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CARLESON POTENTIALS AND THE REPRODUCING
KERNEL THESIS FOR EMBEDDING THEOREMS

STEFANIE PETERMICHL, SERGEI TREIL, AND BRETT D. WICK

Abstract. In this note we present a new proof of the Carleson Embed-
ding Theorem on the unit disc and unit ball in Cn. The only technical
tool used in the proof of this fact is Green’s formula. The starting point
is that every Carleson measure gives rise to a bounded subharmonic
function. Using this function we construct a new related Carleson mea-
sure that allows for a simple embedding. In the case of the disc D this
gives the best known constant, with the previous best given by N. Nikol-
skii.

0. Introduction

The famous Carleson Embedding Theorem for the unit disc states, in par-
ticular, that the embedding of the Hardy space H2(D) into a space L2(µ)
can be checked on reproducing kernels of the Hardy space. Namely, it can be
stated as follows:

Theorem 0.1 (Carleson Embedding Theorem). Let µ be a non-negative
measure in D. Then the following are equivalent:

(i) The Hardy space H2(D) is embedded in L2(µ), i.e.,∫
D
|f(z)|2dµ(z) ≤ A(µ)2‖f‖2H2(D), ∀f ∈ H2(D).

(ii)
C(µ)2 := sup

z∈D
‖kz‖2L2(µ) = sup

z∈D
‖Pz‖L1(µ) < ∞,

where

kz(ξ) =
(1− |z|2)1/2

1− ξz

is the normalized reproducing kernel for the Hardy space H2(D).
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(iii)

I(µ) := sup
{

1
r
µ(D ∩Q(ξ, r)) : r > 0, ξ ∈ T

}
< ∞,

where Q(ξ, r) is a ball in C with center ξ on T and radius r.
Moreover, the best possible constant A(µ)2 in (i), the constants C(µ)2, and
I(µ) are equivalent in the sense of two-sided estimates.

Property (iii) is typically taken as the definition of a Carleson measure
on D. Condition (ii) can be considered as a conformally invariant definition
of a Carleson measure. The equivalence (ii) ⇐⇒ (iii) above is a simple and
standard fact that can be obtained by integrating |kz(·)|2 using its distribution
function. Condition (ii) means that we check the embedding only on the
reproducing kernels and not on all H2(D) functions. Thus the implication
(i) =⇒ (ii), as well as the estimate C(µ) ≤ A are trivial, so the only non-
trivial estimate in this theorem is (ii) =⇒ (i).

The “reproducing kernel thesis” is the idea that it is sufficient to check
the boundedness of an operator only on reproducing kernels. The Carleson
Embedding Theorem is an example of this.

In this note we present a new simple proof of the implication (ii) =⇒ (i)
which is quite different from others in the literature. This proof also gives
the best known estimate of the norm of the embedding operator. Namely, we
present a simple proof of the following theorem:

Theorem 0.2. Suppose

sup
λ∈supp µ

∫
D
|kλ(z)|2dµ(z) =: A < ∞.

Then ∫
D
|f(z)|2dµ(z) ≤ 2eA‖f‖2H2(D), ∀f ∈ H2.

Recall that the Hardy space can be defined as the closure of analytic poly-
nomials in L2(T,m), where m is the normalized (m(T) = 1) Lebesgue measure
on T = ∂D with the norm inherited from L2(T,m). The elements of H2(D)
admit a natural analytic continuation inside the unit disc D (see [4]), so the
integral

∫
D |f(z)|2dµ(z) in the above theorem is defined.

Note that the theorem says that it is sufficient to check the embedding
not on all reproducing kernels kλ, but only on kλ, λ ∈ suppµ. This fact was
known before, cf. [9, p. 151], but the constant 2e is the best known to date.
In [9, p. 151] the constant 32 in the reproducing kernel thesis was obtained,
and later in [8, p. 105] the constant was improved to 16.

The proof we are going to present is a simple “conformally invariant” proof
with the main tool used being Green’s formula. This proof generalizes easily
to the unit ball in Cn.



CARELSON POTENTIALS AND EMBEDDING THEOREMS 1251

Recall that the Hardy space H2(Bn) on the unit ball in Cn can be defined
as the closure of polynomials in L2(S, σ), where σ is the Lebesgue measure
on the boundary Sn = ∂Bn (see [6] or [10] for other equivalent definitions, as
well as for more information about this space).

We obtain the following “reproducing kernel thesis” for H2(Bn).

Theorem 0.3. Suppose

sup
λ∈supp µ

∫
Bn

|kλ(z)|2dµ(z) = C,

where kλ, λ ∈ Bn, is the normalized reproducing kernel of H2(Bn). Then∫
Bn

|f(z)|2dµ(z) ≤ e
(2n)!
(n!)2

C‖f‖2H2(Bn), ∀f ∈ H2(Bn).

Remark 0.4. The statement of the theorem does not depend on the choice
of normalization of the measure σ because if one replaces σ by cσ one would
need to multiply the reproducing kernel by c−1/2. Usually normalization is
chosen by assuming that σ(S) = 1 and in this case the reproducing kernel kλ

is given by (see [10])

kλ(z) =
(1− |λ|2)n/2

(1− 〈z, λ〉)n
,

with 〈·, ·〉 denoting the standard Hermitian inner product in Cn.

Remark 0.5. The theorem is well known, and is usually proved by real
variable methods. A new part here would be the estimate and the fact that
it is sufficient to check the embedding only on kλ, λ ∈ suppµ. We do not see
how to immediately get the latter from known results, short of repeating the
proof of the Carleson Embedding Theorem given in [8] in the context of the
unit ball.

The authors would like to thank Alexander Volberg and Dechao Zheng for
useful discussions.

Throughout the paper the notation := means equal by definition, and A .
B means that there exists an absolute positive constant C such that A ≤ CB.
The expression A ≈ B means that A . B and B . A both hold.

1. The embedding theorem for the unit disc D

1.1. Uchiyama’s Lemma. We need the following Lemma, a version of
which was probably first proved by Uchiyama.

Lemma 1.1. Suppose that ϕ ≤ 0 is a subharmonic function. Then

dν(z) :=
1
2π

eϕ∆ϕ(z) log
1
|z|

dA(z)
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is a Carleson measure and the embedding H2(D) ⊂ L2(ν) is a contraction.
More precisely, for any f ∈ H2(D) we have∫

D
|f(z)|2dν(z) ≤ ‖f‖2H2(D).

Proof. To prove this lemma we will simply use Green’s Formula applied to
a particular function. First, recall that Green’s Formula for a function u says

1
2π

∫
D

∆u(z) log
1
|z|

dA(z) =
∫

T
u(ξ)dm(ξ)− u(0),

where m is the normalized (m(T) = 1) Lebesgue measure on the unit circle
T = ∂D.

We now let u = eϕ|f |2. Let us compute the Laplacian of this function.
Recalling the definition of ∂- and ∂̄-derivatives,

∂f =
1
2

(
∂f

∂x
− i

∂f

∂y

)
, ∂̄f =

1
2

(
∂f

∂x
+ i

∂f

∂y

)
and the fact that ∆ = 4∂∂̄ we get

(1.1) ∆(eϕ|f |2) = eϕ(∆ϕ|f |2 + 4|(∂ϕf + ∂f)|2) ≥ eϕ∆ϕ|f |2.

Applying the information of ϕ we have the right hand side of Green’s Formula
giving ∫

T
eϕ(ξ)|f(ξ)|2dm(ξ)− eϕ(0)|f(0)|2 ≤

∫
T
|f(ξ)|2dm(ξ).

On the other hand, we have

1
2π

∫
D

∆(eϕ(z)|f(z)|2) log
1
|z|

dA(z) ≥ 1
2π

∫
D

eϕ(z)∆ϕ(z)|f(z)|2 log
1
|z|

dA(z).

Combining things we find that

1
2π

∫
D

eϕ(z)∆ϕ(z)|f(z)|2 log
1
|z|

dA(z) ≤
∫

T
|f(ξ)|2dm(ξ),

which gives the Lemma and shows that eϕ(z)∆ϕ(z) log 1
|z| dA(z) is a Carleson

measure on D. �

Corollary 1.2. If ϕ is bounded (and we still assume that ϕ ≤ 0), then

dν(z) :=
1
2π

∆ϕ(z) log
1
|z|

dA(z)

is a Carleson measure and for any f ∈ H2(D) we have

1
2π

∫
D
|f(z)|2∆ϕ(z) log

1
|z|

dA(z) ≤ e‖ϕ‖∞‖f‖2H2(D).
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Proof. Since ϕ ≥ −r := −‖ϕ‖∞, Uchiyama’s Lemma (Lemma 1.1) implies
that

e−r

∫
D
|f(z)|2dν ≤ ‖f‖2H2(D).

Replacing ϕ by tϕ, t > 0, we get

te−tr

∫
D
|f(z)|2dν ≤ ‖f‖2H2(D).

The function te−tr attains its maximum at t = 1/r = 1/‖ϕ‖∞. Plugging in
this value of t we get the desired estimate. �

1.2. Carleson potentials and the proof of Theorem 0.2. Suppose
the measure µ satisfies the assumption of Theorem 0.2. By homogeneity we
can assume without loss of generality that the constant C is 1.

Define the Carleson potential

ϕ(z) := −
∫

D
|kz(λ)|2dµ(λ) = −

∫
D
Pz(λ)dµ(λ),

where kz is the (normalized) reproducing kernel and Pz(λ) = |kz(λ)|2 is the
Poisson kernel at z. Then −1 ≤ ϕ(z) ≤ 0 for z ∈ suppµ.

We next compute the Laplacian of the function ϕ(z). Using the fact that
for an analytic function f we have ∆|f |2 = ∂∂̄|f |2 = 4|f ′|2 we get

∆zPz(λ) = 4
|λ|2 − 1
|1− λz|4

,

(here ∆z stands for the Laplacian in the variable z). This clearly implies that
ϕ is subharmonic and that

∆ϕ(z) = 4
∫

D

1− |λ|2

|1− λz|4
dµ(λ).

Applying Uchiyama’s Lemma (Lemma 1.1) we get∫
D
|f(z)|2dν(z) ≤ ‖f‖2H2(D),

with
dν(z) := eϕ(z)∆ϕ(z) log

1
|z|

dA(z).

We will now prove the estimate

(1.2)
∫

D
|f(λ)|2dµ(λ) ≤ 2e

∫
D
|f(z)|2dν(z),

which will immediately imply the theorem.
First note that∫

D
|f(z)|2dν(z) =

4
2π

∫
D

∫
D
|f(z)|2eϕ(z) 1− |λ|2

|1− λz|4
log

1
|z|

dA(z)dµ(λ).
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Using the estimate 1
2 (1− |z|2) ≤ log 1

|z| we have∫
D
|f(z)|2dν(z) ≥ 1

π

∫
D

∫
D
|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)

|1− λz|4
dA(z)dµ(λ).

Remark 1.3. If we did not care about the constant, then Theorem 0.2
would be proved. Here is why. In the disc centered at λ of radius δ

10 > 0,
where δ = dist(λ, T), call it D(λ, δ), we have that

1− |λ|2

|1− λz|4
(1− |z|2) ≈ 1

δ2
.

Using the subharmonicity of eϕ|f |2 (see (1.1)) and the trivial fact that the
volume of D(λ, δ) ≈ δ2 we get

eϕ(λ)|f(λ)|2 .
∫

D(λ,δ)

eϕ(z)|f(z)|2 (1− |λ|2)(1− |z|2)
|1− λz|4

dA(z).

Increasing the domain of integration to the whole disc D clearly does not spoil
the inequality, and integrating both sides with respect to dµ(λ) we obtain∫

D
eϕ(λ)|f(λ)|2dµ(λ) .

∫
D
|f(z)|2dν(z) . ‖f‖2H2(D),

which proves the theorem (without constants).

However, since we are after the constants, here is how to obtain the sharper
estimate. We focus on the inner integral and will prove the inequality

(1.3)
1
π

∫
D
|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)

|1− λz|4
dA(z)

≥ 1
2
eϕ(λ)|f(λ)|2, ∀λ ∈ supp µ,

which after integration with respect to dµ(λ) gives (1.2).
Let w = bλ(z) := λ−z

1−λz
denote a conformal change of variables (note that

z = bλ(w)). A simple computation shows that

dA(w) =
(

1− |λ|2

|1− λz|2

)2

dA(z).

If we let g̃(w) := g ◦ bλ(w), then the above integral can be recognized as

1
π

∫
D
|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)

|1− λz|4
dA(z)

=
1
π

∫
D

eϕ̃(w)|f̃(w)|2 1− |w|2

|1− λw|2
dA(w).
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In this reduction we have used the algebraic identity that for bλ defined above,

1− |z|2 =
(1− |λ|2)(1− |w|2)

|1− λw|2
.

Continuing the estimate we have

1
π

∫
D

eϕ̃(w)|f̃(w)|2 1− |w|2

|1− λw|2
dA(w) =

1
π

∫
D

eϕ̃(w)

∣∣∣∣∣ f̃(w)
1− λw

∣∣∣∣∣
2

(1− |w|2) dA(w).

The function f̃(w)

1−λw
is analytic and ϕ̃ is subharmonic, so (see (1.1)) the function

u(w) = eϕ̃(w)
∣∣∣ f̃(w)

1−λw

∣∣∣2 is subharmonic.
Integrating in polar coordinates and using the mean value property for

subharmonic functions we get∫
D

u(w)(1− |w|2)dA(w) =
∫ 1

0

(1− r2)r
∫ 2π

0

u(rθ)dθdr

≥ 2πu(0)
∫ 1

0

(1− r2)rdr =
π

2
u(0).

Gathering all together we find

1
π

∫
D

eϕ̃(w)|f̃(w)|2 1− |w|2

|1− λw|2
dA(w) ≥ 1

2
eϕ̃(0)|f̃(0)|2 =

1
2
eϕ(λ)|f(λ)|2,

which is equivalent to (1.3).
This finally shows that for a Carleson measure µ on D we have∫

D
|f(z)|2dµ(z) ≤ 2e‖ϕ‖∞‖f‖2H2(D) = 2e‖µ‖C‖f‖2H2(D),

proving Theorem 0.2 for the disc D. �

We should also say that the constant 2e is the best known constant obtained
for the norm of the embedding operator. N. Nikolskii has a different proof
of the Carleson Embedding Theorem in which the constant obtained is 32.
See either [8] or [9] for the proof. We further conjecture that the constant e
is sharp in Uchiyama’s Lemma (Lemma 1.1) and the constant 2e is sharp in
Theorem 0.2.

We will use the proof in the disc as motivation for the appropriate proof
on the unit ball in Cn.

2. The embedding theorem for the unit ball Bn

The proof of Theorem 0.3 is very similar to the one given for the case of the
disc D. The essential difference is that one must use the invariant Laplacian
for the unit ball instead of the usual Laplacian. This reflects the complex
structure of the unit ball Bn. In particular, the embedding theorem is usually
stated in terms of “Carleson cubes” defined via the non-isotropic metric, as
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opposed to the standard Euclidean one. The other motivation for the use of
the invariant Laplacian follows from the fact that |kλ|2 is the invariant Poisson
kernel.

Recall that the invariant Laplacian is defined by the following formula

∆̃ := 4
∑
i,j

gij ∂̄i∂j

with

gij =
1− |z|2

n + 1
(δij − zizj)

the components of the inverse of the Bergman metric on Bn, and

∂jf =
1
2

(
∂f

∂xj
− i

∂f

∂yj

)
, ∂̄jf =

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
, ∀j = 1, . . . , n.

We first need to translate Uchiyama’s Lemma to the ball.

2.1. Uchiyama’s Lemma for the unit ball. We need the following
variant of Lemma 1.1. The appropriate analog of Uchiyama’s Lemma on the
ball requires a few minor modifications to deal with the additional number of
variables and the complex structure. We use the Green’s function (with the
pole at 0) for the invariant Laplacian, which is given by

G(λ) =
n + 1
2n

∫ 1

|λ|
(1− t2)n−1t−2n+1dt,

and in the case n = 1 reduces to the usual logarithm. This function will play
the same role that the logarithm plays in the disc. See [12] for the derivation
of Green’s function G(λ) for the invariant Laplacian. We also need to use the
volume form, or the invariant measure on the unit ball. It is given by

dg(λ) :=
dV (λ)

(1− |λ|2)n+1

with dV the standard (non-normalized) volume form for the unit ball Bn.

Lemma 2.1. Suppose that ϕ is a non-positive invariant subharmonic func-
tion. Then

dν(z) :=
n!
πn

eϕ(z)∆̃ϕ(z)G(z)dg(z)

is a Carleson measure and the embedding H2(Bn) ⊂ L2(ν) is contractive.
More precisely, for any f ∈ H2(Bn) we have∫

Bn

|f(z)|2dν(z) ≤ ‖f‖2H2(Bn).
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Corollary 2.2. If ϕ is bounded (and we still assume that ϕ ≤ 0), then

dν(z) :=
n!
πn

∆̃ϕ(z)G(z)dg(z)

is a Carleson measure and for any f ∈ H2(Bn) we have

n!
πn

∫
Bn

|f(z)|2∆̃ϕ(z)G(z)dg(z) ≤ e‖ϕ‖∞‖f‖2H2(Bn).

Proof of Lemma 2.1. We begin by showing that

(2.1) ∆̃
(
eϕ|f |2

)
≥ (∆̃ϕ)|f |2eϕ.

Indeed, using the chain rule and that f is a holomorphic function we arrive
at

∆̃
(
eϕ|f |2

)
= 4

∑
i,j

gij
[
∂̄iϕ∂jϕ|f |2 + ∂jϕf∂if + ∂̄iϕ∂jff + ∂jf∂if + ∂̄i∂jϕ|f |2

]
eϕ

= (∆̃ϕ)|f |2eϕ + 4
∑
i,j

gij〈∂if + ∂iϕf, ∂jf + ∂jϕf〉eϕ

= ∆̃ϕ|f |2eϕ + 4eϕ‖∂f + ∂ϕf‖2Berg

≥ (∆̃ϕ)|f |2eϕ.

The rest of the proof is the standard application of the Green’s formula.
Green’s formula in the Bergman metric is given by (see [3] or [13])

n!
πn

∫
B

∆̃u(z)G(z)dg(z) =
∫

S
u(ξ)dσ(ξ)− u(0),

where dσ is the normalized Lebesgue measure for S, i.e., σ(S) = 1. The
formula in [13] is derived, but the exact constants weren’t computed. However,
since we are after sharp constants, this more precise formula is important. The
precise constants can be derived from [13] by testing Green’s formula on the
radial function f(z) = 1 − |z|2 and then performing straightforward, though
tedious, computations.

So using (2.1) and applying Green’s formula with u = eϕ|f |2 we continue
our estimate∫

Bn

|f(z)|2dν(z) ≤ n!
πn

∫
B

∆̃z(eϕ(z)|f(z)|2)G(z)dg(z)

=
∫

rS
eϕ(ξ)|f(ξ)|2dσ(ξ)− C(n)eϕ(0)|f |2(0)

≤
∫

rS
|f(ξ)|2dσ(ξ). �
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The proof Corollary 2.2 is exactly the same as in the case of the disc, and
we leave it as an exercise for the reader.

2.2. Carleson potentials and the proof of Theorem 0.3. We again
suppose the measure µ satisfies the assumption of Theorem 0.3. By homo-
geneity we can assume without loss of generality that the constant C is 1.

Define the Carleson potential

ϕ(z) := −
∫

Bn

|kz(λ)|2dµ(λ) = −
∫

Bn

Pz(λ)dµ(λ),

where kz is the (normalized) reproducing kernel and Pz(λ) = |kz(λ)|2 is the
Poisson kernel at z for the unit ball Bn, i.e.,

Pz(λ) =
(1− |z|2)n

|1− 〈λ, z〉|2n
.

Then −1 ≤ ϕ(z) ≤ 0 for z ∈ suppµ. The following lemma will be important
in computing the invariant Laplacian of the Carleson potential ϕ.

Lemma 2.3. Let Pz(λ) denote the Poisson-Szegö kernel. Then

∆̃zPz(λ) = − 4n2

n + 1
(1− |z|2)Pz(λ)Pλ(z)1/n.

It is clear that this lemma implies that ϕ is invariant subharmonic because
upon passing the invariant Laplacian inside the integral we are left with

∆̃zϕ(z) =
4n2

n + 1
(1− |z|2)

∫
B
Pz(λ)Pλ(z)1/ndµ(λ) ≥ 0,

which is the characterization of (smooth) invariant subharmonic functions.

Proof. The proof of this lemma is a straightforward, though tedious, com-
putation. A simple computation shows

∂jPz(λ) = n

[
λj

1− 〈z, λ〉
− zj

1− |z|2

]
Pz(λ).

Using that Pz(λ) is real valued and ∂jH = ∂̄jH for any function H we have

∂̄jPz(λ) = n

[
λj

1− 〈λ, z〉
− zj

1− |z|2

]
Pz(λ).

Combining this we find that

∂̄i∂jPz(λ)

= nPz(λ)
[
n

(
λj

1− 〈z, λ〉
− zj

1− |z|2

) (
λi

1− 〈λ, z〉
− zi

1− |z|2

)
−

(
δij

1− |z|2
+

zizj

(1− |z|2)2

)]
.
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Now, by definition

∆̃zPz(λ) =
4

n + 1
(1− |z|2)

∑
i,j

(δij − zizj)∂̄i∂jPz(λ),

where δij is the Kronecker delta function. If one is patient enough, then
computation yields

∆̃zPz(λ) = − 4n2

n + 1
(1− |z|2)Pz(λ)Pλ(z)1/n. �

This computation can also been seen by noting that for a Kähler manifold,
we have for an analytic function f that ∆̃|f |2 = 4|∇̃f |2, where ∇̃ denotes the
invariant gradient associated to the Bergman metric. See [11] or [12].

Applying Uchiyama’s Lemma (Lemma 2.1) we get∫
Bn

|f(z)|2dν(z) ≤ ‖f‖2H2(Bn),

with

dν(z) :=
n!
πn

eϕ(z)∆̃ϕ(z)G(z)dg(z),

where G(z) is the Green’s function for the invariant Laplacian and dg is the
volume form associated with the Bergman metric.

We will now prove the estimate

(2.2)
∫

Bn

|f(λ)|2dµ(λ) ≤ (2n)!
(n!)2

e

∫
Bn

|f(z)|2dν(z),

which will immediately imply the theorem.
First note that∫

Bn

|f(z)|2dν(z)

=
4n2n!

(n + 1)πn

∫
Bn

∫
Bn

|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)n+1

|1− 〈z, λ〉|2n+2
×

×G(z)
dV (z)

(1− |z|2)n+1
dµ(λ).

Using the estimate
n + 1
4n2

(1− |z|2)n ≤ G(z)

we have∫
Bn

|f(z)|2dν(z) ≥ n!
πn

∫
Bn

∫
Bn

|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)n

|1− 〈z, λ〉|2n+2
dV (z)dµ(λ).

Remark 2.4. If we did not care about the constant, then Theorem 0.3
would be proved. The reasoning is similar to that in the case of the disc.
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To obtain the sharper estimate, we again proceed as in the disc. We focus
on the inner integral and will prove the inequality

(2.3)
n!
πn

∫
Bn

|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)n

|1− 〈z, λ〉|2n+2
dV (z)

≥ (n!)2

(2n)!
eϕ(λ)|f(λ)|2, ∀λ ∈ supp µ,

which after integration with respect to dµ(λ) and taking into account that
eϕ ≥ e−1 gives (2.2).

Consider the conformal change of variables w = bλ(z), where bλ is an
automorphism of the unit ball that exchanges the points λ and 0. Also observe
that z = bλ(w). A simple computation shows that (see [10, Theorem 2.2.6])

dV (w) =
(

1− |λ|2

|1− 〈z, λ〉|2

)n+1

dV (z).

Again following the notation from the previous section, let g̃(w) := g ◦ bλ(w).
Then the above integral can be recognized as

n!
πn

∫
Bn

|f(z)|2eϕ(z) (1− |λ|2)(1− |z|2)n

|1− 〈z, λ〉|2n+2
dV (z)

=
n!
πn

∫
Bn

eϕ̃(w)|f̃(w)|2 (1− |w|2)n

|1− 〈w, λ〉|2n
dV (w).

In this reduction we have used the algebraic identity for bλ defined above,
namely,

1− |z|2 =
(1− |λ|2)(1− |w|2)

|1− 〈λ, w〉|2
;

see [10, Theorem 2.2.2]. Continuing the estimate we have

n!
πn

∫
Bn

eϕ̃(w)|f̃(w)|2 (1− |w|2)n

|1− 〈λ, w〉|2n
dV (w)

=
n!
πn

∫
Bn

eϕ̃(w)

∣∣∣∣∣ f̃(w)
(1− 〈w, λ〉)n

∣∣∣∣∣
2

(1− |w|2)ndV (w).

The function f̃(w)
(1−〈w,λ〉)n is analytic and ϕ̃(w) is invariant subharmonic (i.e.,

∆̃ϕ̃ ≥ 0, where ∆̃ is invariant Laplacian), so (see (2.1)) the function u(w) =

eϕ̃(w)
∣∣∣ f̃(w)

1−λw

∣∣∣2 is invariant subharmonic.
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Integrating in polar coordinates and using the mean value property for
invariant subharmonic functions we get

n!
πn

∫
Bn

u(w)(1− |w|2)ndV (w) = 2n

∫ 1

0

(1− r2)nr2n−1

∫
S
u(rθ)dσdr

≥ 2nu(0)
∫ 1

0

(1− r2)nr2n−1dr

=
(n!)2

(2n)!
u(0),

where the last integral was recognized as the beta function evaluated at n+1
and n. Gathering all together we get

n!
πn

∫
Bn

eϕ̃(w)|f̃(w)|2 (1− |w|2)n

|1− 〈λ, w〉|2n
dV (w)

≥ (n!)2

(2n)!
eϕ̃(0)|f̃(0)|2 =

(n!)2

(2n)!
eϕ(λ)|f(λ)|2,

which is equivalent to (2.3).
This finally shows that∫

Bn

|f(z)|2dµ(z) ≤ (2n)!
(n!)2

e‖f‖2H2(Bn),

proving Theorem 0.3 for the ball Bn. �

If one is willing to weaken the initial assumption that

sup
λ∈supp µ

∫
B
|kλ(z)|2dµ(z),

to instead testing the norm of the reproducing kernels over the support of µ
to testing over all points in the ball Bn, then it is possible to give a slightly
different proof of (2.3). One can resort to reproducing kernels for a certain
weighted Bergman space to obtain this estimate.

3. An application to the free interpolation problem

The classical Carleson Interpolation Theorem says that if the sequence of
points λj ∈ D satisfies the Carleson interpolation condition

(C) inf
k

∏
j 6=k

∣∣∣∣ λk − λj

1− λjλk

∣∣∣∣ =: δ > 0,

then the sequence {λj}∞j=1 is interpolating, meaning that for any sequence
{ak}∞1 ∈ `∞ there exists a bounded analytic function f such that

f(λk) = ak, k = 1, 2, . . .
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Moreover, there exists a constant C such that one can always find the inter-
polating function f satisfying

‖f‖∞ ≤ C‖{ak}∞1 ‖`∞ .

For a long time the only place where an explicit value of the constant C =
C(δ) was presented was Nikolskii’s book [9], where it was shown that one
can take C = 32δ−1(1 + 2 ln δ−1); see [9, p. 179]. A better value of C,
namely C = 2eδ−1(1 + 2 ln δ−1), was given not so long ago by V. Havin
(V. P. Khavin) in the appendix of the book [5] by Koosis. Later in [7] the
same value of C was obtained by a different method by A. Nicolau, J. Ortega-
Cerdà and K. Seip. Theorem 0.2 gives us another way to get the same value
C = 2eδ−1(1 + 2 ln δ−1).

Let us briefly explain how this estimate can be obtained from our result. It
was shown in [9, p. 179] that the constant C can be estimated by ‖J ‖·‖J−1‖,
where J is the orthogonalizer of the system {kλj}∞j=1. It was also shown there
that ‖J ‖ · ‖J−1‖ ≤ δ−1K2, where K is the norm of the embedding operator
for the measure µ =

∑
k(1− |λk|2)δλk

. In other words, K is a constant such
that for the measure µ =

∑
k(1− |λk|2)δλk

,∫
D
|f |2dµ ≤ K2‖f‖, ∀f ∈ H2(D).

On the other hand, it was also shown in [9, p. 155] that if the sequence
{λk}∞1 satisfies the Carleson condition (C), then for the measure µ =

∑
k(1−

|λk|2)δλk
,

sup
λ∈D

∫
D
|kλ|2 dµ ≤ 1 + 2 ln δ−1,

so, by Theorem 0.2, K2 ≤ 2e(1 + 2 ln δ−1). The constant in the Carleson
Embedding Theorem obtained in [9] was 32, and this accounts for the 32
appearing in Nikolskii’s estimate of C for the norm of the operator of inter-
polation.

Added in proof. The connection between Carleson measures and Lapla-
cians of bounded subharmonic functions, one of the main themes of this paper,
has been known for some time. It was probably B. Berndtsson, [2], who first
stated (and used) the fact that “essentially all” Carleson measures are of the
form ∆ϕ log(1/|z|)dA(z). Our use of Carleson potentials can be viewed as a
quantitative version of this idea.
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