , bl, which contains no nontrivial group. Then k[A] is a localization of

k[A′] by an element. Indeed if we put b :=
∑l

i=1 bi, then k[A] = k[A′]xb . Thus, the toric

variety associated to A is an open subvariety of the one associated to A′.
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variety and determines a fan Δe which is a subdivision of A∨
R
. For each

d-dimensional cone σ ∈ Δe, there exists a corresponding affine toric open
subvariety Uσ ⊂ X . By the inclusion T ⊂ Uσ , the coordinate rings of each Uσ

is naturally embedded in k[M ]. It is expressed as follows: Fix a d-dimensional
σ ∈ Δe and an interior point w ∈ σ. Then put

Bσ :=
{

m ∈ 1
q
A

∣∣∣∃m′ ∈ 1
q
A,m − m′ ∈ M, 〈m,w〉 > 〈m′,w〉

}
and

Cσ :=
{

m − m′
∣∣∣m ∈ 1

q
A,m′ ∈ 1

q
A \ Bσ,m − m′ ∈ M, 〈m,w〉 > 〈m′,w〉

}
.

Theorem 5.1 ([15, Proposition 3.8]). The coordinate ring of Uσ is gener-
ated by xc, c ∈ Cσ as a k-algebra.

Now we recall the notion of weak normality in the sense of Andreotti and
Bombieri [1].

Definition 5.2. An affine variety SpecR with function field K is said to
be weakly normal if R = R1/p ∩ K.

We easily see that the monoid algebra k[A] is weakly normal if and only if
A = 1

pA ∩ M .
It has been known to experts that the F-purity implies the weak normality

(for example, see [2, Proposition 1.2.5]). For the monoid algebra, the converse
is also true.

Proposition 5.3. The ring k[A] is F-pure if and only if it is weakly nor-
mal.

Proof. Although I do not know of any reference, maybe this result is known
to experts. Bruns, Li, and Römer [3, Proposition 6.2] have proved a similar
result. Suppose that k[A] is weakly normal, so A = 1

pA ∩ M . We define a
k-linear map φ : k[ 1pA] → k[A] by

φ(xm) =

{
xm, m ∈ A,

0, m /∈ A.

We claim that it is a k[A]-module homomorphism and hence the inclusion map
k[A] ↪→ k[ 1pA] splits. To see this, it is enough to show that for any m ∈ 1

pA

and n ∈ A,

(1) φ(xm+n) = xnφ(xm).

When m ∈ A, this is obvious. If m /∈ A, then m + n /∈ A. (Conversely, if
m + n ∈ A, then m + n ∈ M and m ∈ M ∩ 1

pA = A, a contradiction.) Hence,
(1) holds in this case too. �
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As a corollary, we recover [3, Corollary 6.3].

Corollary 5.4. k[A] is normal, which is of course independent of the
characteristic, if and only if it is weakly normal (equivalently F-pure) in arbi-
trary positive characteristic.

Proof. k[A] is normal if and only if for any m ∈ M and n ∈ Z>0 with
nm ∈ A, we have m ∈ A if and only if for any m ∈ M and every prime number
p with pm ∈ A, we have m ∈ A. The last condition is equivalent to that k[A]
is weakly normal in every positive characteristic. �

Example 5.5 (An example where the monotonicity fails). Suppose k has
Characteristic 2 and A ⊂ Z≥0 is the monoid generated by 8,9,10,11.

A = {0,8,9,10,11,16,17,18, . . .}.

Then the associated 1-dimensional toric variety X is not weakly normal, nor
F-pure. We claim that FB1(X) is smooth but FB2(X) is not. In particular,
FB2(X) does not dominate FB1(X).

For each e, Δe contains only one 1-dimensional cone, say σe. Then

Bσ1 =
1
2
A \

{
0,

9
2

}
=

{
4,5,

11
2

,8,
17
2

,9 . . .

}
,

Bσ2 =
1
4
A \

{
0,

9
4
,
5
2
,
11
4

}
=

{
2,4,

17
4

,
9
2
, . . .

}
.

Since 1 = 11/2 − 9/2 ∈ Cσ1 , FB1(X) = Speck[x]. On the other hand, since
none of

0 + 1,
9
4

+ 1,
5
2

+ 1,
11
4

+ 1

belong to 1
4A, 1 /∈ Cσ2 . Indeed Cσ2 = 〈2,3〉, and FB2(X) = Speck[x2, x3].

Example 5.6 (An example where the monotonicity holds, but Condition
(*) fails). Suppose again k has Characteristic 2 and A = 〈2,3〉. Then for every
e > 0, FBe X ∼= Speck[x], because it is the only nontrivial blowup of X . In
particular, the monotonicity holds. We have

Bσ1 =
1
2
A \

{
0,

3
2

}
=

{
1,2,

5
2
, . . .

}
,

Bσ2 =
1
4
A \

{
0,

1
2
,
3
4
,
5
4

}
=

{
1,

3
2
,
7
4
, . . .

}
.

Then Bσ1 	= Bσ2 ∩ 1
2A. Indeed 3/2 only belongs to the right-hand side. There-

fore, Condition (*) in Theorem 1.3 fails.
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6. Stability of F-blowup sequences

Definition 6.1. Let X1,X2, . . . be a sequence of blowups of some variety
X . Then we say that the sequence stabilizes if ∃e0, ∀e ≥ e0, the natural
birational map Xe+1 ��� Xe extends to an isomorphism.

We say that the sequence is bounded if there exists a blowup Y of X which
dominates all the Xi, i ≥ 1.

The stability obviously implies the boundedness. Conversely, from the
following lemma, the boundedness together with the monotonicity implies
the stability.

Lemma 6.2. Let
X0

f1←− X1
f2←− X2

f3←− · · ·
be a sequence of proper surjective morphisms of varieties, and gi : Y → Xi,
i ≥ 0, surjective morphisms of varieties such that for every i, fi ◦ gi = gi−1.
Then for sufficiently large i, fi is an isomorphism.

Proof. (Though this fact is perhaps well-known, we include a proof for the
sake of completeness.) Let Γi ⊂ Y ×k Xi be the graph of gi and Hi ⊂ Y ×k Y
its inverse image by

idY × gi : Y ×k Y → Y ×k Xi.

Then we have
Hi =

⊔
y∈Y

{y} × g−1
i (gi(y)).

Clearly, Hi−1 ⊃ Hi. Since Y ×k Y has the Noetherian underlying topological
space, for sufficiently large i, Hi−1 = Hi and so fi is injective and finite.

Now we may suppose that the fi are finite and the Xi are affine, say
Xi = SpecRi. If S denotes the integral closure of R0, then (Ri)i∈Z≥0 is an
ascending chain of R0-submodules of S. Since S is a Noetherian R0-module,
the chain stabilizes. �

Example 6.3.
(1) If X is a 1-dimensional variety, then for sufficiently large e, FBe(X) is

the normalization of X [15, Corollary 3.19]. In particular, the F-blowup
sequence stabilizes.

(2) If G ⊂ GLd(k) is a finite subgroup of order prime to p and X = A
d
k/G,

then for sufficiently large e, FBe(X) is isomorphic to the G-Hilbert scheme
HilbG(Ad

k) [15, Theorem 4.4], [13, Theorem 1.3]. Hence, the F-blowup
sequence stabilizes.

(3) The F-blowup sequence of a toric variety is bounded [15, Theorem 3.13].
Hence, the F-blowup sequence of a weakly normal toric variety stabilizes.
For the normal case, this has been already proved in [15, Theorem 3.12].
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(4) Let R be a Noetherian complete local domain over k and X = SpecR. We
can define the eth F-blowup of X as the universal flattening of R1/pe

, see
[15, Section 2.3.2]. We say that X has finite F-representation type if there
appear only finitely many indecomposable R-modules, say M1, . . . ,Mn,
up to isomorphism in R1/pi

, i ≥ 0, as direct summands, see [12, Defi-
nition 3.1.1]. If X has finite F-representation type, then the F-blowup
sequence of X is bounded. Indeed if a blowup Y → X is a flattening of
N :=

⊕n
i=1 Mi, then Y dominates all the F-blowups. Moreover, if X is

F-pure, then for sufficiently large e, R1/pe

has exactly M1, . . . ,Mn as in-
decomposable direct summands. Then FBe(X) is the universal flattening
of N . In particular, the F-blowup sequence stabilizes. For instance, every
simple singularity has finite F-representation type. See [8] for simple sin-
gularities in positive characteristic. Moreover, as in the following lemma,
every simple singularity of dimension ≥ 3 is F-pure.

Lemma 6.4. Let R = k[[x0, . . . , xn]]/(f) be a simple hypersurface singularity
of dimension n ≥ 3. Then R is F-pure.

Proof. From the classification [8], we may suppose that f is of the form

f(x0, . . . , xn) = g(x0, . . . , xn−2) + xn−1xn.

Then the monomial xp−1
n−1x

p−1
n appears in the expansion of fp−1. Hence,

fp−1 /∈ (x0, . . . , xn)[p]. From Fedder’s criterion [7, Proposition 2.1], R is F-
pure. �

7. Proof of Proposition 1.4

We start with an example of Craw–Maclagan–Thomas [4, Example 5.7]. If
char(k) 	= 5, then there exists a finite Abelian subgroup G ⊂ GLk(6) of order
54 such that the associated G-Hilbert scheme HilbG(A6

k) is nonnormal. Let
X := A

6
k/G, which is a normal toric (hence F-pure) variety.

As in Example 6.3, the F-blowup sequence of X stabilizes. For sufficiently
large e, we have

FB∞(X) := FBe(X) ∼= HilbG(A6).
In particular, FB∞(X) is nonnormal.

But FB∞(X) is independent of the base field [15, Theorem 3.12]: No mat-
ter what the base field is, the combinatorial data defining the toric variety
FB∞(X) does not change. In particular, FB∞(X) is well defined and non-
normal also in Characteristic 5. From Corollary 5.4, it is not weakly normal
nor F-pure in every positive characteristic.

Acknowledgments. I thank Shunsuke Takagi, Kei-ichi Watanabe and Ken-
ichi Yoshida for helpful comments concerning F-singularities. I also thank the
referee for his/her helpful comments and raising a few interesting questions,
which are answered in Propositions 1.4 and 5.3.
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