ON SANOV 4TH-COMPOUNDS OF A GROUP

MARTIN L. NEWELL

Dedicated to the memory of my teacher Professor Reinhold Baer

1. Introduction

In his elegant inductive proof that every finitely generated group of exponent 4 is finite, Sanov used the following construction.

Let M be a group and let u be an involution in M. We form a group $S_u(M,a)$ by means of the relations $a^2 = u$ and $(ma)^4 = 1$ for every $m \in M$. When u = 1, we write $S_0(M,a)$ for the corresponding group.

We call $S_u(M,a)$ a Sanov compound and there is one for every conjugacy class of involutions in M. Sanov proved that for finite M of order m, every Sanov compound $S_u(M,a)$ has finite order at most m^{m+1} . (See, for example, [2, Theorem 18.3.1] or [3, Theorem 14.2.4].) Here we establish some general results concerning $S_u(M,a)$. For example, if M is infinite cyclic, then $S_0(M,a)$ is the extension of a countable elementary abelian 2-group by the infinite dihedral group. If M is cylic of order 3, then $S_0(M,a)$ is isomorphic to S_4 . For $M = A_4$, $S_0(M,a)$ has order $2^9 \cdot 3$, while $S_u(M,a)$ has order $2^6 \cdot 3$ for u = (1,2)(3,4).

For computational purposes one uses a presentation for M via generators and relations. Then one adds the extra relations defining $S_u(M,a)$. These extra relations usually induce further relations in M. Thus, while M itself may not be a subgroup of $S_u(M,a)$, there exists a normal subgroup K_u of M such that $S_u(M,a)$ is isomorphic to $S_{\overline{u}}(\overline{M},a)$, where $\overline{M}=M/K_u$ belongs to $S_{\overline{u}}(\overline{M},a)$. For example, when M is a dihedral group of order 2n, with n odd, $S_0(M,a)=S_0(C_2,a)$ is dihedral of order 8 and $K_0=M'$, the commutator subgroup of M. We also show that for M finite, simple and non-abelian, $S_u(M,a)=S_0(1,a)$ is cyclic of order 2. Originally these investigations were prompted by a remark of M. Newman who asked if every Sanov compound of a 2-group M is itself a 2-group. We give a positive answer to this question, and a bound for the order. In a later paper we will examine the compounds of soluble groups and present further information on the groups M/K_u .

Received September 9, 2002. 2000 Mathematics Subject Classification. 20F05, 20F18.

2. Elementary properties of a compound $S_u(M,a)$

LEMMA 1. Let x, y and t belong to M. Let $\alpha = at$. Then:

- (1) $x^{\alpha+1}$ is inverted by α^2 .
- (2) $(x^{\alpha+1})^y = (y^{\alpha+1})^{-1}(yx)^{\alpha+1}[x,y].$
- (3) $x^{\alpha+1}$ commutes with $y^{\alpha^{-1}+1}$ when [y,x]=1.
- (4) $[x^{\alpha}, x] = 1$, when x is inverted by α^2 .
- (5) $[x^{\alpha}, y] = [x, y^{\alpha}]$, when x, y and xy^{-1} are inverted by α^2 .

Proof. By hypothesis $(x\alpha^{-1})^4 = 1 = xx^{\alpha}x^{\alpha^2}x^{\alpha^3} = x^{(1+\alpha)(1+\alpha^2)}$. Hence (1) and (4) are immediate consequences. Since

$$x^{(\alpha+1)y} = y^{-1}x^{\alpha}xy = (y^{\alpha}y)^{-1}(yx)^{\alpha}yx[x,y],$$

we get property (2).

Let [y, x] = 1. Then $x^{y\alpha+1} = x^{\alpha+1}$ is inverted by α^2 and $(y\alpha)^2 = yy^{\alpha^{-1}}\alpha^2$. Therefore $yy^{\alpha-1}$ and $(y^{\alpha^{-1}}y)^{-1}$ commutes with $x^{\alpha+1}$. This proves (3).

Finally (5) follows from the fact that x^{α} , y^{α} , and $x^{\alpha}y^{-\alpha}$ commute, respectively, with x, y, and xy^{-1} , and $(xy^{-1})^{\alpha}xy^{-1} = x^{\alpha}x[x,y^{\alpha}]y^{-\alpha}y^{-1}$.

LEMMA 2. Let $t, a^2 \in M$ and put $z = [a^2, t]$. Then:

- (1) $z = t^{a^{-1}+1}t^{a+1}$.
- (2) $[z, z^a] = 1$.
- (3) $z^{at} = z^{t^{-1}a}$.
- (4) $(t^{a+1})^2 = zz^{at}$

Proof. $(ta^{-1})^4 = 1$ implies that $tt^at^a^2t^{a^{-1}} = 1$. Hence $t^{-a^2} = t^{a^{-1}}tt^a$ and (1) follows. Since $z^{a^2} = z^{-1}$, (2) is a consequence of Lemma 1(4). Also, by Lemma 1(3), z commutes with $t^{a^{-1}+1}$ and since $at = (t^{a^{-1}}t)t^{-1}a$, property (3) follows. Finally, $z^{at} = (t^at)(t^{a+1})^{at} = (t^at)(t^{a-1}t)^{-1}$ and $zz^{at} = (t^at)^2$. This completes the proof.

3. Examples

EXAMPLE 1. (a) Let $M=\langle t\rangle$ be cyclic, put $S=S_0(M,a)$ and let $T_k=(t^k)^{a+1}$ for every integer $k\neq 0$. Then, by Lemma 2, each T_k is an involution and the group $T=\langle T_k\rangle$ is an elementary abelian 2-group, by Lemma 1(3). It is normalized by t, since $T_k^t=T_1^{-1}T_{k+1}$, by Lemma 1(2). It is normalized by t, since t is a dihedral group. When t has order t is a dihedral group. When t has order t is a dihedral group.

(b) Suppose t has order 2m and let $u = t^m$. Then a^2 is central in $S_u(M)$ and $S_u(M)/\langle a^2 \rangle$ is isomorphic to a subgroup of $S_0(M/\langle a^2 \rangle, a)$.

EXAMPLE 2. (a) Let M be a dihedral group, $M = \langle s, r \rangle$ for involutions s and r. Let t = sr and $S = S_0(M, a)$. Then $1 = (at^{-1})^4 = aa^ta^ta^{t^3}t^{-4}$. Also the involutions a, s generate a dihedral group of order 8, since $(as)^4 = 1$.

In particular, a^s commutes with a. The same is true for a^{st^k} for every integer k. Thus a^s commutes with a, a^t, a^{t^2}, a^{t^3} and consequently with t^4 . But then a commutes with t^4 . Now $(t^4)^{a+1} = t^8$ is an involution by Lemma 2(4) and hence $t^{16} = 1$. So for $M = D_{\infty}$ we have $S_0(M, a) = S_0(\langle s \rangle, a)$ is dihedral of order 8. The same is true for a dihedral group M or order 2n, n odd.

(b) Let $a^2 = s \in M$ and let $S = S_s(M, a)$. Then $t^{a^2} = t^{-1}$ and $[t^a, t] = 1$ in S, by Lemma 1(4). The abelian group $A = \langle t, t^a \rangle$ is normal in S and S/A is cyclic of order 4.

EXAMPLE 3. The symmetric group $M = S_4$ has essentially three compounds, where u = 1, (1, 2)(3, 4) and (1, 2), respectively. The first $S_0(M, a)$ is isomorphic to D_8 , the dihedral group of order 8. So is the second, while the third compound has order 36 and is isomorphic to $C_3 \times C_3$ extended by C_4 , with a^2 acting by inversion. We already noted that S_4 is the compound of C_3 . Thus for a given group M, by iterating the process one can develop a tree of compounds. For M = 1, the associated tree is an interesting family of 2-groups. We will see later that for $M = S_n, n > 4$, the only possible Sanov compounds are C_2, C_4 and D_8 .

We now consider the Sanov compounds of nilpotent groups.

THEOREM 1. Let M be a nilpotent group. Let $a^2 = u$ be an involution in M. Then $S_u(M, a)$ is soluble.

If M is finite of order m, then $S_u(M,a)$ is finite of order dividing $2^m m$.

Proof. Let $s \neq 1$ be an element of Z(M). Then $[a^2, s] = 1$ and s^{a+1} is an involution, by Lemma 2(4). Let $A = \langle s^{a+1} : 1 \neq s \in Z(M) \rangle$. By Lemma 1(2) and Lemma 1(3) it follows that A is an elementary abelian 2-group and is normalized by Z(M).

Let $y \in M$. Then y^{a+1} commutes with $s^{a^{-1}+1} = s^{a+1}$, by Lemma 1(3). Hence $(s^{a+1})^y$ centralizes A for all $y \in M$ by Lemma 1(2). It follows that $B = \langle A^M \rangle$ is an elementary abelian 2-group, which is normalized by M. Furthermore, $ya = yy^{a^{-1}}ay^{-1}$ and thus $s^{(a+1)ya} = s^{(1+a)y^{-1}}$ belongs to B. Therefore B is a normal subgroup of $S = S_u(M,a)$. Since a inverts s in S/B, it follows that for $C = \langle Z(M)^S \rangle$, the group C/B is abelian. Also the group S/C is isomorphic to a subgroup of $S_{\overline{u}}(M/Z(M),a)$ where $\overline{u} = uZ(m)$. By induction on the nilpotency class, we conclude that S/C and hence S is soluble. If M is finite of order m, let Z(M) have order c. Then M/Z(M) has order m' = m/c, |A| divides 2^{c-1} , and |B| divides $|A|^{m'}$, since Z(M)

normalizes A. Finally, |C| divides $|Z(M)||B| = 2^{(c-1)m'}c$. By induction |S/C| divides $2^{m'}m'$, and |S| divides $2^{cm'}m'c=2^mm$. This completes the proof.

Corollary 1.

- (1) Every Sanov compound of a finite 2-group is a finite 2-group.
- (2) Every Sanov compound of a nilpotent group of class d is soluble with derived length at most 2d.

4. Properties of a Sanov involution

Let $a^2 = u \in M$. When performing calculations, we will for simplicity identify the elements in M with their images in $S_u(M, a)$.

THEOREM 2. Let $M = \langle a^2, H \rangle$, where $H = \langle x, y : [x, y] = 1 \rangle$ and $a^2 \neq 1$. Let $T_h = h^{a+1}$ in $S = S_u(M, a)$. Then:

- (1) [Tx, Ty] is inverted by a and commutes with x and y in S.
 (2) [a², x] commutes with [a², x]^{ay} in S.

Proof. Let $z_x = [a^2, x]$. Then $z_x = T_x T_{x^{-1}}^a$ by Lemma 2(1), since $T_{h^{-1}}^a =$ $T_{h-1}^{-a^{-1}} = h^{a^{-1}+1}$. Also, for $h, k \in H$ it follows from Lemma 1(2) and (3) that T_k commutes with T_h^a and $T_k^h = T_h^{-1}T_{hk}$, and $ah = (h^{a^{-1}}h)h^{-1}a$ implies that $T_k^{ah} = T_k^{h^{-1}a}$. Now z_x^{1+ay} is inverted by $(ay)^2 = a^2T_y$. But

$$z_{x}^{1+ay} = T_{x}T_{x^{-1}}^{a}T_{x}^{ay}T_{x^{-1}}^{-y} = (T_{x}T_{x^{-1}}^{-y})(T_{x^{-1}}T_{x}^{y^{-1}})^{a}$$

and

$$(T_x T_{x^{-1}}^{-y})^{1+(ay)^2} = (v^{-a})^{1+(ay)^2},$$

where $v = T_{x^{-1}} T_x^{y^{-1}}$. Now $(T_x T_{x^{-1}}^{-y})^{1+(ay)^2}$ equals

$$(T_xT_{yx^{-1}}^{-1}T_y)^{1+a^2T_y} = (T_xT_{yx^{-1}}^{-1}T_y)(T_x^{-1}T_{yx^{-1}}T_y^{-1})^{T_y} = \left[T_x^{-1}, T_{yx^{-1}}\right],$$

while

$$(T_x^{-y^{-1}}T_{x^{-1}}^{-1})^{a(1+a^2T_y)} = (T_x^{-y^{-1}}T_{x^{-1}}^{-1})^{(1+a^2)a}.$$

Therefore

$$\left[T_x^{-1}, T_{yx^{-1}}\right] = (T_x^{-y^{-1}} T_{x^{-1}}^{-1})^{(1+a^2)a}.$$

From this we deduce that $T = \langle T_h : h \in H \rangle$ is nilpotent of class 2.

Expanding

$$(T_x^{-y^{-1}}T_{x^{-1}}^{-1})^{1+a^2} = T_x^{-y^{-1}}T_{x^{-1}}^{-1}T_x^{-y^{-1}a^2}T_{x^{-1}},$$

using

$$T_{x}^{-y^{-1}a^{2}} = T_{x}^{y^{-a^{2}}} = T_{x}^{y^{-1}[y^{-1},a^{2}]} = T_{x}^{y^{-1}} \left[T_{x}^{y^{-1}}, T_{y^{-1}}^{-1} \right] = (T_{x} \left[T_{x}, T_{y} \right])^{y^{-1}},$$

we get

$$\left[T_x^{y^{-1}}, T_{x^{-1}}\right] \left[T_x^{y^{-1}}, T_{y^{-1}}^{-1}\right] = \left[T_x^{y^{-1}}, T_{y^{-1}}^{-1} T_{x^{-1}}\right] = \left[T_x, T_{yx^{-1}}\right]^{y^{-1}}.$$

It follows that

$$\left[T_x^{-1}, T_{yx^{-1}}\right] = \left[T_x, T_{yx^{-1}}\right]^{-1} = \left(T_x^{-y^{-1}} T_{x^{-1}}^{-1}\right)^{(1+a^2)a} = \left[T_x, T_{yx^{-1}}\right]^{y^{-1}a}$$

for all $x, y \in H$. Thus

$$[T_x, T_y]^{-1} = [T_x, T_y]^{x^{-1}y^{-1}a}$$

and

and
$$[T_x,T_y]^{-ay}=[T_x,T_y]^{x^{-1}}=[T_x,T_y]^{-y^{-1}a}\,,$$
 since $[T_x,T_y]$ commutes with a^2 . Therefore

$$\left[T_{x^{-1}},T_{x^{-1}y}\right]^{-1} = \left[T_{y^{-1}x},T_{y^{-1}}\right]^a \text{ for all } x,y \in H.$$

Hence

$$[T_h, T_k]^{-1} = [T_k, T_h] = [T_{k-1}, T_{hk-1}]^a$$
 for all $h, k \in H$,

and

$$\left[T_{x^{-1}},T_{x^{-1}y}\right]=\left[T_{x},T_{y}\right]^{a}.$$

Thus

$$\left[T_{x},T_{y}\right]^{x^{-1}}=\left[T_{x^{-1}},T_{x^{-1}y}\right]^{-1}=\left[T_{x},T_{y}\right]^{-a}=\left[T_{x},T_{y}\right]^{-y^{-1}a}.$$

Therefore $[T_x, T_y]$ commutes with y and so with x by symmetry and it is inverted by a. This concludes the proof of (1).

Since

$$z_x z_x^{ay} z_x^{(ay)^2} z_x^{y^{-1}a^{-1}} = 1$$

and

$$z_x^{(ay)^2} = z_x^{a^2 T_y} = z_x^{-T_y} = (z_x [T_x, T_y])^{-1},$$

it follows that

$$z_x z_x^{ay} z_x^{-1} z_x^{-ay} [T_x, T_y]^{-1} [T_x, T_y]^{-ay} = 1,$$

and therefore

$$[z_x, z_x^{ay}] = 1.$$

This proves (2).

COROLLARY 2. Let $u = a^2 \neq 1$ and $t \in M$. Then $\langle a^2, t \rangle$ is central by metabelian in $S_u(M, a)$.

Proof. Let
$$T_i = (t^i)^{a+1}$$
 and let $z_i = [a^2, t^i]$. Then $z_i = T_i T_{-i}^a$ and $[z_i, z_i] = [T_i, T_i] [T_{-i}, T_{-i}]^a = [T_i, T_i] [T_{-i}, T_{-i}]^{-1}$.

Therefore the group $Z = \langle z_i : i \text{ an integer} \rangle$ is nilpotent of class 2. Further, z_1 commutes with z_1^a and z_1^{at} , by Theorem 3. Since

$$z_1^{at} = z_1^{t^{-1}a} = z_{-1}^{-a},$$

we have that z_1^a and z_{-1}^{-a} commute with z_1 . Because

$$z_1^{at^{-i}} = z_1^{t^i a} = z_i^{-a} z_{i+1}^a$$

commutes with z_1 , we conclude by induction that z_j^a commutes with z_1 for every integer j. Further, since $(z_i)^t = z_1^{-1} z_{i+1}$, a similar induction yields that z_i commutes with z_j^a for all integers i and j. Since $[z_i, z_j]$ is inverted by a, it commutes with a^2 . Because $[T_1, T_j]$ commutes with t for all j, we deduce by induction that $[T_i, T_j]$ commutes with t, for all integers i, j. Hence $[z_i, z_j]$ is central in $\langle a^2, t \rangle$ and $\langle a^2, t \rangle$ is central by metabelian.

Theorem 3. Every Sanov-compound of a non-abelian, finite simple group is cyclic of order 2.

Proof. Let $a^2 = u(\neq 1) \in M$. By the Theorem in [4], there exists an element t such that $M = \langle a^2, t \rangle$. By Corollary 2, this has trivial image in $S_u(M, a)$ and hence $S_u(M, a)$ is cyclic of order 2.

Consider $S_0(M, a)$ with $a^2 = 1$. Let x be an involution in M and let $y \in M$. Then $\langle x^y, x \rangle$ is dihedral and by Example 2(a) it is either trivial or a 2-group. In particular, [y, x] has order dividing 16. Thus x is a left-engel element of M and by [1] it is contained in the Fitting subgroup of M. Thus M is trivial in $S_0(M, a)$ and this group is cyclic of order 2.

COROLLARY 3. Let $M = S_n$ be the symmetric group with n > 4. Then $S_u(M, a)$ is isomorphic to D_8 , C_4 or C_2 .

Proof. The Sanov compound of the trivial group is C_2 . We consider then the remaining cases.

Let $a^2 = u$. If u is even, $S_u(M, a)$ contains $S_u(A_n, a)$; also $u \in A_n \subseteq K_u$ and

$$S_u(M,a) \simeq S_0(C_2,a) \simeq D_8.$$

For $a^2=(1,2), S_n=\langle a^2,t\rangle$, where t is an n-cycle, but this group is not central by metabelian. In this case we can assume that $t\in K_u$ and $S_u(M,a)\simeq C_4$. Now let $a^2=(1,2)(3,4)(5,6)v$, where v is an even involution. Then $\langle a^2,t_0\rangle$ is not central by metabelian, where $t_0=(1,2,3,4,5)$. So we may assume that every 5-cycle is in K_u and that $A_n\subseteq K_u$. Then $a^2\equiv (1,2)$ mod A_n and the compound is C_4 .

References

- [1] R. Baer, Engelsche Elemente noetherscher Gruppen, Math. Ann. 133 (1957), 256–270.
- [2] M. Hall, The theory of groups, MacMillan, New York, 1962.
- [3] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
- [4] A. Stein, $1\frac{1}{2}$ generation of finite simple groups, Beiträge Algebra und Geom. **39** (1999), 349–358.

Department of Mathematics, National University of Ireland Galway, Galway, Ireland

 $E ext{-}mail\ address: martin.newell@nuigalway.ie}$