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COHEN–MACAULAY MULTIGRADED MODULES

C.-Y. JEAN CHAN, CHRISTINE CUMMING, AND HUY TÀI HÀ

Abstract. Let S be a standard N
r-graded algebra over a lo-

cal ring A, and let M be a finitely generated Z
r-graded module

over S. We characterize the Cohen–Macaulayness of M in terms

of the vanishing of certain sheaf cohomology modules. As a con-
sequence, we apply our result to study the Cohen–Macaulayness

of multi-Rees modules. Our work extends previous studies on the
Cohen–Macaulayness of multi-Rees algebras.

1. Introduction

The notion of Cohen–Macaulay rings and modules marks the interplay be-
tween powerful lines of research in commutative algebra, algebraic geometry,
and algebraic combinatorics. It finds surprising applications in far reaching
problems and topics, for instance, in duality theory, in homological theory of
rings, and in the study of polytopes and simplicial complexes.

Let (A,m) be a local ring. Let I ⊆ A be a proper ideal, and let R =
A ⊕ It ⊕ I2t2 ⊕ · · · ⊂ A[t] be the Rees algebra of I . Besides encoding many
algebraic properties of the ideal I as well as its powers, the Rees algebra R also
gives an algebraic realization of the blowing up of SpecA at the subscheme
defined by I . Thus, characterizing the Cohen–Macaulayness of R has always
been an important problem in commutative algebra. Lipman [15] succeeded
in using Sancho de Salas sequences to study the Cohen–Macaulayness of R
via the vanishing of sheaf cohomology groups on the blowup Proj R.

In recent years, much effort has been put forward to extend our knowl-
edge from the Z-graded case to a more general multi-graded setting (cf. [8]–
[13], [16]). Lipman’s method was generalized by Hyry [10] to investigate the
Cohen–Macaulayness of standard Nr-graded algebras over a local ring. More
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precisely, [10, Theorem 3.1] shows that if S =
⊕

n≥0 Sn is a standard Nr-
graded algebra over (A,m) such that its irrelevant ideal S+ =

⊕
n>0 Sn has

positive height, Z = ProjS, and E = Z ×A A/m, then S is a Cohen–Macaulay
ring with a negative a-invariant a(S) < 0 if and only if the following conditions
are satisfied:

• Γ(Z, OZ(n)) = Sn for all n ≥ 0,
• Hi(Z, OZ(n)) = 0 for all i > 0 and n ≥ 0,
• Hi

E(Z, OZ(n)) = 0 for all i < dimZ and n < 0.

The goal of this paper is to extend Hyry’s result to study the Cohen–
Macaulayness of arbitrary finitely generated Zr-graded modules over S. Let M
be a finitely generated Zr-graded S-module, and let M be its associated co-
herent sheaf on Z. Our first result, Theorem 3.1, gives a characterization for
the Cohen–Macaulayness of M in terms of the vanishing of sheaf cohomology
groups of twisted modules M(n) on Z and with support E.

A natural generalization of Rees algebras is the notion of Rees modules, also
referred to as Rees modifications. Although this has not yet been discussed
much in the literature, the motivation of studying Rees modules originated
from the finiteness of the local cohomology modules (cf. [1] and the refer-
ences cited there). We apply Theorem 3.1 to study the Cohen–Macaulayness
of multi-Rees modules. It is well known (cf. [8]–[10]) that if I1, . . . , Ir ⊂ A
are ideals of positive heights such that the multi-Rees algebra of I1, . . . , Ir is
Cohen–Macaulay, then the usual Rees algebra of the product I1 · · · Ir is also
Cohen–Macaulay. Our next result, Theorem 4.2, extends this phenomenon to
multi-Rees modules.

The converse of Theorem 4.2, even in the case of multi-Rees algebras, is
known to be false. It is then desirable to seek for conditions which, together
with the Cohen–Macaulayness of the Rees module of I1 · · · Ir with respect to
a given A-module N , would imply that the multi-Rees module of I1, . . . , Ir

with respect to N is Cohen–Macaulay. Hyry [10] solved this problem for multi-
Rees algebras (i.e., when N = A) provided that the analytic spread of I1 · · · Ir

is small. Our last result, Theorem 4.5, shows that the general problem for
multi-Rees modules, under some additional conditions, has a similar solution.

To prove Theorem 3.1, we investigate local cohomology of the Rees module
of the irrelevant ideal S+ with respect to M under various graded structures.
Here is a summary of the main ideas of the proof. Let R = RS(S+) and
T = RM (S+) be the Rees algebra and Rees module of S+ with respect to
M , respectively. Clearly, R is an N-graded algebra over S and T is a finitely
generated Z-graded R-module. The ring S can also be viewed as a standard
N-graded algebra over A (by coarsening the graded structure). Let MR and
MS be the maximal homogeneous ideals in R and in S, respectively. Let
Y = ProjR and F = Y ×S S/MS . Let T be the associated coherent sheaf
of T on Y . At the heart of our arguments is the following Sancho de Salas
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sequence (cf. [15, p. 150])

(1.1) · · · → [Hi
MR

(T )]0 → Hi
MS

(M) → Hi
F (Y, T ) → [Hi+1

MR
(T )]0 → · · · .

We start by observing that R and T have a natural Zr+1-graded structure
given by

R =
⊕

n∈Nr,k≥0

R(n;k) and T =
⊕

n∈Zr,k≥0

T(n;k),

where R(n;k) = S(n1+k,...,nr+k)t
k and T(n;k) = Mn[Sk

+](k,...,k)t
k for n = (n1, . . . ,

nr). The cohomology modules Hi
MR

(T ) then inherit this Zr+1-graded struc-
ture, and we can write

[Hi
MR

(T )]0 =
⊕
n∈Zr

Hi
MR

(T )(n;0).

Next, we show that Hi
MR

(T )(n;k) = 0 for k ≥ 0 and n < v(M). This is done in
Lemma 3.2. Together with the sequence (1.1), this implies that [Hi

MS
(M)]n =

[Hi
F (Y, T )]n for n < v(M). We now observe that the Cohen–Macaulayness

of M is characterized by the vanishing of Hi
MS

(M) for i < dimM . Theo-
rem 3.1 is then proved by establishing the relationship between Hi

F (Y, T ) and
Hi−r

E (Z, M) and the vanishing of [Hi
MS

(M)]n for n �< v(M). These are done
in Lemma 3.3.

We start our proof of Theorem 4.2 by showing that if M is the multi-Rees
module of I1, . . . , Ir with respect to an A-module N then the a-invariant of M
can be calculated explicitly, namely a(M) = −1. This is done in Lemma 4.1.
Observe further that v(M) = 0 > −1 in this case, and so Theorem 3.1 can
be applied. Next, we let S be the multi-Rees algebra of I1, . . . , Ir, then the
Rees algebra of the product I1 · · · Ir is a diagonal subalgebra SΔ of S (which
is N-graded). Theorem 4.2 is now proved by noticing that there is a canonical
isomorphism f : ProjS −→ ProjSΔ and pushing forward through f to reduce
the problem to the well-known Z-graded situation.

Our last theorem, Theorem 4.5, is proved by a straightforward generaliza-
tion of Hyry’s method in [10] from multi-Rees algebras to multi-Rees modules.
The paper is outlined as follows. In Section 2, we collect the notation, the
terminology, and the basic results that will be used throughout the paper.
Section 3 is devoted to proving the main theorem, Theorem 3.1, that charac-
terizes the Cohen–Macaulayness of a finitely generated multi-graded module
using sheaf cohomology modules. Finally in Section 4, as an application,
we further deduce conditions to when the Cohen–Macaulayness of multi-Rees
modules of ideals I1, . . . , Ir with respect to a module and that of its diagonal
submodule become equivalent.
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2. Preliminaries

For elementary facts about schemes, graded rings, and local cohomology
modules, we refer the reader to [2], [4], [5], [7].

Let 0 = (0, . . . ,0) and 1 = (1, . . . ,1). Let e1, . . . ,er be the standard basis
vectors of Zr. Throughout the paper, S =

⊕
n≥0 Sn will denote a standard Nr-

graded algebra over a local ring (A,m). That is, S is generated over S0 = A
by elements of

⊕r
j=1 Sej . Define S+ to be the irrelevant ideal of S which

is
⊕

n>0 Sn. Let SΔ =
⊕

n≥0 S(n,...,n) denote the diagonal subalgebra of S.
Also, M =

⊕
n∈Zr Mn will denote a finitely generated Zr-graded S-module.

Set MΔ =
⊕

n∈Z
M(n,...,n). We will call MΔ the diagonal submodule of M .

Clearly, MΔ is a Z-graded SΔ-module.
For a vector n ∈ Zr, we always use n1, . . . , nr to represent its coordinates.

For n,m ∈ Zr, we shall write n ≥ m if nj ≥ mj for all j = 1, . . . , r; similarly,
we write n > m if nj > mj for all j = 1, . . . , r. We also define

min{n,m} = (min{n1,m1}, . . . ,min{nr,mr }),
max{n,m} = (max{n1,m1}, . . . , {nr,mr }).

This leads naturally to the following definition of v(M) which we shall often
make use of throughout the paper.

Definition 2.1. Suppose M is minimally generated in degrees d1, . . . ,du ∈
Zr, then we define

v(M) = min{d1, . . . ,du}.

Besides the given Nr-graded structure, S has a natural N-graded structure
defined by S =

⊕
n∈Z

Sn where Sn =
⊕

|n|=n Sn and |n| indicates the sum of
all components in n. Let MS be the maximal homogeneous ideal of S with
respect to this grading. Observe that MS is also Nr-homogeneous. Thus, the
local cohomology modules, Hi

MS
(M), are Zr-graded modules for all i. This

leads to a natural multigraded analog of the usual Z-graded a-invariant. The
multigraded a-invariant is well defined and has been studied in more detail
in [6], [8], [9].

Definition 2.2. For each j = 1, . . . , r, let

aj(M) = max{m ∈ Z|[HdimM
MS

(M)]n �= 0 for some n ∈ Zr with nj = m}.

The multigraded a-invariant of M is define to be the vector

a(M) = (a1(M), . . . , ar(M)) ∈ Zr.

When r = 1, we shall omit the vector notation and simply consider a(M) as
an integer.

We shall now recall basic definitions of multi-Rees algebras and modules.

Definition 2.3. Let B be a Noetherian ring and let N be a B-module.
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(1) Let I ⊂ B be a proper ideal. The Rees algebra of I over B is defined to
be the subring

RB(I) = B[It] =
⊕
n≥0

Intn ⊂ B[t].

The Rees module of I with respect to N is defined to be the RB(I)-module

RN (I) =
⊕
n≥0

IntnN.

(2) Let I1, . . . , Ir ⊂ B be proper ideals. The multi-Rees algebra of I1, . . . , Ir

over B is defined to be the subring

RB(I1, . . . , Ir) =
⊕
n≥0

In1
1 tn1

1 · · · Inr
r tnr

r ⊂ B[t1, . . . , tr].

The multi-Rees module of I1, . . . , Ir with respect to N is defined to be the
RB(I1, . . . , Ir)-module

RN (I1, . . . , Ir) =
⊕
n≥0

In1
1 tn1

1 · · · Inr
r tnr

r N.

Let Z = ProjS with respect to the Nr-graded structure of S. As a set,
Z = {p ∈ SpecS|p is Nr-homogeneous and S+ �⊂ p}. The simplest example is
when S = A[xij ] where 1 ≤ i ≤ r and 0 ≤ j ≤ Ni and Z = P

N1
A × · · · × P

Nr

A .
Throughout the paper, let R = RS(S+) = S[S+t] be the Rees algebra of S+

over S. Observe that R is a standard N-graded algebra over R0 = S where
the grading is given by the power of t appearing in each element. Let MR

be the maximal homogeneous ideal of R, and let Y = ProjR with respect to
the N-graded structure of R. We can view Y as a vector bundle over Z by
[10, Lemma 3.1] stated in the next lemma. This provides a natural projection
π : Y → Z.

Lemma 2.4. With the above notation, we have

Y = ProjSym
(

OZ(e1) ⊕ · · · ⊕ OZ(er)
)
.

One of the techniques that we employ is to view graded algebras and mod-
ules under various gradings. A simple fact we often use is that local cohomol-
ogy modules behave well under a change of grading. More precisely, suppose B
is a standard Nk-graded algebra over (A,m) and a ⊆ B is an Nk-graded ho-
mogeneous ideal. The local cohomology functors Hi

a(•) can be defined in the
category of Zk-graded B-modules as usual. That means if N is a finitely gen-
erated Zk-graded B-module, then Hi

a(N) is also a Zk-graded B-module for
all i. Let φ : Zk → Zl be a group homomorphism such that φ(Nk) ⊆ Nl, and
let Bφ =

⊕
m∈Zl(

⊕
φ(n)=m Bn) and Nφ =

⊕
m∈Zl(

⊕
φ(n)=m Nn). Then Bφ

is a Nl-graded ring and Nφ is a Zl-graded Bφ-module. It can be seen that
(Hi

a(•))φ and Hi
aφ(•φ) are both δ-functors and coincide when i = 0. Thus,
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(Hi
a(N))φ = Hi

aφ(Nφ). Hence, when a new multigraded structure is specified
by a group homomorphism φ, we shall omit the functorial notation •φ and
simply write Hi

a(N) for (Hi
a(N))φ.

A module that we consider under alternate grading is the Rees module
of S+ with respect to M , namely T = RM (S+). Clearly, T is a Z-graded R-
module. Observe that R and T both further possess a Zr+1-graded structure
given by

R =
⊕

n∈Nr,k≥0

R(n;k) and T =
⊕

n∈Zr,k≥0

T(n;k),

where R(n;k) = S(n1+k,...,nr+k)t
k and T(n;k) = Mn[Sk

+](k,...,k)t
k for n = (n1, . . . ,

nr).
The following observation shall prove useful. Let W be an arbitrary finitely

generated Zr+1-graded R-module. By writing W =
⊕

k∈Z
W•;k where W•;k =⊕

n∈Zr Wn;k, we can consider W as a Z-graded R-module. Let W̃ be the
associated coherent sheaf of W on Y . Note the diagonal subalgebra SΔ 
⊕

k≥0 R(0;k), and there is a canonical isomorphism Z = ProjS 
 ProjSΔ. It

can be seen that π∗W̃ =
⊕

n∈Zr W̃n;• where Wn;• =
⊕

k∈Z
Wn;k is a graded

SΔ-module. The module Γ(Y, W̃ ) =
⊕

n∈Zr Γ(Z,W̃n;•) has a natural structure
of a Zr-graded S-module. We, therefore, may consider Γ(Y, •̃) as a functor
from the category of Zr+1-graded R-modules to the category of Zr-graded
S-modules.

Lemma 2.5. Let W be a finitely generated Zr+1-graded R-module, M be the
associated coherent sheaf of M on Z, T = RM (S+), and T be the associated
coherent sheaf of T on Y . Then

(a) We have isomorphisms

Hi(Y, W̃ ) 
 Hi(Z,π∗W̃ ) 

⊕
n∈Zr

Hi(Z,W̃n;•) for all i ≥ 0.

In particular, for W = T , we get

Hi(Y, T ) 

⊕

n≥v(M)

Hi(Z, M(n)) for all i ≥ 0.

(b) Let E = Z ×A A/m. We have isomorphisms

Hi
π−1(E)(Y, W̃ ) 
 Hi

E(Z,π∗W̃ ) 

⊕
n∈Zr

Hi
E(Z,W̃n;•) for all i ≥ 0.

Proof. The first statement of (a) and (b) follow from the arguments of
[10, p. 322]. The second statement of (a) takes into account the canonical
isomorphism Z 
 ProjSΔ and the fact that T(n;k) = Mn[Sk

+](k,...,k)t
k = 0 for

n �≥ v(M). �
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3. Cohen–Macaulay multigraded modules

In this section, we prove our first main result. The theorem is stated as
follows.

Theorem 3.1. Let S be a standard Nr-graded algebra over a local ring
(A,m) such that S+ has positive height, and let M be a finitely generated
Zr-graded S-module. Let Z = ProjS and let E = Z ×A A/m. Let M be the
associated coherent sheaf of M on Z. Then M is a Cohen–Macaulay module
with a(M) < v(M) if and only if the following conditions are satisfied:
1. Γ(Z, M(n)) = Mn for all n ≥ v(M),
2. Hi(Z, M(n)) = 0 for all i > 0 and n ≥ v(M),
3. Hi

E(Z, M(n)) = 0 for all i < dimM − r and n < v(M).

To prove Theorem 3.1, we shall need some auxiliary results. As indicated in
the Introduction, we begin by showing that [Hi

MR
(T )](n;k) = 0 for i ≥ 0, k ≥

0, and n < v(M) in Lemma 3.2 where T denotes the multi-Rees module
RM (S+). Our proof of Lemma 3.2 is based upon a simple observation that if
a Zl-graded module P has the Zl-graded homogeneous decomposition being
P =

⊕
m1=t Pm for a fixed t ∈ Z, then for any m ∈ Zl such that m1 �= t we

must have Pm = 0.
For any Zr+1-graded R-module N =

⊕
n∈Zr,k∈Z

N(n;k), we define the defin-
ing region of N to be

D(N) =
{
(n;k)|N(n;k) �= 0

}
.

Lemma 3.2. For all i ≥ 0, k ≥ 0, and n < v(M), we have
[Hi

MR
(T )](n;k) = 0.

Proof. Let Q be the ideal
⊕

n>0 R(n;k) of R when R is viewed as a Nr+1-
graded ring. Let R+ be the irrelevant ideal of R when R is viewed as a Nr-
graded ring, i.e., R+ =

⊕
(n1+k,...,nr+k)>0 R(n;k). Then the sequences

0 → QT → T → T/QT → 0 and 0 → R+T → T → T/R+T → 0

are exact. By taking the long exact sequences of cohomology, we get

· · · → Hi−1
MR

(T/QT ) → Hi
MR

(QT ) → Hi
MR

(T )(3.1)

→ Hi
MR

(T/QT ) → · · ·
and

· · · → Hi−1
MR

(T/R+T ) → Hi
MR

(R+T ) → Hi
MR

(T )(3.2)

→ Hi
MR

(T/R+T ) → · · · .

Let di = (di,1, . . . , di,r), 1 ≤ i ≤ u be the degree of a minimal generator of M
as in Definition 2.1. For a region D ⊆ Zr+1, we shall denote

⊕
(n;k)∈D T(n;k) by

TD. Observe that the defining region of T is D(T ) = {(n;k)|k ≥ 0 and ∃j : n ≥
dj }, and the defining region of QT is D(QT ) = {(n;k)|k ≥ 0 and ∃j : n > dj }.
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It is also easy to see that [T/QT ](n;k) �= 0 only if (n;k) ∈ D(T )\D(QT ) =
{(n;k)|k ≥ 0 and ∃j, l : n ≥ dj , nl = dj,l}.

Suppose v(M) = (v1, . . . , vr). We define dmax = max{di,r |1 ≤ i ≤ u} and let
[r − 1] = {1, . . . , r − 1}. For 1 ≤ j ≤ u and a nonempty index set I ⊂ [r − 1],
let

Aj,I = {(n;k)|k ≥ 0, nw > dj,w ∀w /∈ I,ns = dj,s ∀s ∈ I, and nr > dmax}.

For vr ≤ t ≤ dmax, let

Bt = {(n;k)|k ≥ 0, nr = t}.

It can be seen that the regions {Aj,I ,Bt|1 ≤ j ≤ u, ∅ �= I ⊂ [r − 1], vr ≤ t ≤
dmax} are pairwise disjoint. It also follows from the definition of Aj,I ’s and
Bt’s that

D(T )\ D(QT ) ⊆
(

u⋃
j=1

⋃
∅ �=I⊂[r−1]

Aj,I

)
∪

(
dmax⋃
t=vr

Bt

)
.

Thus, we can write

T/QT =

(
u⊕

j=1

⊕
∅ �=I⊂[r−1]

[T/QT ]Aj,I

)
⊕

(
dmax⊕
t=vr

[T/QT ]Bt

)
.

The importance of the regions Aj,I ’s and Bt’s lies in the fact that [T/
QT ]Aj,I

and [T/QT ]Bt are submodules of T/QT for all j, I , and t. Since
local cohomology commutes with direct sum, this allows us to get the following
decomposition of Hi

MR
(T/QT ) into a direct sum of submodules defined over

the Aj,I ’s and Bt’s:

Hi
MR

(T/QT ) =

(
u⊕

j=1

⊕
∅ �=I⊂[r−1]

Hi
MR

([T/QT ]Aj,I
)

)
(3.3)

⊕
(

dmax⊕
t=vr

Hi
MR

([T/QT ]Bt)

)
.

Observe that [T/QT ]Aj,I
is annihilated by

⊕
ns>0 ∀s∈I R(n;k) in T/QT ,

and so [T/QT ]Aj,I
can be viewed as a Zr+1− |I|-graded module over RI =⊕

ns=0 ∀s∈I R(n;k). It now follows from the definition of local cohomology
that

Hi
MR

([T/QT ]Aj,I
) = Hi

MRI
([T/QT ]Aj,I

)

is a Zr+1− |I|-graded module over RI . Moreover, Hi
MRI

([T/QT ]Aj,I
) has the

following Zr+1− |I|-graded decomposition

Hi
MRI

([T/QT ]Aj,I
) =

⊕
ns=dj,s ∀s∈I

Hi
MRI

([T/QT ]Aj,I
)(n;k).
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This implies that if ns �= dj,s for some s ∈ I then the term Hi
MR

([T/

QT ]Aj,I
)(n;k) is not present in the homogeneous decomposition of Hi

MR
([T/

QT ]Aj,I
). That is, for n ∈ Zr such that ns �= dj,s for some s ∈ I , we must have

Hi
MR

([T/QT ]Aj,I
)(n;k) = 0.

By a similar argument, we have Hi
MR

([T/QT ]Bt)(n;k) = 0 if nr �= t. Hence,
it follows from (3.3) that

Hi
MR

(T/QT )(n;k) = 0 if ns �= dj,s for all 1 ≤ s ≤ r − 1 and nr < vr.

This, together with the definition of v(M), implies that

(3.4) Hi
MR

(T/QT )(n;k) = 0 for all n < v(M).

By a similar line of arguments on the defining regions of T and R+T , we
have

(3.5) Hi
MR

(T/R+T )(n,k) = 0 for all k > 0.

Observe further that there is an obvious isomorphism Q → R+(−1,1) which
maps R(n;k) to R(n−1;k+1). Hence, it follows from (3.1), (3.2), (3.4), and (3.5)
that for any k ≥ 0 and n < v(M),

Hi
MR

(T )(n;k) 
 Hi
MR

(QT )(n;k) 
 Hi
MR

(R+T )(n−1;k+1)(3.6)


 Hi
MR

(T )(n−1;k+1).

Moreover, Hi
MR

(T )(n;k) = 0 for k � 0. Therefore, by successively apply-
ing (3.6), we have Hi

MR
(T )(n;k) = 0 for all n < v(M). The lemma is proved.

�

Lemma 3.2 and the sequence (1.1) imply that [Hi
MS

(M)]n = [Hi
F (Y, T )]n

for n < v(M). Thus, to characterize the Cohen–Macaulayness of M , or
equivalently, the vanishing of [Hi

MS
(M)]n for i < dimM and n ∈ Zr, we pro-

ceed by relating Hi
F (Y, T ) to Hi−r

E (Z, M) and establishing the vanishing of
[Hi

MS
(M)]n for n �< v(M).

Lemma 3.3. Let E = Z ×A A/m and F = Y ×S S/MS where MS is the
homogeneous maximal ideal of S. Then as a Zr-graded S-module

Hi
F (Y, T ) =

⊕
n<v(M)

Hi−r
E (Z, M(n)) for all i ≥ 0.

Proof. Let G = Y ×S S/S∗ where S∗ =
⊕

n�=0 Sn. As noted in the prelim-
inaries, we consider the functor ΓF (Y, •̃) from the category of Zr+1-graded
RS(S+)-modules to the category of Zr-graded S-modules. Since MS = m ⊕
S∗, this functor is equal to the composition functor Γπ−1(E)(Y, H0

G(•̃)). It
follows that there is a spectral sequence

(3.7) Ep,q
2 = Hp

π−1(E)(Y, Hq
G(T )) ⇒ Hp+q

F (Y, T ).
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On the other hand, by Lemma 2.5

Hp
π−1(E)(Y, Hq

G(T )) = Hp
E(Z,π∗(Hq

G(T )))

as Zr-graded S-modules. Now, the conclusion follows from Lemma 3.4 which
shows that the spectral sequence (3.7) degenerates. �

Lemma 3.4. Let G = Y ×S S/S∗ where S∗ =
⊕

n�=0 Sn. Then Hi
G(T ) =

(Hi
S∗R(T ))∼. Moreover, if Z = ProjS and π : Y −→ Z is the canonical pro-

jection, we have

π∗(Hi
G(T )) =

{
0, if i �= r,⊕

n<v(M) M(n), if i = r,

as Zr-graded OZ -modules.

Proof. For any affine open set D+(f) ⊂ Y where f ∈ R is a homogeneous
element, we have

Hi
G(T )|D+(f) =

(
Hi

S∗R(f)

(
T(f)

))∼ =
(
(Hi

S∗R(T ))(f)

)∼
.

This proves the first claim.
To prove the second claim, we consider the shifted module N = M(v(M))

and let W = RN (S+) be the Rees module of S+ with respect to N . As T ,
W admits a Zr+1-graded structure W =

⊕
n∈Zr,k≥0 W(n;k) and there is a nat-

ural isomorphism W → T (v(M),0). It then follows from Lemma 2.5 and the
preceding discussion that π∗(Hi

G(W̃ )) = π∗(Hi
G(T )) ⊗ OZ(v(M)).

Now cover Z with open affine sets {U = SpecS(s1···sr)|sj ∈ Sej ∀j = 1, . . . ,

r}. By construction, π−1(U) = SpecR(s1···srt). Notice that Wk = N(S+)ktk.

So W(s1···srt) contains elements in the form of mftk

(s1···srt)k with m ∈ N and f ∈
(S+)k =

⊕
n≥0 S(n1+k,...,nr+k). Since N = M(v(M)), we have deg(m) ≥ 0.

Therefore, we can write mf
(s1···sr)k as a sum of forms like h( s1

1 )�1 · · · ( sr

1 )�r with
h ∈ N(s1···sr) and �i ≥ 0. Set B = N(s1···sr) and tj = sj/1 ∈ W(s1···srt) for
j = 1, . . . , r. From the above observation, W(s1···srt) = B[t1, . . . , tr] as S(s1···sr)-
module. Since G ∩ π−1(U) = V(t1, . . . , tr), we have

Hi
G(W̃ )|π−1(U) = Hi

(t1,...,tr)(B[t1, . . . , tr])∼.

Moreover, it follows from [5, Remarque 2.1.11 of Chapter III] that

Hi
(t1,...,tr)(B[t1, . . . , tr]) =

{
0, if i �= r,⊕

n<0 Btn1
1 · · · tnr

r , if i = r.

Thus,

π∗(Hi
G(W̃ )) =

{
0, if i �= r,⊕

n<0 Ñ(n), if i = r.

The proof is completed by observing that Ñ = M(v(M)). �
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first observe that the Sancho de Salas sequence
(1.1) is an exact sequence of Zr-graded modules.

It can be seen that M is a Cohen–Macaulay module with a(M) < v(M) if
and only if the following conditions are satisfied:
(i) Hi

MS
(M)n = 0 for all 0 ≤ i < dimM and n < v(M),

(ii) Hi
MS

(M)n = 0 for all i ≥ 0 and n �< v(M).

It follows from Lemma 3.2 that [Hi
MR

(T )](n;0) = 0 for all n < v(M). By
the exact sequence (1.1), this shows that [Hi

MS
(M)]n = [Hi

F (Y, T )]n for all
n < v(M) and all i ≥ 0. Using Lemma 3.3, it follows that

Hi
MS

(M)n = Hi−r
E (Z, M(n)) for all i ≥ 0 and n < v(M),(3.8)

Hi
MS

(M)n = 0 for all i ≥ 0 and n �< v(M).(3.9)

Thus, [Hi
MS

(M)]n = 0 for i < dimM and n < v(M) if and only if (3) holds.
That is, (i) is equivalent to (3).

On the other hand using Lemma 3.3 and the Sancho de Salas sequence
(1.1), we have that [Hi

MR
(T )]0 


⊕
n�<v(M)[H

i
MS

(M)]n. By (3.9), (ii) is equiv-
alent to the condition that [Hi

MR
(T )]0 = 0. It then follows from the Serre–

Grothendieck correspondence between local cohomology and sheaf cohomol-
ogy that this is equivalent to having Γ(Y, T ) 
 T0 = M and Hi(Y, T ) = 0
for i > 0. Moreover, by Lemma 2.5, Γ(Y, T ) 


⊕
n≥v(M) Γ(Y, M(n)) and

Hi(Y, M) 

⊕

n≥v(M) Hi(Y, M(n)). Thus, (ii) is equivalent to (1) and (2).
�

4. Cohen–Macaulay multi-Rees modules

In this section, we shall apply our main result, Theorem 3.1, to investigate
the Cohen–Macaulayness of multi-Rees modules. Our work extends previous
studies on the Cohen–Macaulayness of multi-Rees algebras in [10].

Throughout this section, (A,m) is a local ring, N is a finitely generated
A-module, I1, . . . , Ir ⊂ A are ideals of positive heights with respect to N ,
and S = RA(I1, . . . , Ir) is the multi-Rees algebra of I1, . . . , Ir. Clearly, S is
a standard Nr-graded algebra over A. Observe further that the Rees algebra
RA(I1 · · · Ir) is the diagonal subalgebra SΔ of S. Let M = RN (I1, . . . , Ir) be
the multi-Rees module of I1, . . . , Ir with respect to N as defined in Section 2.
Then M is a finitely generated Zr-graded S-module, and similarly, the Rees
module RN (I1 · · · Ir) is the diagonal submodule MΔ of M .

Lemma 4.1. With notation as above, we have a(M) = −1.

Proof. We shall use induction on r. For r = 1, our argument is similar to
that of [8, Lemma 2.1]. Observe first that when r = 1, S = A[I1t] is a standard
N-graded over A and M = RN (I1) is a finitely generated Z-graded S-module.



1158 C.-Y. JEAN CHAN, C. CUMMING, AND H. TÀI HÀ

Let S+ be the homogeneous irrelevant ideal of S under this grading (i.e.,
S+ = (I1t)S). It can be seen that MS = m ⊕ S+ where MS is the maximal
ideal of S. Let GN = M/I1M 


⊕
k≥0 Ik

1 N/Ik+1
1 N . We have the following

exact sequences

0 → S+M → M → M/S+M 
 N → 0,

0 → S+M(1) → M → GN → 0.

Taking the corresponding long exact sequences of local cohomology modules,
for any i ≥ 0 and n ∈ Z, we have

· · · → [Hi−1
MS

(N)]n → [Hi
MS

(S+M)]n → [Hi
MS

(M)]n(4.1)

→ [Hi
MS

(N)]n → · · ·

and

· · · → [Hi−1
MS

(GN )]n → [Hi
MS

(S+M)]n+1 → [Hi
MS

(M)]n(4.2)

→ [Hi
MS

(GN )]n → · · · .

Observe that N 
 M/S+M , as an S-module, is concentrated in degree 0.
Thus, for n �= 0, [Hi

MS
(N)]n vanish for all i ≥ 0. The long exact sequence

(4.1) implies that

(4.3) [Hi
MS

(S+M)]n 
 [Hi
MS

(M)]n for any i ≥ 0 and n �= 0.

By [3, Theorem 4.4.6], dim GN = dimN = dim RN (I1) − 1 = dimM − 1. Thus,
HdimM

MS
(GN ) = 0. Therefore, (4.2) implies that for any n ∈ Z, there is a sur-

jection

(4.4) [HdimM
MS

(S+M)]n−→−→[HdimM
MS

(M)]n.

It follows from (4.3) and (4.4) that for any n �= 0, there is a surjection

(4.5) [HdimM
MS

(M)]n−→−→[HdimM
MS

(M)]n−1.

By successively applying (4.5) and noting that HdimM
MS

(M)n = 0 for n � 0,
we have [HdimM

MS
(M)]n = 0 for all n ≥ 0. We must also have [HdimM

MS
(M)]−1 �=

0; otherwise, again by successively applying (4.5), we would conclude that
HdimM

MS
(M) = 0, which is impossible. Hence, a(M) = −1. The statement

holds for r = 1.
Assume that the statement already holds for r − 1 (for some r ≥ 2). Let

A′ = RA(Ir). Then S = A[I1t1, . . . , Irtr] = A′[I1t1, . . . , Ir−1tr−1] = RA′ (I1,
. . . , Ir−1) can be viewed as an Nr−1-graded algebra over A′, where the grad-
ing is given by powers of t1, . . . , tr−1. By giving tr degree 0, we can also view
M as a Zr−1-graded S-module. Since local cohomology modules behave well
under a change of grading, we have the following Zr−1-graded homogeneous
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decomposition of Hi
MS

(M):

Hi
MS

(M) =
⊕

n′=(n1,...,nr−1)∈Zr−1

[Hi
MS

(M)]n′ ,

where [Hi
MS

(M)]n′ =
⊕

n∈Z
[Hi

MS
(M)](n1,...,nr−1,n). By induction, as a Zr−1-

graded module, a(M) = −1 ∈ Zr−1. Thus, aj(M) = −1 for all j = 1, . . . , r − 1.
It remains to show that ar(M) = −1.

Let A′ ′ = RA(I1, . . . , Ir−1). Then S = RA′ ′ (Ir) can now be viewed as an
N-graded algebra over A′ ′. By a similar argument to last paragraph, we can
view M as a Z-graded S-module; and therefore, by induction, ar(M) = −1.
Hence, a(M) = (a1(M), . . . , ar(M)) = −1 ∈ Zr. �

The next theorem extends a well-known result for multi-Rees algebras to
arbitrary multi-Rees modules.

Theorem 4.2. Let (A,m) be a local ring and let N be a finitely generated
A-module. Let I1, . . . , Ir ⊂ A be ideals of positive heights with respect to N .
Assume that the multi-Rees module RN (I1, . . . , Ir) is Cohen–Macaulay. Then
the Rees module RN (I1 · · · Ir) is also Cohen–Macaulay.

Proof. Recall that the multi-Rees algebra S = RA(I1, . . . , Ir) is a stan-
dard Nr-graded algebra over A, and the Rees algebra RA(I1 · · · Ir) is the
diagonal subalgebra SΔ of S. Let Z = Proj RA(I1, . . . , Ir), and let E =
Z ×A A/m. As before, there is a canonical isomorphism f : Z

�−→ ProjSΔ =
Proj RA(I1 · · · Ir) given by the inclusion SΔ ↪→ S.

Again, let M = RN (I1, . . . , Ir). For simplicity, we denote MΔ = RN (I1 · · ·
Ir) by L. By [3, Theorem 4.4.6], we have

(4.6) dimM = dimN + r = dimL + (r − 1).

Let M and L be the associated coherent sheaves of M and L on Z and
ProjSΔ respectively. It can be seen that f∗ M = L and f ∗(OProjSΔ(n)) =
OZ(n, . . . , n). Thus, by the projection formula we get

(4.7) f∗ M(n, . . . , n) = f∗
(

M ⊗ OZ(n, . . . , n)
)

= L ⊗ OProjSΔ(n) = L(n).

It follows from Lemma 4.1 that a(M) = −1 < 0 = v(M). Theorem 3.1
together with (4.6) and (4.7) imply that
(i) Γ(ProjSΔ, L(n)) = M(n,...,n) = Ln for all n ≥ 0,
(ii) Hi(ProjSΔ, L(n)) = 0 for all i > 0 and n ≥ 0,
(iii) Hi

E(ProjSΔ, L(n)) = 0 for all i < dimL − 1 and n < 0.
The Rees module RN (I1 · · · Ir) is Cohen–Macaulay now follows from a special
use of Theorem 3.1 when r = 1. �

The converse of Theorem 4.2 is not always true. The rest of the paper
is devoted to show that when ProjSΔ is a Cohen–Macaulay scheme, N is
free in the punctured spectrum of A, and the analytic spread of I1 · · · Ir is
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small, there are conditions which, together with the Cohen–Macaulayness of
the usual Rees module RN (I1 · · · Ir), imply the Cohen–Macaulayness of the
multi-Rees module RN (I1, . . . , Ir). We recall that N is free in the punctured
spectrum of A means N is a free module if localized at every prime ideal in
SpecA with the only possible exception at the maximal ideal. This condition
implies that RN (I1 · · · Ir) is associated to a locally free sheaf on ProjSΔ.

We shall need some preliminary results. The following lemmas are gener-
alization of [10, Lemmas 4.4 and 4.5] from Rees algebras to Rees modules.
We shall sketch the proof of Lemma 4.3 and leave that of Lemma 4.4 to the
reader.

Lemma 4.3. Assume (A,m) is a local ring and N is a finitely generated
A-module of dimension d. Let I ⊂ A be an ideal of positive grade with respect
to N . Let P = RA(I) and L = RN (I). Let L be the associated coherent sheaf
of L over Z = ProjP . Let E = Z ×A A/m, and let � = �(I) be the analytic
spread of I . Assume that L is Cohen–Macaulay. Then

(a) Hi(Z, L(� − 1 − i)) = 0 for all i > 0;
(b) If Z is a Cohen–Macaulay scheme and L is a locally free sheaf, then

Hi
E

(
Z, L(d − � − i)

)
= 0 for all i < d.

Proof. For i > 0, by the Serre–Grothendieck correspondence, we have

Hi
(
Z, L(� − 1 − i)

)

 [Hi+1

P+
(L)]�−1−i.

Let MP be the maximal homogeneous ideal of P , that is, MP = P+ ⊕ m. By
Lemma 4.1, a(L) = −1. This and the assumption that L is Cohen–Macaulay
imply that [Hj

MP
(L)]n = 0 for all j ≥ 0 and n ≥ 0. Together with [10, Propo-

sition 3.2], this implies that [Hj
P+

(L)]n = 0 for all i ≥ 0 and n ≥ 0. Hence,
Hi(Z, L(� − 1 − i)) = 0 for all 0 < i ≤ � − 1.

Observe further that by definition, the closed fiber of the canonical projec-
tion Z −→ SpecA has dimension � − 1. Thus, it follows (cf. [5, Corollary 4.2.2
in Chapter III]) that Hi(Z, F ) = 0 for every coherent sheaf F on Z if i ≥ �.
In particular, this implies that Hi(Z, L(� − 1 − i)) = 0 for all i ≥ �. We have
proved (a).

To prove (b), we first observe that v(L) = 0. By Theorem 3.1,

Hi
E

(
Z, L(d − � − i)

)
= 0 if i > d − �.

On the other hand, by Lipman’s global-local duality theorem (cf. [14, The-
orem on p. 188]), Hi

E(Z, L) 
 HomA(Extd−i(L, ωZ),EA(A/m)) where ωZ is
the dualizing sheaf on Z and EA(A/m) is the injective hull of A/m. Since L
is locally free, it follows from [7, Propositions III.6.3 and III.6.7] that

Extd−i(L, ωZ) 
 Extd−i(OZ , L ∨ ⊗ ωZ) 
 Hd−i(Z, L∨ ⊗ ωZ),
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where L ∨ = HomOZ
(L, OZ). Thus,

Hi
E(Z, L) 
 HomA

(
Hd−i(Z, L∨ ⊗ ωZ),EA(A/m)

)
.

This implies that if i ≤ d − � (i.e. d − i ≥ �) then, since the closed fiber of the
projection Z −→ SpecA has dimension � − 1, we have Hd−i(Z, L∨(−d + � +
i) ⊗ ωZ) = 0. That is, if i ≤ d − � then Hi

E(Z, L(d − � − i)) = 0. Hence, (b) is
proved. �

Lemma 4.4. Let (A,m) be a local ring, and let I1, . . . , Ir ⊂ A be ideals
of positive grade with respect to a finitely generated A-module N . Let S =
RA(I1, . . . , Ir), Z = ProjS, and M = RN (I1, . . . , Ir). Let M be the coherent
sheaf associated to M over Z. Then

Γ
(
Z, M(n − m)

)
= HomA(Im1

1 · · · Imr
r ,Γ(Z, M(n))) for all n,m ≥ 0.

Moreover,

Γ
(
Z, M(n − m)

)
= Γ(Z, M(n)) :Γ(Z,M) (Im1

1 · · · Imr
r ) for all n ≥ m ≥ 0.

Proof. The proof goes in the same line of arguments as that of [10, Lem-
ma 4.5]. �

The next theorem generalizes [10, Theorem 4.1] to give the converse of
Theorem 4.2 in the case that I1 · · · Ir has small analytic spread.

Theorem 4.5. Let (A,m) be a local ring, and let I1, . . . , Ir ⊂ A be ideals of
positive grades with respect to a finitely generated A-module N . Assume that
� = �(I1 · · · Ir) ≤ 2.
(a) If RN (I1, . . . , Ir) is Cohen–Macaulay, then RN (I1 · · · Ir) is Cohen–Macau-

lay and the condition (Ij1 · · · Ijk
)N :N Ijl

= (Ij1 · · · Ijl−1 · Ijl+1 · · · Ijk
)N

holds for all 1 ≤ j1 < · · · < jk ≤ r and 1 ≤ l ≤ k.
(b) Conversely, if RN (I1 · · · Ir) is Cohen–Macaulay, the condition (Ij1 · · · ×

Ijk
)N :N Ijl

= (Ij1 · · · Ijl−1 · Ijl+1 · · · Ijk
)N holds for all 1 ≤ j1 < · · · < jk ≤

r and 1 ≤ l ≤ k, and if, in addition, N is free in the punctured spectrum
and Proj RA(I1 · · · Ir) is a Cohen–Macaulay scheme, then RN (I1, . . . , Ir)
is Cohen–Macaulay.

Proof. As before, let S = RA(I1, . . . , Ir), M = RN (I1, . . . , In), Z = ProjS
and E = Z ×A A/m. Let M be the associated coherent sheaf of M on Z. The
first part of (a) follows from Theorem 4.2. To prove the second part of the
statement, we observe that by Theorem 3.1, Γ(Z, M(n)) = Mn = In1

1 · · · Ink

k N
for all n ≥ v(M) = 0. Thus, the condition (Ij1 · · · Ijk

)N :N Ijl
= (Ij1 · · · Ijl−1 ·

Ijl+1 · · · Ijk
)N follows by substituting appropriate n and m to Lemma 4.4.

To prove (b), let L = MΔ = RN (I1 · · · Ir), and notice that SΔ =
RA(I1 · · · Ir) and ProjSΔ is a Cohen–Macaulay scheme. Let L be the associ-
ated coherent sheaf of L on ProjSΔ. Recall that there is a canonical isomor-
phism f : Z → ProjSΔ. Since L is Cohen–Macaulay, by Lemma 4.3(a) and
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(4.7), we have Hi(Z, M(� − 1 − i, . . . , � − 1 − i)) = Hi(ProjSΔ, L(� − 1 − i)) = 0
for i > 0. In such a case, [10, Lemma 4.2.(a)] states that Hi(Z, M(m1 −
i, . . . ,mr − i)) = 0 if mj ≥ � − 1 for all j. Moreover, for i > 0, since � ≤ 2, we
have � − 1 − i ≤ 0. This implies that

(4.8) Hi(Z, M(n)) = 0 for any i > 0 and n ≥ 0.

Since N is free in the punctured spectrum of A, L is a locally free sheaf. Thus,
similarly, by using Lemma 4.3(b) and [10, Lemma 4.2(b)], we get

(4.9) Hi
E(Z, M(n)) = 0 for any i < dimN and n < 0.

We shall now verify that

(4.10) Γ(Z, M(n)) = In1
1 · · · Inr

r N for all n ≥ 0.

By applying the special case of Theorem 3.1 for r = 1 and (4.7), we have

Γ(Z, M(m, . . . ,m)) = Γ(ProjSΔ, L(m)) = Lm = Im
1 · · · Im

r N for all m ≥ 0.

Now for any n ≥ 0, we can find some m such that n ≤ (m, . . . ,m). By de-
scending induction on each coordinate and successively applying Lemma 4.4,
it can be seen that (4.10) holds.

The conclusion of (b) now follows from Theorem 3.1 together with (4.8),
(4.9), and (4.10). �
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