Illinois Journal of Mathematics
Volume 47, Number 1/2, Spring/Summer 2003, Pages 361-393
S 0019-2082

2-LOCAL AMALGAMS FOR THE SIMPLE GROUPS GL(5,2),
M24 AND He

WOLFGANG LEMPKEN

ABSTRACT. We elaborate on a method of G. Michler [9] to construct
finite groups with a prescribed involution centralizer H using compati-
ble pairs and amalgamation of H and another naturally arising 2-local
subgroup. Here we deal with the particular set-up leading to the simple
groups GL(5,2), M24 and He.

1. Introduction

In [9] G. Michler described a method to construct the finite simple groups
G satisfying the following hypothesis:

HypPOTHESIS 1.1. G contains a 2-central involution z such that:

(1) Ce(z) = H for some given group H.

(2) G = (Cg(z),N), where N := Ng(A) for some elementary abelian
normal subgroup A of maximal order |A| > 4 of a Sylow 2-subgroup
S of H.

(3) For some prime p < |H|*—1 not dividing |H|-|N| the group G has an
irreducible p-modular representation, the restriction of which to H is
multiplicity free.

In this paper we shall elaborate on this for the case where H = 2146 : [3(2).
As is well known, this will lead to the simple groups GL5(2), Ma4 and He. In
fact, all finite groups having H as an involution centralizer are known.

THEOREM 1.2. Let Hy be isomorphic to the centralizer of a 2-central in-
volution of GL(5,2), i.e., Hy = 2'%6 : [3(2). Moreover, suppose that G is a
finite group containing an involution z such that Cg(z) = Hy. Then one of
the following holds:

(1) G=0(G) : Cg(2).
(2) G = Hol(2%) =2*: GL(4,2).
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(3) G is isomorphic to GL(5,2), Mas or He.

Proof. Theorem 2 of [10] gives the structure of G/O(G) as indicated above.
If G # O(G) : Cg(z), then G contains a fours-subgroup the involutions of
which are conjugate to z. An easy application of a well known fixed point
formula of R. Brauer (see, e.g., (12.6) in [7]) now shows that O(G) = 1, and
thus yields the claim. O

For the sake of convenience we recall the main steps of the construction
method mentioned above. To this end we assume that H is the prescribed
centralizer of an involution z and that S is a Sylow 2-subgroup of H.

Step 1: Determine the set A of all elementary abelian normal subgroups
A of S such that D := D(A) := Ny (A) is a proper subgroup of H.

Step 2: For each A € A determine the possible structure of Ng(A), i.e.,
determine a group N := N(A) together with an embedding ¢ : D — D; < N
such that D; = Cn(¢(z)) is a proper subgroup of odd index in N.

Step 3:  For each quadruple (H, D, ¢, N) found so far determine the set
IT of so-called compatible pairs (x, ) € char(H) X char(N) of complex val-
ued characters such that both x and 1 are faithful with x;p = ¢p, and x
multiplicity free.

Step 4: For each quadruple (H, D, ¢, N) and each admissible compatible
pair (x,¢) € II and for each prime p < b := |H|*> — 1 coprime to |H| - |N|
construct (up to isomorphism) all possible amalgams x(H) *,(py ¥(N) <
GL(n, F), where n := deg(x) = deg(y)) and F is a finite splitting field of
characteristic p for the groups H, D and N. (Here we have abused notation
in so far as x(H) and t(N) denote the matrix representations of H and N
inside GL(n, F) corresponding to yx and %, respectively.)

Step 5:  Among the amalgamated products constructed in Step 4 deter-
mine those in which H actually does occur as the centralizer of a 2-central
involution.

REMARKS 1.3.

(1) The condition in Step 3 that y is multiplicity free of course ensures
that the resulting set II is finite and that in Step 4 the amalgamation process
becomes somewhat easier. Since without the condition of multiplicity freeness
the resulting set II is infinite, it is reasonable to have some bound on the degree
n = deg(x) = deg(¥).

(2) The bound b in Step 4 is large and is due to the fact that the simple
groups to be constructed are known to embed into the alternating group of
degree b. However, in some instances the bound can be improved; see Remark
3.8 in [9)].
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(3) The choice of the field F is more subtle than indicated in Step 4. In
general, when the resulting finite simple groups are not known, one has to
enlarge F' to be a splitting field for the alternating group Alt, and all its
subgroups in order not to miss a group satisfying the given hypothesis. If
however the orders of the simple target groups are known at Step 4, then a
considerably smaller field F' can be chosen.

(4) The purpose of this paper is to show how the method outlined above
works if are several simple target groups to be expected, and thereby give
a constructive existence proof of the sporadic groups M, and He start-
ing from scratch with a prescribed involution centralizer. Furthermore, we
shall demonstrate—under certain circumstances—how the number of differ-
ent amalgams and the number of associated finite completions to be considered
may be kept within a manageable order of magnitude.

2. Some preliminaries and notation

We start this section by collecting some well known and helpful facts con-
cerning amalgams of rank 2.

THEOREM 2.1. Let A:= (¢; : B — Pi;i=1,2) be an amalgam of rank 2
and let A = {a € Aut(P;)|a normalizes Im(p;)}. Moreover, for i € {1,2}
define a homomorphism o; € Hom(A}, Aut(B)) by a;(n) := pinp; ' forn €
Af and put A; = Im(ay) < Aut(B). Then there is a 1 — 1 correspondence
between the isomorphism classes of amalgams having the same type as A and
the (A1, As) double cosets in Aut(B); more precisely, for any double coset
representative B of A1 and As in Aut(B) the corresponding amalgam is given
by ((pl :B— Pl,ﬁ(pz :B— P2)

Proof. See [4]. O

THEOREM 2.2. Let F be a finite field and n € N; furthermore, let A and
B be subgroups of G := GL(n, F) with D := AN B. Then the isomorphism

classes of amalgams of type Axp B in G are in 1 — 1 correspondence with the
(Ca(A),Cq(B)) double cosets in Ce(D).

Proof. See [15]. O

THEOREM 2.3. Let X be a finite group containing an involution j such
that F*(Cx(j)) is extraspecial of width at least 2. If O(X) = 1 then one of
the following holds:

(1) j € Z(X).

(2) F*(X) = (%) is isomorphic to the m-dimensional unitary group
U (2) over GF(2) or to the second Conway group Cos or to the linear
group L4(3).

(3) j is X-conjugate to some noncentral involution in F*(Cx/(3)).
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Proof. The statement follows from the main results in [1] and [12]. O

The notation used will be standard. In addition we shall make use of the
following convention.

NOTATION 2.4. If X is a group acting on a finite set S such that sX with
i € {1,...,7} are the mutually different X-orbits on S and |s{X| = n;, then
we shall express this by

(XU4S)=n1-s1+ - +n,- 8.

Next we fix notation for elements and subgroups of the prescribed involu-
tion centralizer H =2 2'+6 : [(3,2) as it occurs in GL(5,2).

NOTATION 2.5.
(1) Clearly, H is isomorphic to the group Hp := Cgrs,2)(r0) where

1 0 0 0 0

01 0 0O

ro:=]10 0 1 0 O

0 0010

10 0 0 1

An easy calculation reveals that Hy = (a, b, c¢) where
1 0 0 0 O 1 0 0 0O
1 1.0 00 1 01 00
ai=lo 1100, b=]l0 1 1 0 0],

0 01 10 1 0 01 0
0 00 11 0 00 11

100 00

1 1.0 00

c:=10 0 1 1 O

0 0100

01 0 0 1

are elements of GL(5,2) of orders 8,12 and 12, respectively.

(2) Let T denote the set of lower triangular matrices of GL(5,2); so T
is a Sylow 2-subgroup of both GL(5,2) and Hy. Furthermore, define ten
involutory generators of T' by the 5 x 5-scheme

1 0 0 0 O
t7 1 0 0 O
dl S1 1 0 0
rn T3 82 1 0
ro T2 dg tg 1
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where a symbol in the (4,j)-position represents the involution of 7' having
exactly one nonzero entry in position (7, j) off the diagonal. Straightforward
matrix calculations reveal the following identities:
ro=a*, r1 =a*-(a®*-*)3, ro = (a® - 0®)?% r3=a-b-a-b°-a-b*-d,
di=a-b-a-b*a-b-a®d=a®0 a-b
s1=a-b*-a®-b% a0, Szz(a'b5)27
ti=a-b"-a®-b°-db ty=(a® b?)% 0>
(3) Put E; := (ro,r;,d;,t;) for i € {1,2} and Q := (E1, E3). Then F; is
a self-centralizing elementary abelian normal subgroup of order 2% of H and
Q = E1E2 = OQ(H) = 21+6.
(4) Put R; := (ro,71,72,73,d;,8;) and H; := Ny, (R;) for i € {1,2} as well
as

)

1 0000 1 0000
00100 01000
hii=t;-0*=10 1 1 0 0|, ho:=c*=]0 0 1 1 0
00010 00100
00001 00001

Then R; is a self-centralizing elementary abelian normal subgroup of order
260 of T and H; = Q : P, = R, : K;, where P, := (rs, si, by, 85) = Sym, and
K, = <t7;,tj7dj,hj, S]'> =75 X Sym4 with ¢ 7&] S {1,2}

Finally we record some basic facts concerning the group Hy and some of
its subgroups.

LEMMA 2.6.  The following hold:

(1) For each x € Hy let z® denote the reflection of x~* along the antidi-
agonal. Then « induces an involutory outer automorphism of Hy with
EY = FEy and Ry = Ry as well as HY = Hy and T* =T.

(2) Ry and Ry are the only elementary abelian normal subgroups of maz-
imal order 25 in T .

(3) (Ho | Q%) = 1rg + 147y + 147y + 427179 + 5671ty with (rit2)? = ro.

(4) (H2 | Rg) = 1rg+2r; +6ry + 67179 +12r3 + 121973+ 24713dy. Further-
more, we have Vi := (ri2) = (rq, 1), Vo := (ri2) = (ro, 79, d2), V3 :=
((rir2)™2) = (ro, 71,72, da) and (r3'®) = ((zr3)"?) = ((rads)"?) = Rs.
In particular, Hy acts irreducibly on the section Ry /V3 = 22,

Proof. All claims can be verified by means of easy matrix calculations. [

3. The second 2-local subgroup N

In view of Hypothesis 1.1 and Lemma 2.6 we shall assume from now on the
following hypothesis:
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HypOTHESIS 3.1. G is a finite group containing an involution z such that
H :=Cg(z) 2 Hypand G # O(G)H as well as G = (H, N) with N := Ng(Rz).

For the sake of convenience we shall also identify H with Hy and use the
same notation for elements and subgroups of H as for Hy as introduced in 2.5
and 2.6; so, in particular, z = rg.

LEMMA 3.2.  The following hold:

(1) T is a Sylow 2-subgroup of G with |T| = 2% and Z(T) = (). In
particular, Ng(T) = Ng(T) =T.

(2) The groups Ry and Ry are not conjugate within G.

(3) z is G-conjugate to at least one element of {ri,ra,r172}.

(4) The group N controls G-fusion in Rs.

(5) Ce(R2) = R2 and N/ Ry is isomorphic to a subgroup of GL(6,2).

(6) D is a proper subgroup of N with |N : D| dividing 3% -5 - 7% - 31;
moreover, D/Rg = 7y X Sym,.

Proof. The claims in (1) are obvious. Since R; and Ry are the only elemen-
tary abelian normal subgroups of order 64 of T, Ng(7T') controls the G-fusion
of Ry and Rg; therefore, (2) follows from (1).

Next observe that (3) is an easy consequence of Lemma 2.6 and Theorem
2.3. All remaining claims are immediate now. (]

LEMMA 3.3. If N acts reducibly on Ry, then (zV) € {V1,Va} and O3(G) =
Cq(02(Q)) € {E1, B3} and G = Hol(24%) = 2* : GL(4,2).

Proof. Put V := (zV) and note that V € {Vi,Vs,V3} by Lemma 2.6;
moreover, N normalizes C' := Cg (V).

Assume first that V' =V;. Then C = Cy (V1) = E1Rs : (h1,s1) and Ej is
the only elementary abelian normal subgroup of order 16 in O2(C) = E1 R,
not contained in Ry; hence F; is normal in N.

If V="V, then C = Cy(V2) = E2Rs and Es is the only elementary abelian
normal subgroup of order 16 in C not contained in Ro; hence Fs is normal in
N.

Finally assume that V' = V5. Thus C = Cg(V5) = Ry. Moreover, z
must be N-conjugate to ri7ry and thus |2V € {7,7+ 2,7+ 6,7 + 2 + 6},
ie., |[N/Ry| € {24-3-7,2%.33%,24.3.13,2*.3%.5}. On the other hand,
N/Rs is isomorphic to a subgroup of Aut(V) = GL(4,2) and so has order
dividing 25 - 32 - 5 - 7; therefore |N/Rg| € {2*-3-7,2%.32.5}. An inspection
of the subgroup structure of GL(4,2) now shows that |[N/Ry| = 2*-32.5 and
N/Ry = Symg. As this contradicts the fact that N/Ry acts irreducibly on the
section Rs/V3, we are done. O

In view of this result we may and shall assume from now on the following
hypothesis:
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HypoTHESIS 3.4. The group N acts irreducibly on Rs.
As an immediate consequence of 3.4 we obtain the following result:

LEMMA 3.5.  The following hold:
(1) O3(N) = Rs.
(2) Each element of {z,r1, 72,1172} has an N-conjugate in {rs, zrs,r3da}.
(3) |2V = |N : D| € {15,21,27, 31,45, 49, 63}.
Proof. The claims in (1) and (2) are obvious. Next, observe that [2V| =
|N : D| is a sum of some D-orbit lengths given in Lemma 2.6, i.e., a sum of
some of the numbers 1,2, 6,6, 12,12, 24. Since |N : D| also divides 33-5-72.31,
an easy inspection using (2) now yields the claim in (3). O

Before we are able to determine the structure of N we need to collect some
information on the structure of some subgroups of GL(6, 2).

LEMMA 3.6. Let X be a subgroup of GL(6,2) and Y := Ngr,2)(X).
Then the following hold:
(1) If | X| =7% then Y = ((7:3) x (7:3)):2.
(2) If |X| = 7, then' Y s isomorphic to one of the groups (7 : 3) X
L(3,2),(7x L(2,8)) : 3 or (Tx 7) : 6.
(3) If X = Zs, then Y = (Zy5 : 4) x Syms.
(4) IfX = Zg, then Y = Zgg : 6.
(5) If | X| = 33, then one of the following holds:
(a) X is extraspecial of exponent 3 and Y = 3172 : GL(2,3).
(b) X is extraspecial of exponent 9 and Y = 3172 : Sym,.
(¢) X is elementary abelian and Y = Symg ! Syms; moreover, ¥
induces four orbits of lengths 1,9,27 and 27 on the underlying
6-dimensional GF(2)-space.

Proof. All claims can be verified by straightforward calculations in the
group GL(6,2). O

LEMMA 3.7. N is a split extension of Ry and a group K such that exactly
one of the following two cases occurs:
(1) |N:D| =21, K = Symy x L(3,2) and (N |} R}) = 21z + 42r3ds.
(2) |N : D| =45, K = 3Symg and (N |} Rg) = 45z + 18z for a suitable
x € RQ.
Moreover, in either case the group N is determined uniquely up to isomor-
phism.

Proof. Put I = |N : DL and N := N/Ry, and recall that
I € {15,21,27,31,45,49,63) and D = Z, x Sym,.
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Assume that [ = 31. Then N induces orbits of lengths 1,31 and 32 on R,
contradicting the fact that 32 does not divide |N|. Therefore I # 31.

We know already that Oz(N) = 1. By Lemma 3.6 we easily see that
O5(N)=07(N)=1. B -

Assume next that N is solvable. Inspecting the order of N we get F(N) =
O3(N). Since GL(2,3) does not involve a section isomorphic to D, application
of parts (4) and (5) of 3.6 now shows that F(IV) is elementary abelian of order
3% and that N = F(N) : D = Syms1Sym;, induces orbits of lengths 1,9, 27,27
on Ry. But this contradicts the fact that |Z(T')| = 2.

We have shown that N is nonsolvable. In particular, I # 27. Furthermore,
N has a nonabelian simple composition factor, say L.

Assume next that I = 63 and thus |N| = 2%-33.7. Moreover, suppose that
L = I(2,8). Since now L has trivial Schur multiplier and since Out(L) & Z3,
N must contain a subgroup isomorphic to Zy x L(2,8). As this conflicts with
the structure of a Sylow 2-subgroup of N, we conclude that L = L(3,2). Since
neither Aut(L) nor the double cover of L has a Sylow 2-subgroup isomorphic
to Zy x Dg, we get N = C' x L, where C := Cy(L) has order 2 - 32. By part
(2) of 3.6 we see that O3(C) = Zg. As this conflicts with part (4) of 3.6, we
finally conclude that I # 63.

If I = 49 and thus |[N| = 2%-3- 72, we easily see that L = L(3,2). Similar
arguments as above now yield N & (7 : 2) x L(3,2), contrary to O7(N) = 1.
Therefore, I # 49.

Assume next that I = 15 and hence |N| = 24-32.5. Since the groups Zs x
Altg, Symg, PGL(2,9) and M, do not have an irreducible GF(2)-representa-
tion of dimension 6 and since the double cover of Altg has Sylow 2-subgroups
not isomorphic to Zs x Dg, Altg cannot be involved in N. So we conclude
that L = Alts.

Since L has Schur multiplier of order 2 and since O3(N) = 1 as well as
Out(L) = Z,, the 2-structure of N now implies that N = Syms x Sym,.
We have derived a contradiction, because the group Syms; x Syms has no
irreducible GF(2)-representation of dimension 6. Hence I # 15.

Assume now that I = 21 and hence |[N| =2%-32.7. If L 2 [(2,8), similar
arguments as above yield N = Z, x L(2,8), a contradiction. Therefore we
have L = L(3,2).

As O3(N) = 1 and since the Sylow 2-subgroups of Aut(L) are dihedral of
order 16, we easily verify now that N 2 Syms x L(3,2).

Observe next that the group N has exactly two nonisomorphic irreducible
GF(2)-modules of dimension 6 and that exactly one of these two modules
admits D as the stabilizer of a nontrivial module element. Also note that as
a GF(2)N-module R, is isomorphic to a tensor product of a 2-dimensional
GF(2)Syms-module and a 3-dimensional GF(2)L(3,2)-module. Therefore,
elements of order 7 of NV act fixed point freely on Rg; consequently N induces
orbits of lengths 1,21 and 42 on R,. Finally note that N splits over Rs
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because T does. Therefore, N is determined uniquely up to isomorphism in
case (1).

We are left with the case I = 45 and [N| = 2% .33 . 5. Assume first that
L = Alts. Since Aut(L) = Symg and since L has Schur multiplier of order
2 and since Oo(N) = 1, the presence of D = Z, x Sym, now implies that
N = Symy x ((Z3 x Alts) : Zy) with N inducing orbits of lengths 3,15 and
45 on R%. But this contradicts the fact that |Z(T)| = 2|. Therefore we have
L = Altg.

Now observe that Out(L) is a 2-group and that Zs x Altg has no irreducible
GF(2)-representation of dimension 3 or 6; therefore N’ is isomorphic to the
triple cover 3Altg. Since Z(D) = (f5) with |[Ra,ts]] = 2° we then get N =
3Symg with an involution of N — N’ acting invertingly on O3(N’). By part
(2) of Lemma 3.5 we also see that N induces orbits of lengths 1, 18 and 45 on
R5. Clearly, N splits over Ry for the same reasons as above.

Finally observe that N has exactly two nonisomorphic irreducible G F(2)-
modules of dimension 6 and that exactly one of these two modules admits
D as the stabilizer of a nontrivial module element. Hence, N is determined
uniquely up to isomorphism also in case (2). O

Before we describe the possibilities for the group N more explicitly we give
a presentation for the group D, which will be helpful in later arguments.

LEMMA 3.8. Define a set R(D) of relations as follows:
a®, b2, a5, (a-b)t, (a-b"H)Y (a-b7%-a-b)? (a-b*-a"2-b)2,

a2 a2 bat b2 a b @2 bad® b a2 ba2 b
Then R(D) is a set of defining relations for the group D.

Proof. The claims can easily be verified by a straightforward coset enumer-
ation, e.g., by means of MAGMA [2]. O

LEMMA 3.9. The following hold:
(1) If N = 25 : (Symg x L(3,2)), then we may identify N without loss

with the group Ny := (a,b,d) < GL(5,2), where
01 00O
101 00
d=11 0 0 0 O
0 00 11
000 10

(2) If N = 25 : 3Symy, then we may identify N without loss with the
group Ny :={a', V', f) < GL(7,2), where
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1 0 01 0 01 1 1.0 01 0O
01 000 O0O 01 00O0O0TO
01 1 0 0 0O 01 01 00O
ad=|0 01 100 0, ¥=]10 0 1 1 0 0 0},
01 001 0O 01 001 0O
01 1 0 1 10 0101101
0 01 1011 0 01 1011
1 01 01 0O
00 01 011
01 1 0 011
f=10 0001 0 1
001 1 0 1 0
001 1 1 01
01 01101
Furthermore, (a,b) — (a’,b') gives an embedding of D into Ns.

Proof. Clearly, in case (1) the group N can be embedded into the group
GL(5,2) in view of the tensor product decomposition of Ry as an N/Rs-
module (see the proof of Lemma 3.7). So we simply have to extend the group
D to a maximal parabolic of GL(5,2), which of course is straightforward.

Using MAGMA [2] all claims in part (2) can easily be verified. It is obvious
that the split extension N = Ry : K can be embedded into GL(7,2). In order
to do this we first represent the action of elements of D on the normal subgroup
R> by suitable (6 x 6)-matrices over GF(2) with respect to the ordered basis
{ro,r2,d2,71,73,52} and then extend the resulting subgroup of GL(6,2) by
a suitable element to a subgroup isomorphic to 38ym6. With this we form
the split extension with Ry inside GL(7,2) and then find the appropriate
generators as given above. Finally observe, that the pair (a’,b’) satisfies the
presentation of D given in Lemma 3.8. O

4. The amalgams

In this section we are going to determine representatives of the isomorphism
classes of amalgams of type (H, D, N). To this end we need some information
about the automorphism groups of the groups involved.

LEMMA 4.1.  Put by := b@¥ %) Then the following hold:

(1) The pairs (a,b),(a,b7),(a,by) and (a,b]) are representatives of the
four different D-classes of pairs satisfying the defining relations R(D)
of D.

(2) The maps 6; : (a,b) — (a,b"), &2 : (a,b) — (a,by), and 3 : (a,b) —
(a,b]) define automorphisms of D such that 67 = 85 = 63 = idp
and 0102 = 6361 = I3 as well as Aut(D) = Inn(D) : (§1,02) and
|[Aut(D) : Inn(D)| = 4.
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Proof. Since D has only one class of elements of order 8 and only one class
of elements order 12, an easy search in a” x b”—e.g., by means of MAGMA
[2]—vields the claims in (1). Similarly we show that §2 = §3 = 63 = idp.
Now all remaining claims in (2) are obvious. O

LEMMA 4.2. Define a set R(H) of relations as follows:

b, b2 12

a* o5, (a-b)*, (a-b"H (a-b7%-a-b)? (a-b*-a"?-b)?,
a2 a2 bat b 2ab a2 bad® bt a2 bbb
at-cb (a0, (a-cMHY (a-c?a-¢)? (a-?-a? c)?

2 3

a. ¢ -2 -1 -3 —1 2 2 —1 2 2 -1

a“-c-a " -c”-a-c ,a"-c-a"-c -a “-c-a “-c,
(b-cH (c-a™t-b)3 (@b )2 ae b at b e
a-c-btocb2at et

Then the following hold:

(1) R(H) is a set of defining relations for the group H.

(2) (a,b,¢) and (a,c,b*) are representatives of the two H-classes of triples
satisfying the defining relations R(H) of H.

(3) Put A := Aut(H). Then |A : Inn(H)| = 2 and H has an outer
automorphism of order 2 interchanging the two mazimal parabolics
(a,by and {a,c) of H. In particular, Aut (D) := No(D)/Ca(D) is
isomorphic to Inn(D) = D/(z).

Proof. An easy check using MAGMA [2] yields all claims in parts (1) and
(2). The claims in (3) now follow immediately from the fact that Ny (D) =
D. O

LEMMA 4.3. Define a set R(N1) of relations as follows:

a®, b2, a* 05, (a-b)*, (a-bYH)% (a-b%-a-b)? (a-b*-a"?-b)?
a2 b a2 bat b2 ab a2 ba? b a2 ba? b
d?, (a-d™?, d®-b a2 d-a-bt,
atb-a-d-a*-dtb-a-b
Then the following hold:
(1) R(Ny) is a set of defining relations for the group Ny.
(2) (a,b,d) represents the single N1-class of triples satisfying the relations

R(N1). In particular, Aut(N7) = Inn(N7) = Ny.
(3) Put A:= Aut(Ny). Then Aut4(D) := Ny (D)/Ca(D) = Inn(D).

Proof. Easy computational exercise. O
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LEMMA 4.4. Define a set R(Na) of relations as follows:
a®, b2, a5, (a-D)t, (a-bH)% (a-b7%-a-b)? (a-b*-a"2-b)?,
a2 a2 b-at b3 a-bha? b-a® b a2 ba? bt
P (a2 foa)?, bt a2 g,
b2 fb2a-f-0?-at, fFL0fa2 b foa bt
Then the following hold:

(1) R(N2) is a set of defining relations for the group Ns.

(2) (o', f) represents the single Na-class of triples satisfying the rela-
tions R(Nz). In particular, Aut(Nz) = Inn(N3) = No.

(3) Put A:= Aut(Nz). Then Auta(D) :=Na(D)/Ca(D) = Inn(D).

Proof. Easy computational exercise. O
Now we are in a position to describe all relevant amalgams.

LEMMA 4.5. Leti € {1,2}. Then there are exactly four different isomor-
phism classes of amalgams of type (H, D, N;); these classes are represented
by the amalgams A; ; == (D < H,v;; : D — N;), j € {0,1,2,3}, where the
embeddings v; ; of D into N; are defined by

Vio: ((Z,b) - (a,/@), Vi1 (avb) - (Oé,ﬁ7),
Vi (a7b) - (Oé,ﬁ]), Vi3 (a/u b) i (aaﬂ’lr)

with (o, B) = (a,b) in case i = 1 and (o, §) = (a’, V') in case i = 2 and with
/81 = ﬁ(aﬂgas)

Proof. The claims are an immediate consequence of Theorem 2.1 and the
earlier results in this chapter. O

5. Compatible pairs and associated completions

In this section we determine compatible pairs for the rank 2 amalgams
A; ; defined in Lemma 4.5 and study the associated finite completions over a
suitable field. In order to do this we need to know the irreducible characters
(over C) of the groups involved; in particular, we need to know how the
irreducible characters of H and N; restrict to the amalgamated subgroup.
Once this information is available, we can employ an algorithm due to M.
Kratzer [8] to compute compatible pairs for the amalgams A, ;.

LEMMA 5.1.  The irreducible complex characters of the groups D, H, Ny
and Ny are as given in the tables (I)-(IV) in the appendiz.
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Proof. Clearly, if need be, the character tables in question can be worked
out by hand. However, it is more convenient to use GAP [11] or MAGMA [2]
to calculate these tables. O

REMARKS 5.2.

(1) By an algorithm of M. Kratzer [8] canonical representatives of the con-
jugacy classes of the groups D, H, N; and N5 can be determined as words
in the respective generators. These canonical class representatives have been
used in the process of calculating the character tables in Lemma 5.1 above by
means of GAP [11].

(2) It will also be advantageous to have the canonical class representatives
at our disposal when determining the fusion pattern of the conjugacy classes
of D in H and of v; ;(D) in Nj, respectively. In the next result we shall give
these fusion patterns without actually listing the canonical class representa-
tives, because the fusion patterns carry enough information to work out the
restrictions of the irreducible characters of H (resp. N;) to the group D (resp.

vij(D)).

LEMMA 5.3. Let Fy denote the fusion pattern of D in H; i.e., Fy is a se-
quence of positive integers such that Fy[i] = j if and only if the i-th conjugacy
class of D is contained in the j-th conjugacy class of H; here the number-
ing of classes refers to the character tables mentioned in 5.1. Similarly, let
F; ; denote the fusion pattern of v; ;(D) in N; for j € {0,1,2,3}. Then the
following hold:

Fy=[1,2,3,4,5,4,3,6,5,7,8,9,6,5,7,9,8,10, 11,12, 11,11, 15, 16, 15,
14,13,14,15,14,12,13,17,19, 18,19, 16, 19, 20, 21, 22, 23, 24, 27, 28];
Fio=1[1,2,2,2,4,3,5,2,6,4,4,6,5,7,6,6,7,9,11,12,13,14, 16,12, 12,
14,14,13,16, 11, 16, 15,12, 19, 14, 18, 20,17, 17, 18, 21, 23, 21, 27, 28],
Fiq=1[1,2,2,2,4,3,52,6,4,4,6,6,7,5,6,7,9,11,12,13,14,16, 12, 12,
14,14,13,16, 11,16, 15,14,19,12, 18,20, 17,17, 18, 21, 23, 21, 27, 28],
Fio=1[1,2,2,2,4,3,6,2,54,4,6,5,7,6,6,7,9,11,12,13,14, 16, 14, 12,
14,12,13,16, 11, 16, 18,12, 20, 14, 15,19, 17,17, 18, 21, 23, 21, 27, 28],
Fis=1[1,2,2,2,4,3,6,2,54,4,6,6,7,5,6,7,9,11,12,13,14, 16, 14, 12,
14,12,13,16, 11,16, 18,14, 20,12, 15,19, 17,17, 18, 21, 23, 21, 27, 28];
Fyo=1[1,3,3,3,2,6,4,3,7,2,3,7,4,5,7,7,6,9,11,12, 14,13, 14,12, 13,
12,13,17,11,17,17,15,13,20, 12,19, 18, 16, 17, 19, 22, 26, 22, 27, 29],
Fy1=1[1,3,3,3,2,6,4,3,7,2,3,7,7,5,4,7,6,9,11,12,14,13, 14,12, 13,
12,13,17,11,17,17,15,12, 20,13, 19, 18, 16, 17, 19, 22, 26, 22, 27, 29],
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Foy=1[1,3,3,3,2,6,7,3,4,2,3,7,4,5,7,7,6,9,11,12,14,13,14, 13, 13,
12,12,17,11,17,17,19, 13, 18,12, 15, 20, 16, 17, 19, 22, 26, 22, 27, 29],

Frs=1[1,3,3,3,2,6,7,3,4,2,3,7,7,5,4,7,6,9,11,12,14,13,14, 13, 13,
12,12,17,11,17,17,19,12, 18,13, 15, 20, 16, 17, 19, 22, 26, 22, 27, 29].

Proof. Straight forward calculations yield the claims. O

Equipped with the information of this lemma and the character tables for
the groups H, D and N; we can now work out the restrictions of the irreducible
characters of H to D as well as the restrictions of the irreducible characters of
N; to v; j(D). This in turn is used as input for the algorithm of Kratzer [8] to
compute compatible pairs (x,) for the amalgams A; ;. In order to describe
the results of these computations we shall use the following convention:

The irreducible characters of H will be denoted by x1, x2,... according
to the ordering used in the character table of H. Similarly, the irreducible
characters of N; will be denoted by 1,19, ... and those of D will be denoted
by 51,52,....

LEMMA 5.4. The following hold:

(1) Ay has the following compatible pairs (x,v):
(a) (x4 + x5 + X6 + X11,%2 + Y8 + ¥20) of degree 28 with x|p =
01 + 02 + 6 + 67 + S18 + d22 + 26 + I36;
(b) (x1+ X4+ X5+ X6 + X11, V3 + s +120) of degree 29 with x|p =
201 + 03 + 06 + 07 + 18 + G2z + d26 + d36;
(¢) (X1 + X4+ X5+ X6+ Xx11,¥1 + Y2 + s + th20) of degree 29 with
X|p = 201+ 02 + 06 + 67 + 18 + 22 + 26 + I36-
(2) A11 has no compatible pairs (x, ) such that x is multiplicity free.
(3) Ai,2 has no compatible pairs (x, ) such that x is multiplicity free.
(4) Ai,3 has the following compatible pairs (x,v):
(a) (x5 +xs8+x11,%2 +22) of degree 22 with x|p = d2 + 616 + 621 +
026 + 0365
(b) (x1+ x5+ X8 + X11,¥3 + 22) of degree 23 with x|p = 61 + d2 +
016 + 021 + 26 + d36;
(c) (x19 + X4, ¥j +1b2g) of degree 45 with i € {22,23},j € {4,5} and
X|p = 613 + 032 + 640 + a5-
(5) Az, has the following compatible pairs (x,v):
(a) (x1+ X6+ X0+ X11,%4 +16) of degree 23 with x|p = 61 +d3 +
018 + 622 + 030 + d36;
(b) (x18 + Xi,®22) of degree 45 with i € {22,23} and x|p = 012 +
024 + 038 + 045.
(6) Asg,1 has no compatible pairs (x, ) such that x is multiplicity free.
(7) Az has no compatible pairs (x, ) such that x is multiplicity free.
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(8) Ag.3 has the compatible pairs (x,v¥) = (x4+ X14+ Xi» Y1+ %6 +119) of
degree b1 with ¢ € {22, 23} and X|D = 01+06+07+014+ 004 +040+0a5.

Furthermore, in cases (1), (4), (5) and (8) the compatible pairs presented
also include the smallest nontrivial compatible pairs.

REMARK 5.5. In each of the four cases of Lemma 5.4 in which there is no
compatible pair (, ) such that y is multiplicity free the smallest nontrivial
compatible pairs have degree 273 and the multiplicities that do occur are at
most 2; moreover, x|p has at least seven different irreducible constituents
with multiplicity 2.

Next we investigate finite completions of the amalgams A;; associated
with the compatible pairs (x, ) described in Lemma 5.4. Having decided
on the underlying finite field F' we proceed to construct the irreducible F'H-
modules and F' N;-modules corresponding to the irreducible constituents of y
and 1, respectively; this is done by standard techniques such as chopping up
permutation modules, tensor products, exterior powers or symmetric powers.
Taking appropriate direct sums we then construct the FH-module X and
the F'N;,-module Y corresponding to x and 1, respectively. Next, we have
to ensure that X|p =Y),, ;(p). Finally, we investigate the various amalgams
induced by X and Y inside the linear group GL(n, F'), where n = deg(x) =
deg(1)).

All this is an easy and straightforward task, in particular, as the embed-
dings v; ;(D) of D in N; are already known at this stage. The only limitating
factor may be the number of different amalgams induced by X and Y in
GL(n, F); of course, this number can be determined by Theorem 2.2 well
before the actual amalgamation is carried out.

REMARKS 5.6.

(1) Note that the smallest nontrivial irreducible representation of the group
GL(5,2) over a field of odd characteristic has dimension 29 and that this
representation arises as the heart of the permutation module on the cosets of a
maximal parabolic subgroup of index 31 over a field of characteristic 31. Since
we expect GL(5,2) to be a finite completion of one of the amalgams A, ; (j €
{0,1,2,3}) it is reasonable to investigate the completions of A, ; associated
with the compatible pairs given in Lemma 5.4 over the field GF(31), even if
the irreducible constituents can be realized over smaller fields.

(2) Clearly, 11 is the smallest prime not dividing |H| - |Nz|; furthermore, all
irreducible constituents of the compatible pairs of Aj ; given in Lemma 5.4
can be realized over the field GF(11). Hence, it is reasonable to study the
associated completions of A, ; over the field GF(11).

THEOREM b5.7.  The following hold:
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(1) The compatible pair (x5 xs+x11, V2 +122) of degree 22 of Ay 3 gives
rise to 30 different amalgams inside GL(22,31), all but two of which
generate the group SL(22,31); the two exceptions generate a subgroup
isomorphic to O~ (22,31).

(2) The compatible pair (x1+ X5+ X8+ X11, Y3 +122) of degree 23 of A1 3
gives rise to 30 different amalgams inside GL(23,31); 28 of these
amalgams generate SL(23,31), one generates the alternating group
Altay and one generates a simple group S1,3 of order 210.33.5.7.11-23
having H as an involution centralizer, i.e., S1 3= Moy.

(3) The compatible pair (x1 +Xs+Xo + X11, 1+ t16) of degree 23 of Az g
gives rise to 10 different amalgams inside GL(23,11). Eight of these
amalgams generate SL(23,11), one generates a group isomorphic to
0O(23,11) and one generates a simple group S of order 21033 .5
7-11-23 having H as an involution centralizer, i.e., So0 = May.

(4) Let i € {22,23}. Then the compatible pair (x4 + x14 + Xi, V1 + Ys +
P19) of degree 51 of Az s gives rise to 100 different amalgams inside
GL(51,11), all but one of which generate the group SL(51,11). The
remaining exceptional amalgam generates a simple group Sa 3 of order
210.33.52.73.17 having H as an involution centralizer, i.e., Sa 3 = He.

Proof. We have already outlined the general strategy how to construct the
finite completions associated with a given compatible pair. In particular,
Theorem 2.2 tells us how to get hold of the various isomorphism types inside
the ambient linear group. So all claims can easily be verified by computational
means. Note that for the identification of the alternating groups we use results
of [14]. The groups M4 and He can be identified using results in [5], [6] and
[13]. O

REMARK 5.8. By Theorem 2.2 the number of isomorphism types of finite
completions of A; o in GL(29,31) in cases (1b) and (1c) of Lemma 5.4 can be
estimated to be in the range of |GL(2,31)| = 892800 and |SL(2,31)| = 29760,
respectively. In particular, the first estimate explains why we did not consider
completions of A; o in the preceding theorem. Instead we shall refine the
constructive approach outlined so far.

In order to avoid having to consider too many isomorphism types of finite
completions of A; ; we have to modify the construction, and therefore recall
the following relevant standing hypothesis.

HyPOTHESIS 5.9. G is a finite group containing an involution z such that
Cg(z) = H and G = (H,N) with N = Ny = 26 : (Symy x L(3,2)) where H
and N are amalgamated over the subgroup D via the embedding v ; : D —
N.
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Next, recall that F; (i € {1,2}) is an elementary abelian normal subgroup
of H contained in D. Since z € E;, clearly C¢(E;) = Cy(E;) = E;. Moreover,
H/E; =23 : [(3,2) is a maximal subgroup of Aut(E;) = GL(4,2); therefore,
either Ng(E;) = H or Ng(E;) = 2% : GL(4,2). In view of this observation we
want to determine the group Ny (11 ;(E;)) for j € {0,1,2,3}. Before stating
the result we recall that in any case vy (D) = (a,b) < N = (a,b,d) with N
satisfying the presentation R(N7) given in Lemma 4.3.

LEMMA 5.10. The following hold:
(1) vi0(B1) = vi1(B1) # v1,2(E1) = v1,3(E1) with [Ny (v1,0(Er)) : D] =
3 and NN(VLQ(EI)) =D.
(2) I/17j(E2) = I/170(E2) fO’I‘] S {1,2,3} with ‘NN(V170(E2)) : D| =T and
NN(VL()(EQ)) = <a7b, d3> = 24 : 23 : Lg(?)

Proof. The claims can be verified by easy computations using the known
presentation for N. O

In view of this lemma and the preceding discussion the next result is im-
mediate.

COROLLARY 5.11.  Assume Hypothesis 5.9 and put H* := Ng(Es) as well
as D* :== Ny (E3) = H* N N. Then the following hold:

(1) G = (H,N) = (H*,N) where H* = (H,D*) = 2* : GL(4,2) and
D* = 2% : 23 : [(3,2) with Z(D*) = 1, i.e., D*/Ey is a mazimal
parabolic of Aut(Es) = GL(4,2) stabilizing a hyperplane of Es.

(2) Without loss of generality the group H* can be identified with the max-
imal parabolic subgroup of GL(5,2) generated by Hy and the element

110 0 O
1 11 00
e=d>=[1 010 0
00010
000 01
Hence H* = (a,b,c,e) and D* = (D,e) = {(a,b,e).

6. Play it again

In view of the discussion in the preceding section we have to subject
the triple (H*, D*, N1) to the same procedure as we did with the triples
(H,D,N;), i € {1,2}. So the first aim is to find representatives of the different
isomorphism types of amalgams associated with (H*, D*, Ny).

LEMMA 6.1. Define a set R(D*) of relations as follows:

a®, b2, a5, (a-0)t, (a-bH)% (a-b7%-a-b)? (a-b*-a"?-b)?,
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a2 a2 bat b2 a b @2 bad? b a2 ba2 b
¢ (@ tboe b2, (aeloaml bTh)2,
e2-a-btea-eb e, ateb-a?e-b-etb
Then the following hold:
(1) R(D*) is a set of defining relations for D*.
(2) D* has exactly two classes of triples satisfying the defining relations

R(D*); representatives of these classes are (a,b,e) and (a,b], ey) with
2 4
e == (e2)V7e.

Proof. Easy computational exercise. O

LEMMA 6.2. There are exactly two different isomorphism classes of amal-
gams of type (H*,D*,N1); these classes are represented by Aj = (D* <
H*,v; : D* — Np) with j € {0,1}, where the embeddings v; of D* into Ny
are defined as follows:

vo : (a,b,e) = (a,b,e), v1:(a,be)— (a, bI,el).

Proof. First of all note that Aut(H*) = H* and Ny« (D*) = D*. Moreover,
vj(D*) = (a,b,e) is a maximal, nonnormal subgroup of index 3 in Ny, and
thus is self-normalizing in N7. An easy application of Theorem 2.1 together
with the results in Lemma 4.3 and Lemma 6.1 now yields the claims. O

LEMMA 6.3. The irreducible complex characters of the groups D* and H*
are as given in the tables (V) and (VI) in the appendiz.

Proof. Similar as for Lemma 5.1. O

REMARK 6.4. The remarks made in 5.2 apply equally well to the groups
D* and H*.

LEMMA 6.5. Let F§ denote the fusion pattern of D* in H*, where the
numbering of classes refers to the character tables mentioned in 6.3. Similarly,
let FY; denote the fusion pattern of v;(D*) in Ny for j € {0,1}. Then the
following hold:

Fy =11,2,2,3,4,3,4,5,4,7,8,9,8,8,11,9, 10, 10,
12,11,12,12,13,15, 15, 16, 18, 19, 20, 21, 22, 23].
Fio=11,2,3,2,4,5,6,6,7,9,11,12,13,14,12, 16, 14,
15,17,20, 18,19, 18, 21, 23, 21, 25, 26, 27, 28, 31, 30].
Fiy=1[1,2,3,2,4,6,5,6,7,9,11,12,13,14, 14, 16, 12,
18,17,19, 15,20, 18, 21, 23, 21, 25, 26, 27, 28, 31, 30].
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Proof. Again, straightforward calculations yield the claims. O

Now we are in a position to determine compatible pairs for Aj and A7. We
shall use the same convention as for Lemma 5.4, only with D and H replaced
by D* and H*, respectively.

LEMMA 6.6. The following hold:
(1) A§ has the following compatible pairs (x,v) of degree 29:
(a) (X34 X4, Y1 42 +1g +120) with x|p+ = 61 + 02 + g + 12 + da0;
(b) (X3 + X4, %3 + g +120) with X|p- = 61 + b2 + dg + 012 + d20.
(2) A7 has the following compatible pairs (x,v):
(a) (x2 + x4, %2 + 22) of degree 22 with X|p+ = 2 + d14 + d20;
(b) (Xl +x2+X4, Y3+122) of degree 23 with X|p* = 01+02+0d14+d29.

Proof. By computational means, similar as for Lemma 5.4. (]

Finally we are ready to investigate the finite completions of A§ and Aj
arising from the compatible pairs in the preceding lemma.

THEOREM 6.7. The following hold:

(1) The compatible pair (xs + X4, %1 + P2 + s + 20) of degree 29 of A
gives rise to just one amalgam inside GL(29,31) and this generates a
subgroup isomorphic to Altsg.

(2) The compatible pair (xs + Xa, 3 + s + 20) of degree 29 of Af gives
rise to 30 different amalgams inside GL(29,31); 28 of these amalgams
generate SL(29,31), one generates the alternating group Altz; and
one generates a simple subgroup Sg of order 21°-32.5.7-31 isomorphic
to GL(5,2).

(3) The compatible pair (x2 + Xa, V2 + Va2) of degree 22 of AT gives rise
to just one amalgam inside GL(22,31) and this generates a subgroup
isomorphic to O~ (22,31).

(4) The compatible pair (x1 + X2 + X4, V3 + 22) of degree 23 of AT gives
rise to just one amalgam inside GL(23,31) and this generates a simple
group ST isomorphic to May.

Proof. By computational means, similar as for Theorem 5.7. (]

REMARK 6.8. Occasionally—maybe for computational reasons—there is a
need to present a matrix group as a group of permutations. In case this should
happen for X € {S13,520,523,53,57} we give generators for a maximal
subgroup U of smallest index so that X can be represented via the action on
the cosets of U.

Recall that H = (a,b,c) = 2176 : [(3,2), Ny = (a,b,d) = 2% : (Sym, x
L(3,2)), No = (a,b, f) = 26 : 3Symg and H* = (a,b,c,e) = 2* : GL(4,2).
The appropriate maximal subgroup U of X can then be generated as follows:
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(1) In case (2) of Theorem 5.7 with S1 3 = (a,b,¢,d) = Moy we have
U := (ab, cd) = Mos.

(2) In case (3) of Theorem 5.7 with So 9 = (a,b,c, f) = May we have
U := (ab? B f) = Mas.

(3) In case (4) of Theorem 5.7 with Sy 3 = (a,b,c, f) = He we have
U := ((a®b*)3(a®b?)?(ab)?(ba)?, cf4) = Sp(4,4) : 2.

(4) In case (2) of Theorem 6.7 with S§ = (a,b,c,e,d) = (a,b,c,d) =
GL(5,2) we have U := H*.

(5) In case (4) of Theorem 6.7 with ST = {(a,b,¢,e,d) = {(a,b,¢,d) = Moy
we have U := (ab, cd) = Mays.

Using these facts it is now an easy exercise to work out the character
tables for the groups GL(5,2), Moy and He by means of standard procedures
available in GAP [11] or MAGMA [2] and thereby verify the tables given in
[3].

The interested reader can find generating matrices for the groups My, and
He obtained by means of the procedure discussed in this paper at the ad-
dresses http://www.exp-math.uni-essen.de/"lempken/M24mats and http:
//www.exp-math.uni-essen.de/"lempken/HEmats, respectively.

We conclude this paper with a few observations.

REMARKS 6.9.

(1) In Theorems 5.7 and 6.7 we have encountered all the groups to be ex-
pected in view of Theorem 1.2. So there is no need to investigate further
compatible pairs and associated finite completions for the amalgams 4; ; and
Az

(2) We have seen that the nontrivial compatible pair of smallest degree does
not necessarily give rise to at least one of the groups implicitly given by the
initial prescription of the involution centralizer. So in general one should have
a fairly good idea in which dimensions to hunt for the groups in question.

(3) We have seen that it pays to switch from a given triple (H, D, N) to
a ‘larger’ triple (H*, D*, N) in order to reduce the number of isomorphism
types of amalgams as well as the number of isomorphism types of associated
finite completions to be considered. This appears to be a natural process,
in particular, if H* can be chosen to be another (maybe maximal) 2-local
containing H properly.

Clearly, a similar effect may be achieved if the group N is replaced by some
suitable overgroup N*.
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. —1-1-1

1-1-1-1

1

1

1-1-1-1 1-1 1-1-1-1 1-1

1

-1

-1-1-1-1

1-1-1-1 1

1-1

1-1-1
1-1-1-1

1-1-1-1

1-1-1-1

1

1-1

1-1

1

1-3

1
1-1-1-1-3-1-1

1-1-1

1

1

1

1

1
1
1-1

1-1-1-1-1-1-1-1-1

1-1 1 1-1

1

1-1-1

1-1 1

1-1

3 -1

1-1-1-1

1-1

1-1

1-1

1

1-1-1
1-1-1

2 2 2-=-2
2-2-2-2

.—2 -2 -2

2-2-2

.—1-1
. =2
. =2

X1

X2

X3

X4

X5

X6

X7

X8

X9

x10|-1-1-1-1-1-1-1-1-1

x11|—1-1-1-1

x12|—1

x13|—1 -1 -1 -1

Xx14|—1

xi5|—1-1-1-1-1-1-1-1

x16|—1

xi7|—1-1-1-1-1-1

x18|—1

X19

X20

X21

X22

X23

X24

xo51-2 2 2 2

X31|—2

X32|—2
X33

X34

X35

X36

X37
X38
X39
X40
X41
X42
X43
X44
X45

TABLE I. Character Table of D (continued)
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10

10

2a 2b 2c 2d 2e 2f 29 2h 3a 4a 4b 4c 4d 4de 4f 4g

la

-1 -1 -1
-1 -1 -1

3 -1 -1 -1 -1 3 -1 -1
3 -1 -1 3 -1 -1

3
3

-1 -1

3 -1 -1 -1

3 -1 3 1 -1 -1
-1
-1 -1
-1

7 -1 -1 3

7

3 -1 -1

7 -1 -1 -1 -1 -1 -1

-1

1 -1 -1 -1
-1

1

3

7 -1 -1

7

7
-1

-1
-1

3 -1

-1

3 -1

7 -1 -1 -1

7
7

3 -1 3 -1 -1 -1 3

-1 -1 -1

7 -1

2 -2 -2 2

2 2 2 -1 -2 2
2 2 -1 2

2

2
2

14 14 -2 -2

-2

14 =2 14 -2

21 -3 -3

1

1

-3 -3 -3 -3

5

1 -3 -1

1 1

-3 =3
-3 =3

1
1

1
1
5 -3 -3

5
5

21 21 -3 -3

-3

1
1

21 -3 21 -3
21 -3 -3
21 -3 -3
21 -3 -3

1 -3 -3

5

1 -3 -1

-3

1
-3

21 -3 21 -3 -3 -3 -3

21 21 -3 -3 -3 -3

1

21

4 -4 —4

4

28 —4 —4 —4

4

28 —4 —4 —4 -4 -4

28

2

-6 -2

42 —6 -6 10 -2 -2 —2 -2

56 —8 —8 -8

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

x12 | 14

X13 | 14

X14 |21

Xx15 |21

Xx16 | 21

x17 | 21

x18 |21

X19 |21

Xx20 | 21

X21

X22 (24 —24

X23 |24 —24

X24 | 28

X25

X26 | 42

xo7 |48 —48

x28 | 56

x20 | 56 —56

x30 |64 —64

TABLE II. Character Table of H. Here A = —1 — b7.



WOLFGANG LEMPKEN

5 5 4 4 3 2 2 1 1 4 2 1 1
1 . . . 1 . .
. . . . . 1 1 . . 1 1
4h 4i 45 4k 6a 6b 6¢c Ta Tb 8a 12a 1l4a 14b
X1 11 1 1 1 1 1 1 1 1 1 1 1
X2 1 -1 1 1 . . . A JA 1 . A /A
X3 1 -1 1 1 . . . /A A 1 . /A A
X4 .2 . . . . | . R e |
X5 1-1-1 1 1 -1 1 -1 -1
X6 1 -1 1-1 1 1-1 -1 -1
x7 |[-1 -1 -1 -1 1 1 1 . .—1 1
x8 |[-1 -1 -1 1 1 1 -1 . o1 —1
x9o |[-1 -1 1 -1 1 -1 1 . o1 -1 .
X10 . . . -1 -1 -1 1 1 .1 1 1
x11| 2 -2 1 1 -1 -1
X12 -2 -1 1 -1 1
X13 -2 -1 -1 1 . 1
X14 1 1 -1 -1 1
xi5|—1 1 1 —1 1
xie|—1 1 —1 1 1
X17 1 1 -1 -1 1
x18 | —1 1 1 1 —1
x19|—1 1 1 1 -1
x| 1 1 1 —1 -1
x21| 1 1 -1 1 . . . . — . . .
X2 | 2 . . . . . . A JA . . —A —/A
x23| 2 . . . . JA A . . —=/A -A
X24 . . . . 1 -1 —1 . . . 1
X25 . . . .01 -1 -1 . . . 1
X26 .—2 . . . . .
X27 . . . . . . | . . 1 1
X28 . . . -1 1 1 . . .1
X209 | —2 . . . =2 . . . .
X30 . . . .2 o101 . R e |

TABLE II. Character Table of H (continued). Here A = —1 — b7.
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10

10

2b 2c 2d 2 2f 3a 3b 3c 4a 4b 4c 4d 4de Af

2a

la

-1
-1

1
1
3 -1 -1 -1

=3 -1

3 -1 -1
3 -1 -1

-3
-3

-3 -1

-1
-1

1
1

3
3

3 -1 -1 -1

3
3

3 -1 -1 —-1

3 -1 -1 —-1

. =3
. =3

6 —2 -2
6 —2 -2

1 1 7-1-1-1-1 -1
1 -7 -1
8§ -1 —1

7

7 -1 -1 -1
7 -1

7
-7

-1

1 -1

-1

8

8 -1 -1 -8

12

12
14
16

12
14
16
21

.—2 =2

. =2

.=

14 -2 -2
16

-7 =3

. =8 =2

-3 -3
-3

1
. —1

1

9

5

21

1 -3 -3 -3

1 -1 -3 -3

5
5
6

-7 -3 =3

5
5

21

-1

-1

7 -3 =3
10 —14 —6
10

—6
—6

21

2 -2 -2 =2 . =2
.—2 =2

. =3

6
6

42

—2

2

-3

14 -6

42

6 —2 —4

2

42

2 —4 =2

3 -1 -1

42

-3

3

3 =5 —1

15 —21 -9
15

63
63
63
63

1 3 -3 -3

=3 -1

-5

3

21 -9

3
21 -9 -9 -1 -3

15 =21 -9 -9 -1

15

3 -3 -1 3

. =3

4 12 —4

84 —12

. -2 -4

Here A = —1 — b7 and

2

6
TABLE III. Character Table of Nj.

B=-1-1T.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

x32|126 —18

x33|126 —18




386 WOLFGANG LEMPKEN
5 5 5 5 3 3 2 2 1 1 4 2 2 1 1
1 1 1 1 1 1 1 1 . . 1 1
. . . . 1 1 . . . 1 1 1 1
49 4h 4i 4j 6a 6b 6¢c 6d Ta Tb 8a 12a 12b 14a 14b 2la 21b
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 |—1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1
X3 .2 . .2 -1 —1 2 2 . -1 . .o -1 -1
xa | 1 1 -1 -1 -1 A JA -1 1 —/A —A JA A
xs | 1 1 -1 —1 -1 JA A —1 1 —A —-/JA A JA
x6 |—-1 1 1 1 -1 A JA 1 1 /A A JA A
xr |-1 1 1 1 -1 JA A 1 1 A JA A /A
X8 2 2 -1 -1 -1 -1 -1 -1
X9 |—2 . 2 -1 -1 . 1 1 -1 -1
X10 2 1 B /B -1 —JA —A
X11 L2 . o1 . . /B B . .o—1 —-A —/A
x12|—1 -1 -1 —1 1 -1 1 1 —1 1 -1
X13 1 -1 1 1 1 -1 -1 1 . . 1 -1 -1 . .
X14 —1 -1 -1 1 1 —1 1 1 1 1
X15 —1 . 1 -1 1 1 1 -1 -1 1 1
X16 ) . =2 . =2 -2 ) 1 1
X17 -2 2 1 -1 .. 1 . .
X18 . . . . =2 . 1 2 2 . . -1 -1
X19 1 -1 -1 -1 -1 —1 1 1
x20|—-1 -1 1 1 -1 1 -1 -1
x21| 1 1 1 1 -1 -1 -1 1
x22|—-1 1 -1 -1 -1 1 1 -1
x23| 2 1 1 -1
X24 | —2 .1 -1 . 1
X25 2 =2 -1
X26 . =2 2 —1 .
xe7|—1 1 1 1 -1
X28 1 1 -1 -1 1
x29|—1 —1 —1 —1 1
xs0| 1 -1 1 1 ) -1
X31 . 1
X32 -2 2
X33 2 =2

TABLE III. Character Table of N; (continued). Here A =
—1—0b7and B=—-1—17.




387

2-LOCAL AMALGAMS FOR THE SIMPLE GROUPS GL(5,2), M2s AND He
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TABLE IV. Character Table of Ny. Here A = —1 — bl15.
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8a 10a 12a 12b 12c¢ 15a 15b

6d 6e

47 5a 6a 6b 6¢

4g 4h 4

-1 -1 -1 1 -1 -1

1

-1

-1

-1

-1
-1
-1
-1

-3 -1

-1

-1

1 -1 -1

2

1
-1

3
1
-1

-1

4 A
-1 JA A

1 -1

1

-1

-1
-1

-1

-1

1
1

-1

-1

-1 -1

1

3 -1

-2

-1

-1

-2

-2

3 -1

-1
-1

1

2

-1

-1
-1

-1

-1

-1

-1
-1

-1
-1

1
-1

1

-1

—2

-1 -1 -1

-1

-1

TaBLE IV. Character Table of Ny (continued).

—1 —b15.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20
X21

X22

X23

X24
X25
X26
X27
X28

X29
X30
X31

X33

Here A
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10

10

2d 2e 2f 2g 2h 3a 4a 4b 4c 4d 4de Af

2a 2b 2c

la

1 -1 -1
1 -1 -1

-3 -1
3 -1 -1-1 -1 -1

1
1

3 -1 -1 -1

3
3
3
3

-3
-3

-3 -1

-1 -1
3 -1 -1 -1 -1
3 -1 -1 -1 -1

3 -1

3 -1 -1 -1 -1 -1

1 -1 -1

7 -1 -1 -1 -1 -1

7-1-1-1 1 1 =7 -1
7 -1 -1-1-1 1
1

7
7
-1 -1

-7

-1
3 -1 -1
-1 -1 -3

3

1 -1 -3

7 =7 3 3 -1 -3
3

7

3
1

3 1 -1 —-1

-1

3

-1 -1
-1

7
-7

3

-1 -1 -1

7

7

3

3 -1 -1 -1

-1

1
-1 =8

3

-1 -1 -1 -1

7

2 -2 =2

2 =2

2 -2 -1 2

2
2
6

2
2

-2 =2

14 —-14
14
-2
-2

2 -1 =2

-2 =2

14

6 —2 =2

-2 =2

. =2
3 -3 -1

1 -3 -1
1

-3 -3 -3 -3
-3 -3 -3 -3

21 =21 -3 =3 1
21

21

-3 -3

21

21 -21

21
—4
—6
—6
—6
—6
—6
—6

-3 1 -3 -3

-3

1

21

4

12 —4

28

18 -6 -6 2 -2
2 —6 -2
-2

18 —6

4 -2 =2

2 -4 -2 =2

6 -2 —4

2

6 -2 -2 —4

6 —2 -2

2
2

—6
—6
—12

2

2 —4 =2

4

Here A = —1 — b7.

4

4 —4 —4

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

x17 | 14

X1s | 14

X19 | 14

Xx20 | 14

X21

x22 | 21

x23 | 21

X24 | 21

X25

X26 | 42

X27 | 42

x28 | 42

X29 | 42

X30 | 42

X31 | 42

x32 |84 —12

TABLE V. Character Table of D*.
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14b

14a

7 8a 12a

47 4k 4l 4m 6a 6b 6¢ Ta

4g 4h 4

1 -1 -1 -
A JA -1 —A —/A
JA A -1 —/A

-1 -1

1

—A

JA

A JA
JA A
—1
-1

JA

1

-1
-1

-1
-1

-1
-1

-1
-1

-1 -1 -1
-1 -1

-1

-1

1 -1

1

-1

-1

-1
-1
-1

-1 -1

1

-1 -1 -1 -1

-1

-1 -1

-1

-2
-2
—2

-1

-1

-2

-1 -1
-1

1
1

-1 -1 -1
-1 -1

1
-1

-1
-1

1

1

—2

—2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20
X21

X22

X23

X24
X25
X26

X27

X28

X29

X30
X31

X32

Here A

TABLE V. Character Table of D* (continued).

—1-07.
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10

10

2b 2¢ 2d 3a 3b 4a 4b 4c 4d 4e 4f bBa 6a 6b

2a

la

1 -1 3 -1 -1 -1

3

-1 -1

7
14

14
15
20
21

3 -1 -1

3 -1 -1

20
21

-3 -3

21 -3 -3 -3
-3

21

21 -3 -3

21

28 —4 —4 4
35

28
35

3 =5 -1 -1 -1 -1

. =3 =3
. =3 =3

-3 -3 -3
-3 -3 -3

45
-3
-3

45

45

45

5
5

-3
-3
56
64
70

45

45

1 -1 -1
=1 =2

8

—4 -1

56
64
70

4 -2

-5

2 -2 -2 =2

1 -2

2

-2 =2
18

2

2

. —6 =2

—6
-7
-7
-7
-8

90

-1 -1

17 -7 =3

=1 -1

1 -3 -3

. =3 -8

. =3

-7

105

1 -1

2 -2 -2 =2

6

10 -6

3 =5 -9

3 -1 -1 -1

Here A = —1 — b7 and

-1

3

3

3
TABLE VI. Character Table of H*.

B =-1-1015.

X1

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

Xx19 | 105
x20 | 105

X21

Xx22 | 120

x23 210 —14

x24 | 315 —21

xa5 315 —21 —21




WOLFGANG LEMPKEN

2 1 1 4 2 1 1
1 1
. 1 1
. 1 1 . . 1 1 . .
6¢c Ta 7b 8a 12a 14a 14b 15a 15b
X1 1 1 1 1 1 1 1 1 1
X2 . 1 -1 -1 -1
x3 |—1 . -1 -1
X4 1 1 -1 -1 -1 -1
X5 1 -1 -1 1 -1 -1
x6 | —2 -1 ) . .11
X7 1 -1 . . . B /B
xs | 1 -1 . . . /B B
X9 1 .- 1 1
xio| 1 . -1
X11 . A JA 1 . A /A
xi2| - /A A 1 . /A A
x| - A /A -1 . —A —/A
X14 . JA A -1 . —/A —-A
X15 . -1 1 1
X16 1 1 1 1 -1 —1
x17 | —1 . . . 1 . .
X18 -1 -1 . . 1 1
x| - . . 1 1
X20 . . . 1 -1
X21 . . .—1 1 . .
x2| . 1 1 . 1 -1 -1
X23 . . . .o—1
xzal| - . . -1
xes| - . .01

TABLE VI. Character Table of H* (continued). Here A =
—1—-b7and B=-1-1015
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