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DENSITIES IN FABRY’S THEOREM

ALEXANDRE EREMENKO

Abstract. Fabry’s theorem on the singularities of power series
is improved: the maximum density in the assumptions of this

theorem is replaced by an interior density of Beurling–Malliavin
type.

1. Introduction

A well-known theorem of Pringsheim says that for every power series

(1) f(z) =
∞∑

m=0

amzm, limsup
m→∞

|am|1/m = 1,

with nonnegative coefficients the point z = 1 is singular.
Fabry’s theorem is a generalization of this; assuming that projections of

some coefficients on certain lines through the origin have relatively few sign
changes, it guarantees the existence of a singular point on a closed arc of the
unit circle centered at z = 1.

For the precise statement, we need the following definitions. For a sequence
of real numbers {am}, we say that a sign change occurs at the place m if
amak < 0 for some k < m, while aj = 0 for k < j < m.

Let Λ be a set of positive integers. We denote by n(r,Λ) the counting
function

n(r,Λ) = card{λ ∈ Λ : λ ≤ r},

and define the maximum density of Λ by the formula

D2(Λ) = lim
r→0+

limsup
t→∞

n((1 + r)t,Λ) − n(t,Λ)
rt

.

The outside limit always exists, [13, Satz III]. Here is an equivalent definition.
A set Λ for which n(r,Λ)/r has a limit as r → ∞ is called measurable, and
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1278 A. EREMENKO

the limit is called the (ordinary) density of Λ. Then D2(Λ) is the associated
exterior density, that is the infimum of densities of all measurable sets of
integers that contain Λ.

Theorem A (Fabry [6]). For a power series f of the form (1), let {mk }
be a sequence with the property

(2) lim
k→∞

| Re(e−iβkamk
)|1/mk = 1,

with some real βk. Fix a number r ∈ (0,1) and let Λk be the set of integers m
in the segment

(3) [(1 − r)mk, (1 + r)mk],

where the sign changes of the sequence {Re(e−iβkamk
)} occur. If Δ =

D2(
⋃

k Λk), then f has a singularity on the arc

IΔ = {eiθ : |θ| ≤ πΔ}.

The last sentence means that there is no immediate analytic continuation
of f from the unit disc to the arc IΔ.

Comments. 1. A sequence {mk } satisfying (2) always exists because
the series f has radius of convergence 1. One can take {mk } such that
|amk

|1/mk → 1 and then put βk = argamk
. Alternatively, one can first choose

all βk equal to 0 or all βk equal to π/2, and for at least one of these choices
a sequence {mk } satisfying (2) can be found.

2. Replacing {mk } by a subsequence decreases1 Δ, and thus, gives a
stronger conclusion. For example, one can add the assumption that inter-
vals (3) are disjoint, and this will not weaken the result.

3. Same applies to the choice of the number r. Choosing a smaller r does
not weaken the conclusion.

Fabry’s statement in [6] is equivalent to the statement above, though he
did not state a general definition of the maximum density D2. This definition
is due to Pólya [13]. Bieberbach’s book [5] contains a complete proof of
Theorem A, as well as many corollaries and a survey of related results up to
the early 1950s. The history of Pringsheim’s and Fabry’s theorems is described
in [14] by one of the main participants.

Corollary 1. Suppose that for two real numbers βj , 0 < β1 − β2 < π the
set of sign changes in {Re(e−iβj an)} has maximum density at most Δ. Then
the power series f in (1) has a singularity on the arc IΔ.

The most often cited corollary of Fabry’s theorem is the following.

1 Everywhere in this paper we use the words “decrease,” “increase” etc. in the nonstrict

sense.
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Corollary 2. Suppose that the set {n : an �= 0} has maximum density Δ.
Then f has a singularity on every closed arc of the unit circle of length 2πΔ.
In particular, if Δ = 0 then the unit circle is the natural boundary of f .

Indeed, the number of sign changes of any sequence does not exceed the
number of its nonzero terms. So by Corollary 1, we conclude that f has a
singularity on the arc IΔ. But the conditions of Corollary 1 are invariant
under a transformation f(z) �→ f(zeiθ) so there is at least one singularity on
any closed arc of length 2πΔ on the unit circle.

Other interesting corollaries are discussed in the book [5]. Various special
cases of Theorem A were subject of intensive research in XX century, however,
the fact that the assumptions of the Theorem A can be substantially relaxed
have been overlooked until recently.

One reason of this is that Corollary 2 is best possible in a very strong sense
[10, IX B]2:

For every sequence Λ of positive integers of maximum density Δ > 0 and
every δ ∈ (0,Δ), there exists a power series f of the form (1) with an = 0 for
n /∈ Λ, such that f has an immediate analytic continuation from the unit disc
to the arc {eiθ : |θ| < πδ}.

In other words, the following two properties of a sequence Λ of positive
integers are equivalent: (a) D2(Λ) ≤ Δ and (b) every power series of the form∑

m∈Λ

amzm, limsup
m→∞

|am|1/m → 1

has a singularity on the arc IΔ.
This result may create an impression that the maximal density is the “best

possible density” in Theorem A. However, we will see that this is not so. The
difference between Theorem A and Corollaries 1 and 2 is that the density in
Theorem A is measured not for the whole sequence of coefficients, but only
for a part of it near a subsequence {amk

} of “large coefficients.”
The first improvement of the density condition in Theorem A is due to

Arakelyan and Martirosyan [1]. Suppose that a series (1) and sequences mk, βk

satisfying (2) are given. Let Λk,+ ⊂ [mk,2mk] and Λk,− ⊂ [0,mk] be the
sets of integers j where the sign changes of Re(e−βkaj) occur. We denote
Λ+ = {Λk,+} and Λ− = {Λk,− }, so that Λ± are sequences of finite sets of
integers. For every r ∈ [0,1], we define

(4) nk,+(r) =
1

mk
cardΛk,+ ∩ [mk, (1 + r)mk],

and

(5) nk,−(r) =
1

mk
cardΛk,− ∩ [(1 − r)mk,mk].

2 Koosis credits Fuchs [7] for the construction that proves this result.



1280 A. EREMENKO

Then we put

D1(Λ±) = limsup
r→0+

limsup
k→∞

nk,±(r)
r

.

Theorem B (Arakelyan and Martirosyan3). The function f in (1) has a
singularity on the arc IΔ, where Δ = min{D1(Λ+),D1(Λ−)}.

According to Bieberbach, Pólya [12, footnote 18 on p. 703] was the first
to notice that in some versions of Fabry’s theorem the intervals (3) can be
replaced by one-sided intervals [mk, (1 + r)mk] or by [(1 − r)mk,mk].

It is easy to see that that D1(Λ±) ≤ D2(Λ±), where D2(Λ±) are the max-
imal densities of the sets

⋃
k Λk,±, and these inequalities can be strict. So

Theorem B is stronger than a “one-sided” version of Theorem A suggested by
Pólya.

The main result of this paper shows that the density condition in Fabry’s
theorem can be further relaxed: we will replace D1 by a smaller quantity. To
state it, we need some preliminaries. Notice that the functions nk,± defined in
(4) and (5) are increasing, continuous from the right, and satisfy the condition

(6) |nk,±(x) − nk,±(y)| ≤ |x − y|, x, y ∈ [0,1],

whenever mkx and mky are integers. By Helly’s theorem, from every sequence
of such functions, one can extract a subsequence which converges pointwise to
some increasing function n. We denote the sets of these limit functions n by
Fr(Λ+) and Fr(Λ−). The limit functions satisfy condition (6) for all real x, y
on [0,1]. In particular, they are absolutely continuous and their derivatives
in the sense of distributions satisfy ‖n′ ‖ ∞ ≤ 1. We also have n(0) = 0.

Let n be an increasing function on some closed interval I of the real line,
satisfying the condition |n(x) − n(y)| ≤ |x − y| for all x, y in I . For every
Δ ∈ [0,1], we define the lower Δ-regularization,

nΔ = nΔ
I = sup{φ ∈ C1 : φ ≤ n,Δ ≤ φ′ ≤ 1}.

In other words, nΔ
I is the largest minorant of n on I whose slope is at least

Δ. Notice that Δ1 < Δ2 implies nΔ1
I ≥ nΔ2

I , and n0
I = n. Furthermore, if n

is originally defined on I and we restrict it to a smaller interval I1 ⊂ I , and
take a regularization of this restriction, then nΔ

I1
(x) ≥ nΔ

I (x) for x ∈ I1.
If I = [0, δ], δ > 0, we will denote nΔ

I by nΔ
δ . In what follows, we will

sometimes simplify the notation by omitting any reference to the interval of
regularization, if this interval is clear from context. When doing this, we
will always use the following convention: in a regularization that occurs in
an integrand, the interval of the regularization coincides with the interval of
integration.

3 The statement given in [1] is somewhat weaker, but the argument there actually proves

Theorem B.
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Theorem 1. Let a power series f as in (1) and sequences {mk }, {βk } with
the property (2) be given. If for some limit function n ∈ Fr(Λ+) ∪ Fr(Λ−) and
a number Δ ∈ [0,1), we have

(7)
∫ δ

0

n(r) − nΔ
δ (r)

r2
dr = ∞ for all δ ∈ (0,1),

then f has a singularity on the arc IΔ.

This result suggests the following definitions:

D3(Λ+) = inf
n∈Fr(Λ+)

inf
{

a ∈ [0,1] :
∫ δ

0

n(r) − na
δ (r)

r2
dr = ∞, for all δ ∈ (0,1)

}
,

and similarly for Λ−.
We will show (Lemma 3 in Section 2) that the densities D3 have the

following monotonicity property: if for every k we have Λk,± ⊂ Λ′
k,±, then

D3(Λ±) ≤ D3(Λ′
±).

This monotonicity property combined with Theorem 1 gives a “gap version”
of Theorem 1: instead of counting sign changes we can define Λ± as the
sequences of subscripts j of nonzero terms of {aj } for mk ≤ j ≤ 2mk and
0 ≤ j ≤ mk, respectively. Then f has at least one singularity on each closed
arc of the unit circle of length 2πΔ, where Δ = min{D3(Λ+),D3(Λ−)}.

To compare Theorem 1 with Theorems A and B, we choose the sequence
{mk } in (2) in such a way that the limit n = limk→∞ nk,+ exists. Replacing
{mk } by its subsequence can only decrease the densities D2 and D1. Then

D1(Λ+) ≥ limsup
r→0+

n(r)/r, and D2(Λ+) ≥ limsup
r,r′ →0+

|n(r) − n(r′)|/|r − r′ |.

On the other hand, it is easy to see that

D3(Λ+) ≤ lim inf
r→0+

n(r)/r.

Let us combine this with Theorem 1 to obtain a corollary whose conditions
are easier to verify.

Corollary 3. Let a power series f as in (1) and sequences {mk }, {βk }
satisfying (2) be given. If some limit function n ∈ Fr(Λ+) ∪ Fr(Λ−) satisfies

lim inf
r→0+

n(r)
r

≤ Δ,

then f has a singularity on the arc IΔ.

We summarize the relations between the considered densities as

D3 ≤ D1 ≤ D2,

and all inequalities can be strict. Assuming that Fr(Λ+) ∪ Fr(Λ−) contains a
function n such that

limsup
r→0+

n(r)/r = 1 and lim inf
r→0+

n(r)/r = 0,



1282 A. EREMENKO

we obtain D3 = 0 while D1 = D2 = 1. In this case, Theorems A and B say
nothing, while Theorem 1 implies that z = 1 is a singular point, and the gap
version of Theorem 1 gives that the whole unit circle is the natural boundary.

In the recent paper [2], a new density condition in Fabry’s gap theorem is
given, which is incomparable with our conditions in Theorem 1 or its Corol-
lary 3. The density used in [2] can be written in our notation as

D4(Λ) = lim inf
r→0

lim inf
k→∞

1
2r

∫ r

0

nk,+(t) + nk,−(t)
t

dt,

and it is shown that every power series (1) with

|amk
|1/mk → 1

and aj = 0 for j ∈ [0,2mk]\Λk, has a singularity on the arc ID4(Λ).
If the pointwise limits n± = limk→∞ nk,± exist, then it is easy to see that

D4(Λ) ≥ min
{

lim inf
r→0

n+(r)/r, lim inf
r→0

n−(r)/r
}

.

So in this case, Corollary 3 gives a stronger result.
However, one can construct examples in which

D4(Λ) < min{D3(Λ+),D3(Λ−)},

so in general our Theorem 1 does not contain the result of [2] as a special
case.

Thus, the question on the best possible density condition in Fabry’s theo-
rem remains open.

Sketch of the proof of Theorem 1. Assume for simplicity that the co-
efficients am are real and choose βk = 0. If f has an immediate analytic
continuation on IΔ, then the sequence (−1)mam can be interpolated by a
holomorphic function F in some angle containing the positive ray, such that
log |F (z)| ≤ πb| Imz| + o(|z|), z → ∞ (Theorem C in Section 2). If the se-
quence {am} has few sign changes on some interval, then F has many zeros
on the same interval (Lemma 1, Section 2). Thus, we need to estimate from
above the number of zeros of F near the points mk where |F (mk)| = |amk

|
is not too small (is it not too small by (2)). After a more or less standard
rescaling trick, this is reduced to an estimate from above of the Riesz measure
of a subharmonic function u in a neighborhood of 0 having the properties
u(0) = 0 and u(z) ≤ πb| Imz|. Such estimate of a Riesz measure from above
can be obtained by adapting the arguments of Beurling and Malliavin from
[4] (Lemmas 2–6 in Section 2).

Now, we give the details.
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2. Preliminary results

We will use the following theorem.

Theorem C. For a function f as in (1) to have an immediate analytic
continuation from the unit disc to the arc IΔ, it is necessary and sufficient
that there exists a function F analytic in some angle A(α) = {z : | arg z| < α}
with the properties

(8) am = (−1)mF (m),

and

(9) limsup
t→∞

log |F (teiθ)|
t

≤ πb| sinθ|, |θ| < α,

with some b < 1 − Δ.

This is a special case of [3, Chapter V, Theorem III].4 A simple proof of
this special case can be found in [1]. We only need the “necessary” part of
this theorem, and we include a proof for the reader’s convenience.

Proof of necessity. We begin with a function Fε defined by the formula

Fε(z) =
1

2πi

∫ iπ−ε

−iπ−ε

f(−eζ)e−zζ dζ,

where ε > 0 is arbitrary. Then Fε is an entire function of exponential type.
Cauchy’s formula gives

(−1)mam =
1

2πi

∫
|w|=ρ

f(−w)w−m−1 dw,

where ρ < 1. Making the change of the variable w = eζ in the Cauchy integral,
we obtain (8) for all functions Fε.

The integrand in Fε is analytic in the left half-plane, and by assumption it
has an immediate analytic continuation to a neighborhood of the two segments
[−iπ, −iπb] and [iπb, iπ] for some b < 1 − Δ. So we can deform the path of
integration to a new path γ shown in Figure 1.

This path γ consists of the vertical segment [−iπb − ε, iπb − ε], two hori-
zontal segments [±iπb − ε, ±iπb + ε1], and two vertical segments on the line
Re ζ = ε1. This path deformation changes Fε, but does not change its values
at the positive integers, because when z is an integer, the integrand in Fε has
period 2πi. Now, we set

F (z) =
1

2πi

∫
γ

f(−eζ)e−zζ dζ,

4 There is a misprint in Bernstein’s statement: his inequality (14) should be |t| ≤ �. With

|t| < �, Bernstein’s statement no longer holds, even for power series. See [2].
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Figure 1. Path γ.

and F satisfies (8). The function

hγ(θ) = sup
ζ∈γ

(− Re(ζeiθ))

satisfies
h(θ) = πb| sinθ| + ε cosθ, |θ| ≤ α,

for some α > 0 depending only on ε1. Then the straightforward estimate of
the integral over γ gives

|F (z)| ≤ C exp(|z|h(arg z)), |z| → ∞
where C is a constant depending on f (see, for example, [11, Chapter I,
Sections 19 and 20]). Changing ε does not change F by Cauchy’s theorem.
Letting ε → 0+, we obtain (9). �

Lemma 1. Let (a0, a1, . . . , aN ) be a sequence of real numbers, and f a
real analytic function on the closed interval [0,N ], such that f(n) = (−1)nan.
Then the number of zeros of f on [0,N ], counting multiplicities, is at least N
minus the number of sign changes of the sequence {an}.

Proof. Consider first an interval (k,n) such that akan �= 0, but aj = 0 for
k < j < n. We claim that f has at least

n − k − #(sign changes in the pair (ak, an))

zeros on the open interval (k,n). Indeed, the number of zeros of f on this
interval is at least n − k − 1 in any case. This proves the claim if there is a sign
change in the pair (ak, an). If there is no sign change, that is anak > 0, then
f(n)f(k) = (−1)n−k. So the number of zeros of f on the interval (n,k) is of
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the same parity as n − k. But f has at least n − k − 1 zeros on this interval,
thus, the total number of zeros is at least n − k. This proves our claim.

Now let ak be the first and an the last nonzero term of our sequence. As
the interval (k,n) is a disjoint union of the intervals to which the above claim
applies, we conclude that the number of zeros of f on (k,n) is at least (n − k)
minus the number of sign changes of our sequence. On the rest of the interval
[0,N ], our function has at least N − n + k zeros, so the total number of zeros
is at least N minus the number of sign changes. �

Let n be an increasing function on a closed interval I . For every a ∈ [0,1],
we define the upper a-regularization by

na
I = inf{φ : φ ≥ n,0 ≤ φ′ ≤ a}.

For functions n satisfying (6), we have the formula

(10) (id − n)
a

I = id − n1−a
I ,

which is easy to verify.
Consider the set N of all increasing functions n,n(0) = 0 on a segment

I = [0, δ], where δ > 0 is fixed. We introduce the following order relation
n1 
 n2 if n1 − n2 is increasing.

Lemma 2. For n ∈ N:

(11)
∫ δ

0

na(r) − n(r)
r2

dr < ∞

if and only if there exists n1 ∈ N with the properties n1 
 n,n1(r) ≤ ar,0 ≤
r ≤ δ and

(12)
∫ δ

0

ar − n1(r)
r2

dr < ∞.

Proof. (11) −→ (12). Put n1(r) = ar − na + n. It satisfies all conditions.
(12) −→ (11). We define n2(r) = n(r)+ar − n1(r), then n2 ≥ n and a · id 


n2. This implies that n ≤ na ≤ n2, and by (12)∫ δ

0

n2(r) − n(r)
r2

dr < ∞,

holds. We conclude that (11) holds as well. �

Lemma 3. If n and n1 are in N, and n1 
 n, then

(13)
∫ δ

0

na(r) − n(r)
r2

dr = ∞

implies

(14)
∫ δ

0

n1
a(r) − n1(r)

r2
dr = ∞.
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Proof. Suppose that the integral in (14) converges. By Lemma 2, there
exists n2 
 n1, n2 ≤ a · id such that∫ δ

0

ar − n2(r)
r2

dr < ∞.

As n2 
 n1 
 n and n2 ≤ a · id, another application of Lemma 2 yields that
the integral in (13) converges. �

Lemma 4. Let u be a subharmonic function in {z : |z| < 2δ}, satisfying

(15) u(0) = 0,

and

(16) u(z) ≤ πb| Imz|, |z| < 2δ,

for some b > 0. Then

(17)
∫ δ

−δ

u(x)
x2

dx > −∞.

Proof. We may assume without loss of generality that u(z) = u(z) (replac-
ing u by (u(z) + u(z))/2 alters neither the conditions nor the assumptions of
the lemma). Consider the Poisson integral in the upper half-plane

v(x + iy) =
y

π

∫ δ

−δ

u(t)
(x − t)2 + y2

dt.

This integral is convergent because u is integrable on the interval (−δ, δ).
Let w be the least harmonic majorant for the subharmonic function u − v
in the half-disc D = {z : |z| < δ, Imz > 0}. Then w is a harmonic function
in D, whose limit on the diameter of D is zero. By reflection, w extends to a
harmonic function in the whole disc {z : |z| < δ}. It follows that the normal
derivative ∂w/∂y is bounded on the interval −δ/2 < x < δ/2. So there exists
a neighborhood V of 0 and a constant c > 0, such that

u(z) ≤ v(z) + πc| Imz|, z ∈ V, Imz > 0.

Suppose that the integral in (17) is divergent, then v(iy)/y → −∞, and thus
u(iy)/y → −∞ as y → 0+. Thus, there exists y0 > 0 such that

(18) u(iy) ≤ −y, 0 ≤ y ≤ y0.

Now, we consider the sequence of subharmonic functions un(z) = 2nu(2−nz).
By (16), this sequence is uniformly bounded from above on compact subsets of
the plane, and by (15), it is bounded from below at 0. Compactness Principle
[8, Theorem 4.1.9] implies that some subsequence of {un} converges in L1

loc

to a function u∞ subharmonic in the whole plane. Moreover,

limsup
n→∞

un(z) ≤ u∞(z), z ∈ C,
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by the same theorem in [8]. In view of (16), this function u∞ satisfies
u∞(z) ≤ πb| Imz| in the whole plane, and in addition, it follows from (18)
u∞(iy) ≤ −|y| for all real y. Here, we used the symmetry assumption made in
the beginning of the proof. These two properties contradict the Phragmén–
Lindelöf Principle, which proves the lemma. �

Lemma 5. Let a countable set of open intervals whose lengths tend to zero
be given, and let E be the union of these intervals. Then there exists a subset
of these intervals whose union is also E, and no point of E belongs to more
than two intervals of the subset.

Proof. We order the given intervals into a sequence of decreasing length.
Inspecting the intervals of this sequence one after another, we select or discard
them. On the first step, the first interval is selected. On the kth step, the kth
interval of the sequence is discarded if it belongs to the union of the intervals
selected on the previous steps, otherwise this kth interval is selected.

Consider now all selected intervals. It is clear that their union is E, because
on every step the union of nondiscarded intervals does not change.

We claim that every point of E is covered by finitely many selected intervals.
Indeed, let x be a point of E. Let I be some selected interval containing x.
Suppose that I was selected on kth step. If x is covered by infinitely many
selected intervals, infinitely many of them are contained in I because the
lengths of the intervals tend to zero. Then some of these infinitely many
intervals containing x had to be selected after step k, which contradicts the
selection rule. This proves the claim.

Now, we remove all those selected intervals which are contained in the union
of other selected intervals. We claim that the intervals that were not removed
still cover E. Indeed, let x be a point in E. Then x belongs to finitely many
selected intervals. And it is evidently impossible that each interval of a finite
family of intervals is contained in the union of the rest.

So the remaining intervals have the property that none of them is contained
in the union of the rest. Such family of intervals cannot have triple intersec-
tions: if three intervals intersect, then one of them is contained in the union
of the other two. �

In the following lemma, we will have to deal with restrictions of increasing
functions ν to smaller intervals. We recall that if we restrict ν to a smaller
interval I ′ ⊂ I , the upper a-regularization of this restriction will be less than
or equal to the restriction to I ′ of the upper a-regularization of ν on I . If
I = [0, η] we write νa

η instead of νa
I .

Lemma 6. Let u be a function from Lemma 4. Denote by ν(r) the Riesz
measure corresponding to u of the segment [0, r]. Then for every a > b there
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exists η ∈ (0, δ) such that

(19)
∫ η

0

νa
η(r) − ν(r)

r2
dr < ∞.

Proof. We follow Kahane’s exposition [9] of the work of Beurling–Malliavin
[4]. Jensen’s formula and (16) give

u(x) ≤ −
∫ R

0

(
ν(x + t) − ν(x − t)

) dt

t
+

1
2π

∫ π

−π

u(x + Reiθ)dθ

≤ −
∫ R

0

(
ν(x + t) − ν(x − t)

) dt

t
+ 2bR.

Integrating this with respect to x from α to β, and using the estimates∫ α+t

α−t

ν(x)dx ≤ 2tν(α + R)

and ∫ β+t

β−t

ν(x)dx ≥ 2tν(β − R),

which follow from monotonicity of ν, we obtain

(20)
∫ β

α

u(x)dx ≤ 2R
(
b(β − α) −

(
ν(β − R) − ν(α + R)

))
.

Suppose now that for some interval (α,α + �) we have ν(α + �) − ν(α) ≥ a�.
Putting

(21) ε = (b − a)/
(
2(b + a)

)
, β = α + � + �ε, R = �ε,

we obtain from (20) that

(22)
∫ β

α

u(x)dx ≤ −2εε′�2,

where ε′ = a(1 − ε) − b(1 + ε) > 0.
The set E = {x : νa

δ (x) > ν(x)} consists of disjoint open intervals Jn =
(αn, αn + �n). We may assume that the union of these intervals has 0 as an
accumulation point, otherwise (19) holds trivially.

Case 1. Suppose that 0 is not an endpoint of any interval Jn. Then

(23)
∫ δ

0

νa
δ (x) − ν(x)

x2
dx =

∑
n

∫
Jn

νa
δ (x) − ν(x)

x2
dx ≤

∑
n

�2n
α2

n

.

The enlarged intervals J ′
n = (αn, βn), where βn = αn+�n+ε�n might no longer

be disjoint, but we can apply Lemma 5 to find a subset of these intervals that
covers E with multiplicity at most 2. Then, using (22), we obtain

(24) −∞ <

∫ δ

0

u(x)
x2

≤ 2
∑

n

1
β2

n

∫ βn

αn

u(x)dx ≤ −4εε′
∑

n

�2n
β2

n

,
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so the last series converges. But then �n/βn → 0, so αn ∼ βn, and we conclude
that the series in the right hand side of (23) also converges. This proves the
lemma with η = δ in this case.

Case 2. Suppose now that some interval J has the form J = (0, x0). Then
ν(x0) ≥ ax0. We may decrease the interval [0, δ] on which the majorant is
defined, and perhaps obtain a new majorant νa

η on a smaller interval [0, η],
such that the new set E = {x : νa

η(x) > ν(x)} will not contain an interval J
with an endpoint at 0. Then we repeat the argument of the Case 1.

Otherwise, there is a sequence xk → 0 such that ν(xk) ≥ axk, and the
majorants νa

xk
on [0, xk] have the property νa

xk
(x) > ν(x) for x ∈ (0, xk). In

particular, ν(xk) − ν(xk/2) ≥ axk/2. We can choose a subsequence so that the
intervals (xk/2,2xk) are disjoint. Taking αk = xk/2, �k = xk/2, and βk = xk +
εxk/2, where ε is defined in (21), we obtain intervals to which the inequality
(22) applies, so we can write (24) again, and obtain a contradiction because
this time �n/βn does not tend to zero. �

3. Proof of Theorem 1

Proving the theorem by contradiction, we will assume that (7) holds for a
limit function n of nk,+, and that f has an immediate analytic continuation
through the arc IΔ. The case of a limit function of nk,− is completely similar.

Applying Theorem C to f we obtain a function F holomorphic in some
angle A(α) with the properties (8) and (9). Assume that for our sequence
{mk } the limit limk→∞ nk = n satisfying (7) exists. Consider the sequence

Fk(z) = e−iβkF (z) + eiβkF (z).

These functions are real on the positive ray, and satisfy

(25) Fk(m) = 2(−1)m Re(ame−iβk),

thus, by Lemma 1, the number of zeros of F on every interval (m′,m′ ′) ⊂
[mk,2mk] with integer endpoints is at least

(26) m′ ′ − m′ − #
(
changes of sign {Re(aje

iβk)} for m′ ≤ j ≤ m′ ′).
Consider the subharmonic functions

uk(z) =
1

mk
log

∣∣Fk

(
mk(z + 1)

)∣∣.
In view of (9), this sequence of subharmonic functions is uniformly bounded
from above on every compact subset of the angle A(α) − 1. Moreover, con-
dition (2) together with (25) imply that the uk(0) are bounded from below.
Then the Compactness Principle for subharmonic functions [8, Theorem 4.1.9]
implies that, after choosing a subsequence, uk → u, where u is a subharmonic
function in the angle A(α) − 1. This function u has the properties (15) and (16)
of Lemma 4 with b < 1 − Δ, if δ < sinα. Choose a ∈ (b,1 − Δ). The Riesz
measures of uk converge to the Riesz measure of u weakly. Let ν(r) be the
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Riesz measure corresponding to u of the interval [0, r]. Then (26) implies that
ν 
 id − n. Using Lemma 3 and (10), we conclude that that for every η ∈ (0, δ)

∫ η

0

(id − n)
a

η(r) − r + n(r)
r2

dr = ∞.

Now, Lemma 3 implies that∫ η

0

νa
η(r) − ν(r)

r2
dr = ∞,

and this contradicts Lemma 6.
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Gauthier-Villars, Paris, 1933.

[4] A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire
functions, Acta Math. 118 (1967), 79–93. MR 0209758

[5] L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955. MR 0068621
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[13] G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreichen, Math.
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