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MINIMAL HOMEOMORPHISMS AND APPROXIMATE
CONJUGACY IN MEASURE

HUAXIN LIN

Abstract. Let X be an infinite compact metric space with finite cov-
ering dimension. Let α, β : X → X be two minimal homeomorphisms.
Suppose that the range of K0-groups of both crossed products are dense
in the space of real affine continuous functions on the tracial state space.
We show that α and β are approximately conjugate uniformly in mea-
sure if and only if they have affine homeomorphic invariant probability
measure spaces.

1. Introduction

Let X be a compact metric space and let α, β : X → X be two minimal
homeomorphisms. IfX has infinitely many points, then the associated crossed
product C∗-algebras C(X) oα Z and C(X) oβ Z are unital separable simple
C∗-algebras. It was proved by J. Tomiyama ([24]) that α and β are flip
conjugate if there is a *-isomorphism φ from C(X)oαZ onto C(X)oβZ which
maps C(X) onto C(X). On the other hand, T. Giordano, I. Putnam and C.
Skau ([6]) showed, among other things, that two minimal Cantor systems are
topological orbit equivalent if and only if the tracial range ρ(K0(C(X)oαZ))
of K0(C(X)oαZ) is unital order isomorphic to that of K0(C(X)oβ Z). Both
results show the strong connection between C∗-algebra theory and minimal
dynamical systems. In this paper, we will also use C∗-algebra theory to
study some particular relation among minimal dynamical systems. Fix a
compact metric spaceX. Let α, β : X → X be two minimal homeomorphisms.
Denote by Tα and Tβ the compact convex sets of α-invariant probability Borel
measures and β-invariant probability Borel measures, respectively. Suppose
that there is an affine homeomorphism r from Tα onto Tβ . What can one say
about (X,α) and (X,β)?
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Let Aα = C(X) oα Z and Aβ = C(X) oβ Z. Suppose that X has fi-
nite covering dimension, Under the assumption that ρ(K0(Aα)) is dense in
Aff(T (Aα)) and ρ(K0((Aβ))) is dense in Aff(T (Aβ)) (see 2.1 (4), 2.5 and
2.1 below), we prove that if Tα and Tβ are affine homeomorphic, then α and β
are approximately conjugate uniformly in measure (see Theorem 5.6 below).
By [16], the condition that ρ(K0(Aα)) is dense in Aff(T (Aα)) is equivalent
to Aα being real rank zero and also equivalent to Aα having tracial rank zero.

Some explanations of the result are in order. First we make a few com-
ments on the assumption. When X has finite covering dimension and α is
minimal, the dynamical system (X,α) has mean dimension zero (see 3.1 be-
low). When X is the Cantor set, it is known that ρ(K0(Aα)) is always dense
in Aff(T (Aα))). When X is a connected and (X,α) is unique ergodic, if the
rotation number (defined by Exel in [5]) associated with α contains irrational
values, then ρ(K0(Aα)) is dense in Aff(T (Aα))). In fact, the converse also
holds, i.e., if ρ(K0(Aα)) is dense in Aff(T (Aα))), then the rotation number
associated with α contains an irrational value when X is a connected finite
CW complex (see [16]). We also note that, when X = S1, α is minimal if and
only if the rotation number is irrational.

Next, one should realize that the condition that there is an affine home-
omorphism from Tα and Tβ is a rather weak one. If both Tα and Tβ have
only finitely many extremal points, this condition simply says that Tα and Tβ
have the same number of extremal points. Therefore, one should not expect
that a great deal of dynamical information can be recovered nor should one
regard uniform approximate conjugacy in measure as a strong relation. To
the contrary, we would like to emphasize that two minimal homeomorphisms
could be easily approximately conjugate uniformly in measure. In particular,
if both α and β are uniquely ergodic, then they are always approximately con-
jugate uniformly in measure. Given an affine homeomorphism r : Tα → Tβ ,
Theorem 5.6 says that r can always be induced by a sequence of Borel equiv-
alences {γn} of X for which γ−1

n αγn converges to β and γnβγ−1
n converges to

α in measure uniformly (not just for each µ ∈ Tα and ν ∈ Tβ). Moreover,
some additional properties for {γn} can also be required. It is the existence
of those γn that we find interesting.

Roughly speaking, two minimal homeomorphisms α and β are approxi-
mately conjugate uniformly in measure if there exists a sequence of Borel
isomorphisms γn: X → X such that γ−1

n αγn converges to β and γnβγ−1
n con-

verges to α in measure uniformly on the set of β-invariant measures and the
set of α-invariant measures, respectively. We also require that {γn} eventu-
ally preserves measures in a suitable sense. Moreover, {γn} and {γ−1

n } should
be continuous on some (eventually dense) open subsets of X. The precise
definition is given in 5.2.

The paper is organized as follows. Section 2 lists a number of notations
and facts used in this paper. Section 3 gives a version of the uniform Rohlin
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property for dynamical systems with mean dimension zero. Section 4 contains
a number of technical lemmas which will be used in the proof of the main result
of the paper. Section 5 discusses the notion of uniform approximate conjugacy
in measure and presents the proof of the main result (Theorem 5.6). Finally,
Section 6 gives a few concluding remarks.

Acknowledgment. This work is partially supported by a grant (DMS
0355273) from the National Science Foundation of U.S.A. The work was initi-
ated when the author was visiting East China Normal University in Summer
2004. It was partially supported by Shanghai Priority Academic Disciplines.

2. Preliminaries

2.1. (1) If k is a positive integer, Mk is the full matrix algebra over C.
Denote by Tr the standard trace on Mk and by tr the normalized trace on
Mk.

(2) Let A be a C∗-algebra. Denote by T (A) the tracial state space of A. If
τ ∈ T (A), we will also use τ for τ ⊗ Tr on Mk(A), i = 1, 2, . . .

(3) Let Aff(T (A)) be the space of all real affine continuous functions on
T (A). Let a ∈ As.a.. Denote by â the real affine continuous function defined
by â(τ) = τ(a) for τ ∈ T (A).

(4) Denote by ρA : K0(A) → Aff(T (A)) the order homomorphism induced
by p̂ for projections p ∈Mk(A), k = 1, 2, . . . We often use ρ if the C∗-algebra
A is understood.

2.2. (5) Let X be a compact metric space. We say X has finite dimension
if X has finite covering dimension.

(6) Let A be a unital C∗-algebra, let X be a compact metric space and
let h : C(X) → A be a contractive positive linear map. Suppose that t is a
positive linear functional of A. Then t ◦ h gives a positive linear functional of
C(X). We will use µt◦h for the positive Borel measure on X induced by the
positive linear functional t ◦ h.

2.3. (7) Let X be a compact metric space and α : X → X be a homeomor-
phism. Recall that α is minimal if α has no proper α-invariant closed subset,
or, equivalently, for each x ∈ X, {αn(x) : n = 0, 1, 2, . . . } is dense in X.

(8) Let X be a compact metric space and x ∈ X. The point x is said to
be a condensed point if every open neighborhood of x contains uncountably
many points of X.

(9) If X has infinitely many points and α is minimal, then the cross product
C(X) oα Z is a unital simple C∗-algebra. We will use Aα for C(X) oα Z.

In this case, X has no isolated points and every point of X is condensed.
(10) Denote by jα : C(X) → Aα the usual embedding. Denote by uα the

implementing unitary in Aα such that

u∗αjα(f)uα = jα(f ◦ α) for all f ∈ C(X).
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(11) Denote by Tα the space of all α-invariant probability Borel measures
on X. If µ ∈ Tα, then it induces a tracial state τµ so that

τµ(jα(f)) =
∫
fdµ

for all f ∈ C(X). On the other hand, if τ ∈ T (Aα), then µτ◦jα gives a measure
in Tα. This measure will be denoted by µτ .

In fact, there is an affine homeomorphism between convex sets Tα and
T (Aα) (see [2, VIII, 3.8], for example). The reader may notice that we do not
always attempt to distinguish the convex sets Tα from T (Aα).

2.4. (12) Let A and B be two C∗-algebras. By a homomorphism h :
A→ B, we mean a ∗-homomorphism from the C∗-algebra A to B. Suppose
that both A and B are unital, exact and stably finite. We say that r :
Aff(T (A)) → AffT (B)) is a unital order homomorphism if r is an order
homomorphism and r(1̂A) = 1̂B . The homomorphism r is said to be an order
isomorphism if r is a bijection and r−1 is an also order homomorphism.

Suppose that an affine continuous map r : Aff(T (A)) → Aff(T (A)) is a
unital order isomorphism. Denote by r\ : T (B) → T (A) the affine continuous
map induced by r\(τ)(a) = r(â)(τ) for all a ∈ Aa.s and τ ∈ T (B). If r is a
unital order isomorphism, then r\ is an affine homeomorphism.

On the other hand, if λ : T (Aβ) → T (Aα) is an affine homeomorphism,
then one obtains a unital order isomorphism λ] : Aff(T (Aα)) → Aff(T (Aβ))
by λ](a)(τ) = a(λ(τ)) for all a ∈ Aff(T (Aα)) and τ ∈ T (Aα).

(13) If φ : A → B is a homomorphism we will use φ∗ : K∗(A) → K∗(B)
for the induced map on K-theory.

(14) Let A and B be two C∗-algebras and φ : A → B be a contractive
completely positive linear map. Suppose that G is a subset of A and δ > 0.
We say φ is G-δ-multiplicative if

‖φ(ab)− φ(a)φ(b)‖ < δ for all a, b ∈ G.

(15) Let φ : C(X) → A be a homomorphism. We say that φ has fi-
nite dimensional range if the image of φ is contained in a finite dimen-
sional C∗-subalgebra of A. If φ has finite dimensional range, then there
are finitely many points {x1, x2, . . . , xm} ⊂ X and pairwise orthogonal pro-
jections p1, p2, . . . , pm in A such that

φ(f) =
m∑
i=1

f(xi)pi for all f ∈ C(X).

(16) Let A be a unital simple C∗-algebra. We write TR(A) = 0 if A has
tracial rank zero. For the definition of tracial rank zero, we refer to [9] or
3.6.2 of [11]. A unital simple C∗-algebra with tracial rank zero has real rank
zero, stable rank one and weakly unperforated K0(A) (see [9]).
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2.5. (17) Let T be a convex set. Denote by ∂e(T ) the set of extremal points
of T .

(18) Let X be a compact metric space with infinitely many points and
α : X → X be a minimal homeomorphism. A Borel set Y ⊂ X is said to be
universally null if µ(Y ) = 0 for all µ ∈ Tα.

(19) Let Aα be the simple crossed product. A crucial assumption that we
make in this paper is that ρ(K0(Aα)) (see (4) above) is dense in Aff(T (Aα)).

We will use the following theorem ([16]).

Theorem 2.1. Let X be a finite dimensional compact metric space with
infinitely many points and α : X → X be a minimal homeomorphism. Then
Aα has tracial rank zero if and only if ρ(K0(Aα)) is dense in Aff(T (Aα)).

Minimal dynamical systems whose crossed product C∗-algebras satisfy the
above condition have been given and discussed in [16]. It should be mentioned
that if (X,α) is a minimal Cantor system, then the condition in 2.1 is always
satisfied. In the case when X is connected finite CW complex and (X,α) is
uniquely ergodic, the condition in 2.1 is satisfied if and only if the rotation
number associated with α has irrational values.

3. Uniform Rohlin Tower Lemma and mean dimension zero

Definition 3.1. Let X be a compact metric space and let α : X → X
be a homeomorphism. We say that (X,α) has the small-boundary property if
for every point x ∈ X and every open neighborhood of x there exists an open
neighborhood V ⊂ U such that µ(V \ V ) = 0 for all µ ∈ Tα.

By a result of Lindenstrauss and Weiss (see [19, §5]), if (X,α) has the
small boundary property, then (X,α) has mean dimension zero (see [19] for
the definition of mean dimension zero). The converse is also true, for example,
if (X,α) is minimal (see Theorem 6.2 of [18]).

It is also shown in [19] that if X has finite covering dimension, then any
minimal system (X,α) has mean dimension zero.

The following is an easy lemma.

Lemma 3.2. Let X be a compact metric space with infinitely many points
and let α : X → X be a homeomorphism. Suppose that ∂e(Tα) is countable.
Then (X,α) has the small boundary property. Consequently (X,α) has mean
dimension zero.

More precisely, given any point x ∈ X and δ > 0, there is an open ball of
X with center at x and radius δ/2 < r < δ such that

µ({y ∈ X : dist(x, y) = r}) = 0

for all µ ∈ Tα.
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Proof. Let ∂e(Tα) = {µ1, µ2, . . . , µn, . . . }. Given a point x ∈ X and δ/2 <
r < δ define

R = {y ∈ X : δ/2 < dist(y, x) < δ} and

Cr = {y ∈ X : dist(y, x) = r}.

Since

µ(R) = µ

 ⋃
δ/2<r<δ

Cr


and µ(R) ≤ 1 for all µ ∈ Tα, there are uncountably many r ∈ (δ/2, δ) such
that

µn(Cr) = 0, n = 1, 2, . . . .

Let r be one of them. It follows that

µ(Cr) = 0

for all µ ∈ Tα. �

The Rohlin Tower Lemma is well known in ergodic theory. The following
two lemmas are some uniform versions of it, which will be used later.

Lemma 3.3. Let X be a compact metric space with infinitely many points,
let α : X → X be a minimal homeomorphism, and let Tα be the set of
α invariant probability measures. Suppose that (X,α) has mean dimension
zero. Then, for any integer n ≥ 1, there exist finitely many open subsets
G1, G2, . . . , Gm ⊂ X such that

(i) αj(Gi) are mutually disjoint for 0 ≤ j ≤ h(i)− 1, 0 ≤ i ≤ m,
(ii) h(i) ≥ n for each i,
(iii) µ(X \

⋃m
i=1

⋃h(i)−1
j=0 αj(Gi)) = 0 for all µ ∈ Tα.

Proof. We start with a non-empty open subset Ω ⊂ X such that the αj(Ω)
are pairwise disjoint for 0 ≤ j ≤ n − 1. This is possible since α is minimal.
By 3.2 and 3.1, we may assume that µ(∂(Ω)) = 0 for all µ ∈ Tα.

Let Y = Ω. For each y ∈ Y , define

r(y) = min{m > 1 : αm(y) ∈ Y }.

It follows from Theorem 2.3 of [16] (see also p. 299 of [17]) that supy∈Y r(y)
< ∞. Let n(0) < n(1) < · · · < n(l) be distinct values in the range of r, and
for each 0 ≤ k ≤ l, set

Yk = {y ∈ Y : r(y) = n(k)} and Y ok = int{y ∈ Y : r(y) = n(k)}.

Set
Xk = {y ∈ Y : r(y) ≤ n(k)}.



MINIMAL HOMEOMORPHISMS 1165

Since Y is closed, so is Xk. Moreover, Y0 = X0. Then

Y0 = X0, Y1 = X1 \X0, . . . , Yl = Xl \Xl−1.

Note that n(0) ≥ n.
Set Ω0 = int(Y ). Note that Ω ⊂ Ω0. Therefore Ω0 = Y . Put

S1 = αn(0)(Ω0) ∩ Ω0.

Then S1 is open and

(αn(0)(Y ) ∩ Y ) \ S1(3.1)

=
[
(αn(0)(Y ) ∩ Y ) \ αn(0)(Ω0)

]⋃[
(αn(0)(Y ) ∩ Y ) \ Ω0

]
⊂ αn(0)(∂(Ω0))

⋃
∂(Ω0).

It follows that
µ((αn(0)(Y ) ∩ Y ) \ S1) = 0

for all µ ∈ Tα. Note that α−n(0)(αn(0)(Y ) ∩ Y )) = Y0. By the continuity of
α, we also have

α−n(0)(S1) = Y o0 .

It follows that

µ(X0 \ intX0) = µ(Y0 \ Y o0 )) = 0(3.2)

for all µ ∈ Tα. For k > 0, let

Sk = αn(k)(Ω0) ∩ Ω0.

Then Sk is open and, as above,

µ((αn(k)(Y ) ∩ Y ) \ Sk)) = 0(3.3)

for all µ ∈ Tα and 1 ≤ k ≤ l. We have

α−n(k)(αn(k)(Y ) ∩ Y ) \Xk−1 = Xk \Xk−1 and α−n(k)(Sk) \Xk−1 = Y ok .

(3.4)

Moreover, for k > 0, by (3.4),

Xk \ int(Xk) ⊂ [(Xk \Xk−1) \ Y ok ]
⋃

(Xk−1 \ int(Xk−1))

(3.5)

⊂
(
α−n(k)(αn(k)(Y ) ∩ Y ) \Xk−1

)
\
(
α−n(k)(Sk) \Xk−1

)
⋃

(Xk−1 \ int(Xk−1))

⊂
(
α−n(k)(αn(k)(Y ) ∩ Y ) \ α−n(k)(Sk)

)
⋃

(Xk−1 \ int(Xk−1)).
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By induction on k, combing the above with (3.2) and with (3.3), we conclude
that

µ(Xk \ int(Xk)) = 0(3.6)

for all µ ∈ Tα, 1 ≤ k ≤ l.
We also have

Yk \ Y ok ⊂ Xk \Xk−1 \ (α−n(k)(Sk) \Xk−1)(3.7)

⊂
(
α−n(k)(αn(k)(Y ) ∩ Y ) \ int(Xk−1)

)
\
(
α−n(k)(Sk) \Xk−1

)
⊂
(
α−n(k)(αn(k)(Y ) ∩ Y ) \ α−n(k)(Sk)

)
⋃

(Xk−1 \ int(Xk−1)).

From this, by (3.3) and (3.6), we have

µ(Yk \ Y ok ) = 0 for all µ ∈ Tα.(3.8)

It follows from Theorem 2.3 of [16] (see also p. 299 of [17]) that
(i) αj(Y ok ) are pairwise disjoint for 1 ≤ j ≤ n(k), 0 ≤ k ≤ l;
(ii)

⋃l
k=0

⋃n(k)
j=0 α

j(Yk) = X.
Moreover,

µ

X \
l⋃

k=0

n(k)⋃
j=0

αj(Y ok )

 ≤
l∑

k=0

n(k)∑
j=0

µ(αj(Yk \ Y ok )) = 0

for all µ ∈ Tα. Define Gk = α(Y ok ), k = 0, 1, . . . , l. With m = l + 1 and
h(k) = n(k) + 1, we see that the lemma follows. �

Lemma 3.4. Let X be a compact metric space with infinitely many points,
let α : X → X be a minimal homeomorphism and let Tα be the set of α-
invariant probability measures. Suppose that (X,α) has mean dimension zero.
Let {y1, y2, . . . , yk} be an η/3-dense subset of X for some η > 0.

Then, for any integer n ≥ 1, there exists an open subset G ⊂ X contain-
ing a subset {x1, x2, . . . , xk} which is η-dense in X with dist(xi, yi) < η/3
(1 ≤ i ≤ k) such that αi(G) are mutually disjoint for 0 ≤ i ≤ n − 1 and
µ(
⋃n−1
i=0 α

i(G)) > 1− ε for all µ ∈ Tα.
Moreover,

µ(∂(G)) = 0
for all µ ∈ Tα.

Proof. Choose an integer K > 0 such that 1/K < ε. Let N = nK. By 3.3,
we obtain finitely many open subsets G1, G2, . . . , Gm such that



MINIMAL HOMEOMORPHISMS 1167

(i) αj(Gi) are pairwise disjoint for 1 ≤ i ≤ m, 0 ≤ j ≤ h(i);
(ii) h(i) ≥ N , 1 ≤ i ≤ m;
(iii) µ(X \

⋃m
i=1

⋃h(i)−1
j=0 αj(Gi)) = 0 for all µ ∈ Tα.

Write h(i) = L(i)n + r(i), where L(i) ≥ 1 and n > r(i) ≥ 0 are integers,
i = 1, 2, . . . ,m. Define, for each i,

U(i, 1) = αn(Gi), U(i, 2) = α2n(Gi), . . . , U(i, L(i)− 1) = α(L(i)−1)n(Gi).

Note that

µ(Gi) ≤
1
nK

µ

h(i)−1⋃
j=0

αj(Gi)

 , 1 ≤ i ≤ m,(3.9)

for all µ ∈ Tα.
So

µ

h(i)−1⋃
j=L(i)

αj(Gi)

 = r(i)µ(Gi) ≤
1
K
µ

h(i)−1⋃
j=0

αj(Gi)

(3.10)

for all µ ∈ Tα and 1 ≤ i ≤ m.
Let G =

⋃m
i=1Gi

⋃
(
⋃m
i=1

⋃L(i)−1
s=1 U(i, s)). Then

(1) αj(G) are pairwise disjoint for 0 ≤ j ≤ n− 1,

and, by (iii) and by (3.10),

(2) µ(
⋃n−1
j=0 α

j(G)) > 1−
∑m
i=1 µ(

⋃h(i)−1
j=L(i) α

j(Gi)) > 1− 1
K > 1− ε for all

µ ∈ Tα.

Now let {y1, y2, . . . , yk} be an η/3-dense set. Define y′i = α−1(yi), i =
1, 2, . . . , k. Choose δ > 0 such that

dist(α(x), α(y)) < η/9

whenever dist(x, y) < δ.
Choose z1 = y′1. Since y′2 is a condensed point, there is z2 ∈ O(y′2), where

O(y′2) = {x ∈ X : dist(y2, x) < δ}, such that z2 6∈ {αn(x1) : n ∈ Z}. We then
choose z3 6∈ {αn(x1), αn(x2) : n ∈ Z} such that dist(z3, y2) < δ. By induction,
we obtain {z1, z2, . . . , zk} ⊂ X such that none of zi lies in the orbit of zj if
i 6= j. We note that {α(z1), α(z2), . . . , α(zk)} is 4η/9-dense in X. So we may
start with an open subset Ω which contains {z1, z2, . . . , zk} at the beginning
of the proof of 3.3.

Note that, by the proof of 3.3, Gk = α(Y ok ), k = 0, 1, . . . , l. In the proof of
3.3,

l⋃
k=0

Yk ⊃ Y = Ω.
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It follows that

α(Y ) \
l⋃

k=0

Gk ⊂
l⋃

k=0

α(Yk \ Y ok ).

Since
µ (Yk \ Y ok ) = 0

for all µ ∈ Tα, and since α is minimal, for each i,

U(α(zi)) ∩
m⋃
k=1

Gk 6= ∅,

where U(α(zi)) = {x ∈ X : dist(α(zi), x) < η/9}. Choose a point xi ∈
U(α(zi)) ∩

⋃l
k=1Gk, 1 ≤ i ≤ k. Then the above proof shows that

xi ∈ G, i = 1, 2, . . . , k.

Note that dist(xi, yi) < η/3 i = 1, 2, . . . , k and {x1, x2, . . . , xk} is η-dense in
X. �

LetX be a compact metric space and let A be a unital C∗-algebra. Suppose
that φ : C(X) → A is a homomorphism. Then φ can be extended to a
homomorphism from B(X), the algebra of all bounded Borel functions, to
the enveloping von-Neumann algebra A∗∗ (see 4.5.11 of [22]).

Lemma 3.5. Let X be a compact metric space and φ : C(X) → A be a
unital monomorphism from C(X) into a unital simple C∗-algebra A. Suppose
that G is an open subset of X such that

µτ
(
G \G

)
= 0

for all τ ∈ T (A), where µτ is the measure induced by τ ◦ φ.
Then φ(χG) (in A∗∗) is continuous function on T (A), or equivalently, for

any ε > 0, there exists f ∈ C(X), with 0 ≤ f(t) ≤ 1 for all t ∈ X and
f(t) = 0 if t ∈ X \G such that

|τ(φ(f))− µτ (G)| < ε

for all τ ∈ T (A).

Proof. Let h be a continuous function on X defined by

h(x) =
1

1 + dist(x, Ḡ \G)
for all x ∈ X.

Note that 0 ≤ h(x) ≤ 1. Let gn(x) = h(x)n for x ∈ X. Then gn ∈ C(X).
The condition that µτ (Ḡ \ G) = 0 and the fact that 0 ≤ gn ≤ 1 imply
that φ̂(gn)(τ) =

∫
X
gndµτ converges to zero pointwise on T (A). Hence, by

the Dini Theorem, φ̂(gn) converges uniformly to zero on T (A). Put f(x) =
χḠ(x)− gn(x) for x ∈ G and f(x) = 0 for x ∈ X \G. It is easy to check that
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f ∈ C(X). Moreover, 0 ≤ f ≤ 1. One sees, with sufficiently large n, that f
meets the requirements of the lemma. �

The author would like to thank the referee for the suggestion of this simple
proof which replaces the original longer proof.

4. Perturbations

The following lemma is well-known (note that finite dimensional C∗-algebras
are semiprojective (see 0.4 of [20]) and their unit balls are compact).

Lemma 4.1. Let F be a finite dimensional C∗-algebra. Then for any ε > 0
there exist a finite subset G ⊂ F and δ > 0 satisfying the following: For any G-
δ-multiplicative contractive completely positive linear map φ : F → A, where
A is any C∗-algebra, there exists a homomorphism h : F → A such that

‖h− φ‖ < ε.

Lemma 4.2 (Lemma 4.1 of [12]). Let A be a unital C∗-algebra. For any
ε > 0 and finite subset F ⊂ A, there exist a finite subset G ⊂ A and δ > 0
satisfying the following:

If B is another unital C∗-algebra, φ : A → B is a unital contractive com-
pletely positive linear map which is G-δ- multiplicative and τ ∈ T (B), then
there exists a tracial state t ∈ T (A) such that

|τ ◦ φ(a)− t(a)| < ε

for all a ∈ F .

Lemma 4.3. Let X be a compact metric space with infinitely many points
and let α : X → X be a minimal homeomorphism. Let G1, G2, . . . , GL be
finitely many open subsets with the property that µ(Gi\Gi) = 0 for all µ ∈ Tα.

For any ε > 0 and a finite subset F ⊂ C(X), there exist a finite subset
G1 ⊂ C(X) and η > 0 satisfying the following:

If there exists a projection p ∈ Aα and a unital homomorphism φ0 : C(X) →
pAαp with finite dimensional range such that

(1) ‖pjα(f)− jα(f)p‖ < η for all f ∈ G1,
(2) ‖pjα(f)p− φ0(f)‖ < η for all f ∈ G1,
(3) τ(1− p) < η for all τ ∈ T (Aα),

and if φ : Aα → Mk is a unital G2-δ-multiplicative contractive completely
positive linear map (for some k > 0) , where G2 is a finite subset of Aα
and δ > 0, both of which depend on the image of φ0, G1, η, ε, as well as
G1, G2, . . . , GL, then there is τ ∈ T (Aα), such that

| tr ◦φ ◦ jα(g)− τ(g)| < ε/2 and | tr ◦φ ◦ φ0(g)− τ(g)| < ε
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for all g ∈ F , there are {y1, y2, . . . , yK} ⊂ X and mutually orthogonal rank
one projections in Mk such that∥∥∥∥∥

K∑
i=1

f(yi)pi − φ ◦ φ0 ◦ (f)

∥∥∥∥∥ < ε

for all f ∈ F and

µτ (Gj) + ε >
Nj
k
> µτ (Gj)− ε,

where Nj is the number of yis in Gj. Moreover, k−K
k < ε.

Proof. To simplify notation, without loss of generality, we may assume that
F is in the unit ball of C(X).

Let
γ0 = inf {µτ (Gj) : µ ∈ T (A), j = 1, 2, . . . , L} .

Since Aα is simple, one has γ0 > 0. By Lemma 3.5, choose gj ∈ C(X) with
0 ≤ gj ≤ 1, gj(x) = 0 if x 6∈ Gj , and

µτ (Gj) < τ(jα(gj))−min(γ0/4, ε/8)(4.1)

for all τ ∈ T (A) and j = 1, 2, . . . , L.
Let F1 = F ∪ {gj : 1 ≤ j ≤ L}. Let η1 > 0 be such that

|f(x)− f(x′)| < ε/4

if dist(x, x′) < η1 for all f ∈ F1. Let η = min{γ0/32, ε/64, η1/32}. Let G1 =
F1. Suppose that p ∈ Aα and φ0 : C(X) → pAαp is a homomorphism with
finite dimensional range which satisfies (1)–(3) as described in the statement
(for the above G1 and η).

Put F2 = jα(F1) ∪ φ0(F1) ∪ {p, 1− p} ∪ {pjα(f)p : f ∈ F1}.
Let G ⊂ Aα be a finite subset and δ > 0 be a positive number given by

Lemma 4.2 corresponding to F2 and η. Let C be the image of φ0, which is a
finite dimensional C∗-algebra. Choose a smaller δ required by 4.1 and a larger
G which contains a finite subset required by 4.1 for C and η.

Let G2 = G∪F2. Now let φ : Aα be a unital G2-δ-multiplicative contractive
completely positive linear map from Aα →Mk (for some k > 0).

By 4.1 (and the choice of G and δ), we may also assume that there is a
homomorphism, φ00 : C(X) → EMkE (for some projection E), such that

‖φ00(f)− φ ◦ φ0(f)‖ < η

for all f ∈ F1.
By the choice of G and δ, applying 4.2, there is a tracial state τ ∈ T (A)

such that
|τ(a)− tr ◦φ(a)| < η

for all f ∈ F2. In particular,

|τ(1− p)− tr ◦φ(1− p)| < η.
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It follows that

tr ◦φ(1− p) < 2η < ε/4.(4.2)

Moreover,
|τ(jα(f))− tr ◦φ00(f)| < 3η

for all f ∈ F1.
Write φ00(f) =

∑K
i=1 f(yi)pi for all f ∈ C(X), where yi ∈ X and {p1, p2,

. . . , pK} is a set of mutually orthogonal rank one projections in Mk, and
0 < K < k.

On the other hand,

| tr(φ00(gi))− τ(jα(gi))| < 3η(4.3)

for i = 1, 2, . . . , L. It follows from (4.1) and (4.3) that

µτ (Gj) + ε/2 >
Nj
k
> µτ (Gj)− ε/2,

where Nj is the number of yj ’s which lie in Gj , j = 1, 2, . . . , L.
By (4.2), we compute that

k −K

k
< ε/4 < ε. �

Lemma 4.4. Let X be a finite dimensional compact metric space with
infinitely many points and α : X → X be a minimal homeomorphism. Sup-
pose that ρ(K0(Aα)) is dense in Aff(T (Aα). Then, for any ε > 0, σ >
0 and finite subset F ⊂ C(X), there are mutually orthogonal projections
{p1, p2, . . . , pm} ⊂ Aα and {x1, x2, . . . , xm} ⊂ X such that

(1) ‖pjα(f)− jα(f)p‖ < ε for f ∈ F , where p =
∑m
k=1 pk,

(2) ‖pjα(f)p−
∑m
k=1 f(xi)pk‖ < ε for all f ∈ F ,

(3) τ(1− p) < σ for all τ ∈ T (Aα).

Several versions of Lemma 4.4 are known. By 2.1, Aα has tracial rank zero.
Lemma 4.4 then follows from the definition of tracial rank zero and Lemma
6.27 of [11].

Lemma 4.5. Let X be a finite dimensional compact metric space with
infinitely many points and let α : X → X be a minimal homeomorphism.
Suppose that ρ(K0(Aα)) is dense in Aff(T (Aα).

Let G1, G2, . . . , GL be finitely many open subsets with the property that
µ(Gi \Gi) = 0 for all µ ∈ Tα. For any ε > 0 and any finite subset F ⊂ C(X),
there are a (specially selected) projection p ∈ Aα with τ(1 − p) < ε/2 for all
τ ∈ T (Aα), and a finite subset G ⊂ Aα and δ > 0 satisfying the following
property:
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If φ : Aα →Mk is a unital G-δ-multiplicative contractive completely positive
linear map (for some k > 0), then there is τ ∈ T (Aα) such that

| tr ◦φ ◦ jα(g)− τ(g)| < ε/2 and | tr ◦φ(pgp)− τ(g)| < ε

for all g ∈ F , and there are {y1, y2, . . . , yK} ⊂ X and mutually orthogonal
rank one projections {p1, p2, . . . , pk} in Mk such that∥∥∥∥∥

K∑
i=1

f(yi)pi − φ ◦ (pfp)

∥∥∥∥∥ < ε

for all f ∈ F and

µ(Gj) + ε >
Nj
k
> µ(Gj)− ε,

where Nj is the number of y′is in Gj and µ is the probability measure induced
by τ . Moreover, k−K

k < ε.

Proof. To prove this lemma, we combine 4.3 and 4.4. Fix ε > 0 and a finite
subset F ⊂ C(X). Let G1 ⊂ C(X) be a finite subset and η > 0 given by 4.3.
By applying 4.4, we obtain a projection p ∈ Aα and a unital homomorphism
φ0 : C(X) → pAp with finite dimensional range which satisfies (1)–(3) in 4.3.
We then apply 4.3 to obtain this lemma. �

Lemma 4.6. Let A be a unital simple C∗-algebra with the following prop-
erty: Any two projections p and q in A with τ(p) = τ(q) for all τ ∈ (A) are
equivalent.

Let X be a compact metric space and h1, h2 : C(X) → A be two unital
monomorphisms. Suppose that

τ ◦ h1(f) = τ ◦ h2(f)(4.4)

for all τ ∈ T (A) and all f ∈ C(X). Suppose also that, for any r > 0, there are
finitely many pairwise disjoint open subsets U1, U2, . . . , Um whose diameters
are less than r such that X =

⋃m
i=1 Ui and

µτ◦h1

(
m⋃
i=1

(Ui \ Ui)

)
= 0

for all τ ∈ T (A).
Then, for any η > 0, there exist a finite subset F0 ⊂ C(X), F ⊂ A and δ >

0 satisfying the following: for any F-δ-multiplicative contractive completely
positive linear map φ : A → B and any homomorphism ψ1, ψ2 : C(X) → B
for some unital stably finite C∗-algebra B with

‖φ ◦ hi(f)− ψi(f)‖ < δ

for all f ∈ F0, i = 1, 2, one has

µt◦ψ1(S) ≤ µt◦ψ2(Bη(S)) and µt◦ψ2(S) ≤ µt◦ψ1(Bη(S))
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for any t ∈ T (B) and any closed subset S ⊂ X, where Bη(S) = {x ∈ X :
dist(x, S) < η}.

Proof. Fix η > 0. Let X =
∑N
j=1Xi, where each Xi is a clopen set which is

η/4-connected, i.e., for any two points x, y ∈ Xi, there are x1, x2, . . . , xm ∈ Xi

such that dist(x, x1) < η/4, dist(xi, xi+1) < η/4 and dist(xm, y) < η/4.
Let U1, U2, . . . , Um be pairwise disjoint non-empty open subsets whose di-

ameters are less than η/8, such that X =
⋃m
i=1 Ui and

µτ◦h1

(
m⋃
i=1

(Ui \ Ui)

)
= 0

for all τ ∈ T (A).
Let

d = inf {µτ◦h1(Ui) : 1 ≤ i ≤ m, τ ∈ T (A)} .
Since A is simple, d > 0.

Let e1 = h1(χXi) and fi = h2(χXi), where χXi is the characteristic function
on the clopen set Xi, i = 1, 2, . . . , N . Then, for any τ ∈ T (A),

τ(ei) = τ(fi)(4.5)

for all τ ∈ T (A). By the assumption on A, there is a partial isometry ui ∈ A
such that

u∗i ui = ei and uiu∗i = fi i = 1, 2, . . . , N.(4.6)

Let Λ be a subset of {1, 2, . . . ,m}. By 3.5, for each Λ, there exists a
gΛ ∈ C(X) with 0 ≤ gΛ ≤ 1, gΛ(x) = 1 if x ∈

⋃
i∈Λ Ui and gi(x) = 0 if

dist(x,
⋃
i∈Λ Ui) > η/128 such that

τ(h1(gΛ))− d

8
< µτ◦h1

(⋃
i∈Λ

Ui

)
(4.7)

for all τ ∈ T (A), i = 1, 2, . . . ,m.
Let F0 = {gΛ : Λ ⊂ {1, 2, . . . ,m}}, F = {ui, u∗i : 1 ≤ i ≤ N}

⋃2
i=1 hi(F0).

Let G be a finite subset and δ > 0 be given by 4.2 for the above A, F and
d/8. We may assume that δ < d/4.

Now suppose that φ : A → B is a G-δ/4-multiplicative contractive com-
pletely positive linear map and ψi : C(X) → B is (for each i) a homomor-
phism such that

‖ψi(f)− φ ◦ hi(f)‖ < δ/4(4.8)

for all f ∈ F .
Hence

‖ψ1(χXi)− φ1(ui)φ(ui)∗‖ < δ and ‖ψ2(χXi)− φ(ui)∗φ(ui)‖ < δ(4.9)
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for i = 1, 2, . . . , N . With δ < d/4 < 1, it follows (for example, from 2.5.3 of
[11]) that ψ1(χXi) is equivalent to ψ2(χXi) in B, i = 1, 2, . . . , N .

In particular,

t(ψ1(χXi
)) = t(ψ2(χXi

))(4.10)

for all t ∈ T (B), i = 1, 2, . . . , N .
By the choice of G and δ, applying 4.2, we have, for each t ∈ T (B), that

there is τ ∈ T (A) such that

|τ(h1(gΛ))− t ◦ ψj(gΛ)| < d/8(4.11)

for j = 1, 2 and Λ ⊂ {1, 2, . . . ,m}.
For any closed subset S ⊂ X, if S is a union of some of Xi, then, by (4.10),

µt◦ψ1(S) = µt◦ψ2(S).(4.12)

Suppose that S is a closed subset of X which is not a finite union of some
Xi’s. Then there must be a point ξ ∈ B5η/16(S)\Bη/4(S). But dist(ξ, Uj) = 0
for some j. Since the diameter of Uj is less than η/8,

Uj ⊂ B7η/16(S) ⊂ Bη/2(S).(4.13)

It follows from (4.11) that

µt◦ψi(Uj) > d/2(4.14)

for all t ∈ T (B), i = 1, 2. Since Uj ∩B7η/64(S) = ∅, we have

µt◦ψi
(Bη(S)) > d/2 + µt◦ψi

(B7η/64(S)).(4.15)

There is a Λ ⊂ {1, 2, . . . , N} such that
⋃
i∈Λ Ui ⊃ S. Suppose that Λ is

smallest such subset of {1, 2, . . . , N}. Then

supp gΛ ⊂ B7η/64(S) and µt◦ψi(B7η/64(S)) ≥ t(ψi(gΛ))(4.16)

for all t ∈ T (B) and i = 1, 2.
By 4.11,

|t ◦ ψ1(gΛ)− t ◦ ψ2(gΛ)| < d/8(4.17)

for all t ∈ T (B). By applying (4.17), (4.16) and (4.15), it follows that

µt◦ψ1(S) ≤ t(ψ1(gΛ)) ≤ t(ψ2(gΛ)) + d/8(4.18)

≤ µt◦ψ2(B7η/64(S)) + d/8 ≤ µt◦ψ2(Bη)

for all t ∈ T (B). Similarly,

µt◦ψ2(S) ≤ µt◦ψ1(Bη)(4.19)

for all t ∈ T (B). �
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Lemma 4.7. Let X be a finite dimensional compact metric space with
infinitely many points and let α : X → X be a minimal homeomorphism.
Suppose that ρ(K0(Aα)) is dense in Aff(T (Aα)).

Let ε > 0 and let F ⊂ C(X) be a finite subset. Let η > 0 be any positive
number such that

|f(t)− f(t′)| < ε/8

if dist(t, t′) < η for all f ∈ F .
Let n be an integer so that 1/n < ε/4 and let G be an open set such that

αj(G) are pairwise disjoint for 0 ≤ j ≤ n− 1 with the following properties:

(i) G contains xi, i = 1, 2, . . . , l, where {x1, x2, . . . , xl} is η/2-dense in
X;

(ii) µ(
⋃
j α

j(G)) > 1− ε/16 for all µ ∈ Tα;
(iii) µ(∂(G)) = 0 for all µ ∈ Tα.
Then there exist a (specially selected) projection p ∈ Aα with τ(1−p) < ε/2

for all τ ∈ T (Aα), a finite subset G ⊂ Aα and δ > 0 satisfying the following
property:

If φ : Aα →Mk (with k > ln) is a G-δ-multiplicative contractive completely
positive linear map, then there are m distinct points

{yi, i = 1, 2, . . . ,m}

with yi ∈ G, xi = yi, i = 1, 2, . . . , l ≤ m, and k−mn
k < ε/4 such that∥∥∥∥∥∥

n−1∑
j=0

m∑
i=1

f(αj(yi))pi,j +
N∑

i=K+1

f(zi)pi − φ(pjα(f)p)

∥∥∥∥∥∥ < ε(4.20)

(K = mn < N < k) for all f ∈ F , where

{pi,j : 1 ≤ i ≤ m, 0 ≤ j ≤ n− 1} ∪ {pK+1, . . . , pN}

is a set of mutually orthogonal rank one projections in Mk and {zK+1, . . . , zN}
⊂ X.

Proof. Let η1 > 0 such that η1 < η and

dist(αj(x), αj(x′)) < η/2(4.21)

if dist(x, x′) < η1, −n+ 1 ≤ j ≤ n− 1. Let η2 > 0 be such that η2 < η1 and

dist(αj(x), αj(x′)) < η1/2(4.22)

if dist(x, x′) < η2, j = 1, 2, . . . , n− 1.
Since X has finite covering dimension, (X,α) has mean dimension zero

(see 3.1). Let Ui be an open ball with center at xi and radius η2/4 such that
µ(Ui \ Ui) = 0 for all µ ∈ Tα, i = 1, 2, . . . , L.
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Now we apply 4.5 with open subsets {Ui : 1 ≤ i ≤ L} and {αj(G) : 0 ≤
j ≤ n− 1}. Let δ1 > 0. By 4.5 for ε

8(n+1) and F , with sufficiently large G and
sufficiently small δ, we may assume that k is sufficiently large and∥∥∥∥∥φ ◦ (pjα(f)p)−

N∑
i=1

f(zi)pi

∥∥∥∥∥ < min{ε/8, δ1},(4.23)

where p ∈ Aα is a specially selected projection with τ(1 − p) < ε/8 for all
τ ∈ T (Aα), where k−N

k < ε/8 and where {z1, . . . , zN} is a set of distinct
points of X. By applying 4.5 (with finitely many open Ui’s and αj(G)’s in
place of Gi), and using (ii) above, we may also assume that there are at least
m distinct points {yi,j : i = 1, 2, . . . ,m} of {z1, z2, . . . , zN} in each of αj(G)
(for some 1 ≤ J ≤ L), j = 0, 1, . . . , n− 1, such that

1
n
≥ m

k
>

1
n
− ε

4n
.(4.24)

Furthermore, we may assume that m > L and y0,i ∈ Ui i = 1, 2, . . . , l. Put
Ψ(f) =

∑N
i=1 f(zi)pi for f ∈ C(X). With sufficiently small δ1 and sufficiently

large G, by 4.6, we may also assume that

µtr◦Ψ(S) ≤ µtr◦Ψ◦(α−j)∗(Sη2/2) and µtr◦Ψ◦(α−j)∗(S) ≤ µtr◦Ψ(Sη2/2)(4.25)

for any closed subset S ⊂ X, where (α−j)∗(f) = f ◦ α−j , j = 1, 2, . . . , n − 1
and where Sη2/2 = {x ∈ X : dist(x, S) < η2/2}.

Thus, by the choice of η2, for any ys(i),j , i = 1, 2, . . . ,M with 1 ≤M ≤ m,
there exist ξ′1, ξ

′
2, . . . , ξ

′
M ∈ {x ∈ X : dist(x, {y1,0, y2,0, . . . , ym,0}) < η1/2}

such that
dist(ys(i),j , αj(ξ′i)) < η2/2, i = 1, 2, . . . ,M.

Then, by the choice of η1, there are ξ1, ξ2, . . . , ξM ∈ {y1,0, y2,0, . . . , ym,0} such
that

dist(ys(i),j , αj(ξi)) < η/2, i = 1, 2, . . . ,M.

Similarly, for any ξ′1, ξ
′
2, . . . , ξ

′
M ∈ {y1,0, y2,0, . . . , ym,0}, there exist y′s(i),j , i =

1, 2, . . . ,M , such that

dist(αj(ξ′i), y
′
s(i),j) < η/2 i = 1, 2, . . . ,M.

It follows from the “marriage lemma” ([7]) (see also 2.1 of [23]) that there is
a permutation σj : {1, 2, . . . ,m} → {1, 2, . . . ,m} such that

dist(yi,j , αj(yσj(i),0)) < η,

j = 1, 2, . . . , n− 1. By the choice of η and by replacing ε/8 by ε/4 in (4.23),
we may assume that yi,j = αj(yi,0) and yi,0 = xi for 1 ≤ i ≤ l. Let yi = y1,i,
i = 1, 2, . . . ,m. Put K = mn.
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Thus, from above, with sufficiently large G and sufficiently small δ, we may
also assume that,∥∥∥∥∥∥

N∑
i=1

f(zi)pi −

n−1∑
j=0

m∑
i=1

f(αj(yi))pi,j +
N∑

i=K+1

f(zi)pi

∥∥∥∥∥∥ < ε/2(4.26)

for all f ∈ F . Then (4.20) follows from (4.23) and (4.26). Moreover, by (4.24)
and (4),

K

k
=
nm

k
> n(

1
n
− ε

4n
) = 1− ε/4,

as desired. �

Proposition 4.8. Let A and B be two unital separable C∗-algebras with
TR(A) = TR(B) = 0. Suppose that λ : Aff(T (A)) → Aff(T (B)) is a unital
order affine isomorphism. Then there are finite dimensional C∗-algebras Fn,
a sequence of unital contractive completely positive linear maps φn : B → Fn,
and a sequence of unital contractive completely positive linear maps ψn : A→
Fn, satisfying the following properties:

(1) For all a, b ∈ A,

lim
n→∞

‖φn(a)φn(b)− φn(ab)‖ = 0,

and for all x, y ∈ B

lim
n→∞

‖ψn(x)ψn(y)− ψn(xy)‖ = 0;

(2) there is an affine continuous map ∆n : T (B) → T (Fn) such that, for
each b ∈ B,

|∆n(τ)(φn(b))− τ(b)| → 0(4.27)

uniformly on T (B);
(3) for each a ∈ A,

|λ(â)(τ)−∆n(τ) ◦ ψn(a)| → 0(4.28)

uniformly on T (B).

Proof. Let ε > 0, F ⊂ A and G ⊂ B be two finite subsets. To simplify
notation, without loss of generality, we may assume that F and G are in the
unit balls of A and B, respectively.

Since TR(A) = 0, by [9], for any δ > 0, there exist a projection p ∈ A and
a finite dimensional C∗-subalgebra C of A with p = 1C such that

(i) ‖pa− ap‖ < δ/8 for all a ∈ F ,
(ii) dist(pap,C) < δ/8 for all a ∈ F ,
(iii) t(1− q) < δ/4 for all t ∈ T (A).
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We choose δ < min{ε/4, 1}. Moreover, by 2.3.5 of [11], there exists a
contractive completely positive linear map ψ̃′ : pAp → C such that ψ̃(c) = c

if c ∈ C. Define ψ̃(a) = ψ̃′(pap) for all a ∈ A.
Write C =

⊕k
i=1MR(i). Denote by ei a minimal rank one projection in

MR(i), i = 1, 2, . . . , k. Since TR(B) = 0, ρB(K0(B)) is dense in Aff(T (B)).
So there exists a projection pi ∈ B such that

λ(êi)(τ)− δ/8 < τ(pi) < λ(êi)(τ)(4.29)

for all τ ∈ T (B), i = 1, 2, . . . , k. Note
k∑
i=1

R(i)[pi] < [1B ]

in K0(B). Thus (since TR(B) = 0) we obtain a C∗-subalgebra B0 ⊂ B
for which there exists an isomorphism ψ1 : C → B0 so that ψ1(ei) = pi,1,
i = 1, 2, . . . , k.

Choose G1 which contains G and ψ1 ◦ ψ̃(F) as well as a set of generators
of B0. For any δ1 > 0, there is a projection q ∈ B and a finite dimensional
C∗-subalgebra F of B with q = 1F such that

(1) ‖qb− bq‖ < δ1/8 for all b ∈ G1;
(2) dist(qbq, F ) < δ1/8 for all b ∈ G1;
(3) τ(1− q) < δ1/4 for all τ ∈ T (B).

We may assume that δ1 < min{ε/4, 1}. By 2.3.5 of [11], we may assume
that there exists a contractive completely positive linear map φ′ : qBq → F
such that φ(b) = b if b ∈ F . Define φ : B → F by φ(b) = φ′(qbq) for all b ∈ B.
Then φ is a G1-δ1/4-multiplicative contractive completely positive linear map.

Furthermore, by 4.1, we may assume that there exists a homomorphism
h : B0 → F so that

‖h− φ|B0‖ < ε/8.
For each τ ∈ T (B) define ∆(τ) = 1

τ(q)τ |F . Since, for any b ∈ B,

τ((1− q)bq) = 0 = τ(qb(1− q)),

we have

|τ(b)− τ(qbq)| < δ1/4(4.30)

for all τ ∈ T (B). With δ1 < 1, for any f ∈ F ,

|τ(f)−∆(τ)(f)| <
(

1− 1
1− δ1/4

)
|τ(f)| < (δ1/3)|τ(f)|(4.31)

for all τ ∈ T (B). By (2) above, (4.30) and (4.31), we estimate that

|τ(b)−∆(τ)(φ(b))| < δ1/4 + δ1/8 + (δ1/3)(1 + δ1/8) + δ1/8 < ε/2(4.32)

for all b ∈ G1.



MINIMAL HOMEOMORPHISMS 1179

Define ψ(a) = h ◦ (ψ̃(a)). Note that ψ is from A to F ⊂ B and it is
F-ε-multiplicative. We also compute that

|λ(â)(τ)−∆(τ)(ψ(a))| < ε

for all a ∈ F . �

5. Uniform approximate conjugacy in measure

Definition 5.1. Let X be a compact metric space and let α : X → X
be a minimal homeomorphism. Define F (X) to be the set of those measures
ν that are concentrated on finite subsets of X.

Fix a finite set of points x1, x2, . . . , xk ∈ X and k positive affine continuous
functions a1, a2, . . . , ak ∈ Aff(T (Aα)) with

∑k
i=1 ai = 1. One can define an

affine continuous map ∆ : Tα → F (X) by∫
fd∆(µ) =

k∑
i=1

ai(τµ)f(xi)(5.1)

for all f ∈ C(X). To simplify notation, we also use ∆ for the induced affine
continuous map from T (Aα) to F (X).

Definition 5.2. Let X be a compact metric space and α, β : X → X
be two minimal homeomorphisms. We say that α and β are approximately
conjugate uniformly in measure if there is a sequence of open subsets {On},
with each On being 1/n-dense in X, and a sequence of Borel isomorphisms
{γn} on X, with the following properties:

(1) For each σ > 0,

µ({x ∈ X : dist(γ−1
n αγn(x), β(x)) ≥ σ}) → 0,(5.2)

µ({x ∈ X : dist(αγn(x), γnβ(x)) ≥ σ}) → 0,(5.3)

and

ν({x ∈ X : dist(γnβγ−1
n (x), α(x)) ≥ σ}) → 0,(5.4)

ν({x ∈ X : dist(βγ−1
n (x), γ−1

n α(x)) ≥ σ}) → 0,(5.5)

uniformly on Tβ and Tα, respectively.
(2) γn(On) is a 1

n -dense open subset, γn is continuous on On and γ−1
n is

continuous on γn(On).
(3) There exists an affine continuous map ∆n : Tβ → F (X) such that∫

f ◦ γnd∆n(µ) converges uniformly on Tβ for all f ∈ C(X), which
defines an affine homeomorphism r : Tβ → Tα and∣∣∣∣∫ fdµ−

∫
fd∆n(µ)

∣∣∣∣→ 0(5.6)

uniformly on Tβ for all f ∈ C(X), and there exists an affine continuous
map ∆̃n : Tα → F (X) such that

∫
f ◦γ−1

n d∆̃n(ν) converges uniformly
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on Tα for all f ∈ C(X), which defines the affine homeomorphism
r−1 : Tα → Tβ , and∣∣∣∣∫ fdµ−

∫
fd∆̃n(µ)

∣∣∣∣→ 0(5.7)

uniformly on Tα for all f ∈ C(X).

Remark 5.3. In general, one should not expect that {γn} converges in any
suitable sense. Nevertheless, it is important that {γn} carries some consistent
information. Note that Borel equivalences (or even homeomorphisms) do not
preserve measures. For a sequence of homeomorphisms {γn} from X onto X,
even if each γn does not map positive measure sets to sets with zero measure,
it could still happen that, for example, µ(γn(E)) → 0 for some Borel set
E with µ(E) > 0. Therefore one should regard (3) as a crucial part of the
definition.

It should be noted that the relation of approximate conjugacy uniformly in
measure is a rather weak relation. Given an affine homeomorphism r : Tα →
Tβ , Theorem 5.6 provides a sequence of maps {γn} which induces the map r
in the sense of (3) in 5.2 and γ−1

n αγn(x) converges to β and γnβγ−1
n converges

to α in measure uniformly on Tβ and Tα, respectively. It is interesting to see
that there exists a sequence {γn} which induces r.

For convenience, we list two known facts below.

Lemma 5.4. Let X be a compact metric space and α : X → X be a mini-
mal homeomorphism. Then, for any x, y ∈ X and any two open neighborhoods
N(x) and N(y) of x and y, there exist a neighborhood O(x) ⊂ N(x), an open
subset O ⊂ N(y), and a homeomorphism α′ from O(x) onto O.

Proof. This follows from the minimality immediately. In fact, for any ε > 0,
there exists n ≥ 1, such that

dist(αn(x), y) < ε/2.

Since αn is continuous, there exists δ > 0 such that

αn({ξ ∈ X : dist(x, ξ) < δ}) ⊂ {ξ ∈ X : dist(y, ξ) < ε}.
This means that the homeomorphism αn maps {x ∈ X : dist(x, ξ) < δ} into
the neighborhood {ξ ∈ X : dist(y, ξ) < ε}. �

Lemma 5.5. Two second countable locally compact Hausdorff spaces are
Borel equivalent if they have the same cardinality (≤ 2ℵ0) .

See 4.6.13 of [22] for a proof of 5.5.
We remind the reader that when X is a finite dimensional compact metric

space and α is minimal, (X,α) has mean dimension zero ([19]).
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Theorem 5.6. Let X be a finite dimensional compact metric space with
infinitely many points and let α, β : X → X be two minimal homeomorphisms.
Suppose that ρ(K0(Aα)) is dense in Aff(Tα)) and ρ(K0(Aβ)) is dense in
K0(Aβ). Then the following are equivalent:

(1) There is an affine homeomorphism r : Tβ → Tα.
(2) α and β are approximately conjugate uniformly in measure.

Proof. It suffices to prove “(1)⇒(2)”.
Fix ε > 0 and a finite subset F ⊂ C(X). Fix η0 > 0 such that

|f(x)− f(x′)| < ε/8

if dist(x, x′) < η0.
Choose an integer n > 0 such that 1/n < ε/8. Choose η1 > 0 such that

dist(αj(x), αj(y)) < η0/2 and dist(βj(x), βj(y)) < η0/2(5.8)

if dist(x, y) < η1, j = 1, 2, . . . , n− 1.
Let η = min{ε/4, η1/4, η0/4}.
By 3.4, one obtains an open subset G that satisfies the following properties:

(i) G contains
⋃l
i=1{x ∈ X : dist(x, xi) < d} for some d > 0, where

{x1, x2, . . . , xt} is η/6-dense;
(ii) αj(G) are pairwise disjoint for 0 ≤ j ≤ n− 1;
(iii) µ(X \

⋃n−1
j=0 α

j(G)) < ε/8 for all µ ∈ Tα;
(iv) µ(∂(G)) = 0 for all µ ∈ Tα.

Similarly, let Ω be an open subset that satisfies the following properties:

(i’) Ω contains at least one open ball of ξi, where {ξ1, ξ2, . . . , ξt} is η/2-
dense in X;

(ii’) βj(Ω) are pairwise disjoint for 0 ≤ j ≤ n− 1;
(iii’) µ(X \

⋃n−1
j=0 β

j(Ω)) > 1− ε/8 for all µ ∈ Tβ ;
(iv’) µ(∂(Ω)) = 0 for all µ ∈ Tα.

Note that we can use the same number t for the number of points in
{x1, x2, . . . , xt} and in {ξ1, ξ2, . . . , ξt}. When we apply 3.4 to obtain Ω, we use
the η/6-dense set {x1, x2, . . . , xt} to obtain the η/2-dense set {ξ1, ξ2, . . . , ξt}.

Suppose that O(xi) are open balls of xi so that O(xi) ⊂ G and O(ξi) are
open balls of ξi so that O(ξi) ⊂ Ω. Since (X,α) has mean dimension zero, let
{O1, O2, . . . , OL} be a finite set of pairwise disjoint open subsets of X such
that each Oi has diameter less than η1/2, X =

⋃L
i=1Oi and µ(Oi \ Oi) = 0

for all µ ∈ Tα. We may assume that O(xi) ⊂ Oi′ ∩G for some i′, by choosing
a smaller open ball of xi if necessary. Further, by considering a suitable
open ball of xi with universal null boundary, we may simply assume that
Oi = O(xi), i = 1, 2, . . . , t and L > t.
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Let {U1, U2, . . . , UL1} be a finite set of pairwise disjoint open subsets of X
such that each Ui has diameter less than η1/2, X =

⋃L1
i=1 Ui and ν(Ui\Ui) = 0

for all ν ∈ Tβ . We may also assume that O(ξi) = Ui, i = 1, 2, . . . , t and t < L1.
Let p ∈ Aα and q ∈ Aβ be the specially selected projections as given by

4.7 with

τ(1− p) < ε/16 and θ(1− q) < ε/16(5.9)

for all τ ∈ T (Aα) and θ ∈ T (Aβ) for ε/4, F , η, n and G above and ε/4, F , η,
n and Ω above.

Let G1 ⊂ Aβ be a finite subset (in place of G) and δ > 0 as given by 4.7 for
the above ε/4, F , n, η and Ω. Let G2 ⊂ Aα be a finite subset and δ1 > 0 as
given by 4.7 for the above ε/4, F , n η and G.

Let r\ : Aff(T (Aα)) → Aff(T (Aβ)) be the affine isomorphism induced
by r. It follows from 4.8 (and (5.9)) that, with sufficiently large G1 and
sufficiently small δ, there is a finite dimensional C∗-algebra B0, a unital G1-
δ-multiplicative contractive completely positive linear map φ : Aβ → B0, a
G2-δ-multiplicative contractive completely positive linear map ψ : Aα → B0,
and an affine continuous map ∆0 : T (Aβ) → T (B0), such that

(1) for all τ ∈ T (Aβ) and f ∈ F ,

|∆0(τ) ◦ φ(qjβ(f)q)− τ ◦ jβ(f)| < ε/8;(5.10)

(2) for all τ ∈ T (Aβ) and f ∈ F ,

|r\(ĵα(f))(τ)−∆0(τ) ◦ ψ(pjα(f)p)| < ε/8.(5.11)

Write B0 = ⊕k0s=1MR(s) and let πs : B0 → MR(s) be the canonical projec-
tion map. By applying 4.7, for each s, there are integers K(s) = msn and
K ′(s) = m′

sn with ms =
∑L
i=1ms(i) and m′

s =
∑L1
i′=1m

′
s(i

′), and points
yi,l(s) ∈ Oi ∩ G, l = 1, 2, . . . ,ms(i), i = 1, 2, . . . , L, Yi′,l′(s) ∈ Ui ∩ Ω,
l′ = 1, 2, . . . ,m′

s(i
′), i′ = 1, 2, . . . , L1, such that

(5.12)

∥∥∥∥∥∑
i,l,j

f(αj(yi,l(s)))ps,i,l,j

+
N(s)∑

i=K(s)+1

f(zi)ps,i − πs ◦ ψ ◦ (pjα(f)p)

∥∥∥∥∥ < ε/4

for all f ∈ F and
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(5.13)

∥∥∥∥∥∑
i′,l′,j

f(βj(Yi,l(s)))qs,i′,l′,j

+
N ′(s)∑

i′=K′(s)+1

f(z′i)qs,i′ − πs ◦ φ ◦ (qjβ(f)q)

∥∥∥∥∥ < ε/4

for all f ∈ F , where

{ps,i,l,j : i, l, j} ∪ {ps,i : i > N(s)} and {qs,i′,l′,j : i′, l′, j} ∪ {qs,i′ : i′ > N ′(s)}

are sets of mutually orthogonal rank one projections in MR(s) and zi, zi′ ∈ X.
In addition, by 4.7, we may assume that yi,1(1) = xi and Yi,1(1) = ξi, i =
1, 2, . . . , t.

Furthermore,

R(s)−K(s)
R(s)

< ε/4 and
R(s)−K ′(s)

R(s)
< ε/4(5.14)

for s = 1, 2, . . . , k0. Without loss of generality, since X has no isolated points,
we may assume that {yi,l(s) : i, l, s} and {Yi′,l′)(s) : i′, l′, s} are two sets of
distinct points. If m′

s > ms, we will move m′
s −ms many points of Yi′,l′(s)

to the set {z′i : i′}. If, on the other hand, ms > m′
s, we will move ms −m′

s

many points to {zi : i}. So, either way, we may assume that ms = m′
s and

K(s) = K ′(s). Note that we still have R(s)−K′(s)
R(s) < ε/4.

By replacing φ by ad u ◦ φ, for a suitable unitary in B0, we may assume
that

{ps,i,l,j : 1 ≤ i ≤ L, 1 ≤ l ≤ ms(i), 0 ≤ j ≤ n− 1} = {qs,i′,l′,j}.

Since now we assume that ms = m′
s, we define, for each s, γ̃(Yi′,l′(s)) to

be a one-to-one bijection between {Yi′l′(s) : i′, l′, s} and {yi,l(s) : i, l, s}. We
may also assume that γ̃(Yi,1(1)) = yi,1(1), i = 1, 2, . . . , t.

To construct the desired map γ, we divide Oi∩G into
∑k0
s=1ms(i) pairwise

disjoint sets Bs,i,l as follows: Choose d(s, i, l) > 0 so that the open balls
B(yi,l(s), d(s, i, l)) are mutually disjoint. If (s, i, l) 6= (1, i, 2), define Bs,i,l =
B(yi,l(s), d(s, i, l)). Define B1,i,2 = (Oi ∩G) \ (

⋂
(s,i,l) 6=(1,i,2)Bs,i,l). Similarly,

we then divide Ui′ ∩Ω into
∑k0
s=1m

′
s(i

′) pairwise disjoint subsets Cs,i′,l′ which
is either an open neighborhood of Yi′,l(s) or a closed subset which contains
an open neighborhood of Yi′,l(s).

Note that, since every point in X is condensed, Bs,i,l and Cs,i′,l′ are second
countable locally compact Hausdorff spaces with cardinality 2ℵ0 . By 5.5, they
are all Borel equivalent.

Define a Borel equivalence γ : X → X as follows:
By 5.4, there is an open neighborhood Z(i, 1, s) of Yi,1(s) in Cs,i,1 (for

1 ≤ i ≤ t) and a open subset Z̃(i, 1, s) of Bs,i,1 which are homeomorphic. In
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particular, the closure of a smaller open neighborhood of Yi,1(s) is homeomor-
phic to the closure of an open subset of Z̃(i, 1, s). Thus, by taking a sufficiently
small such neighborhood and by applying 5.5, one obtains a Borel equivalence
γ from Cs,i,1 onto Bs,i,1 which maps a non-empty neighborhood Z(i, 1, s) of
Yi,1(s) to an open subset of a neighborhood of yi,1(s) homeomorphically for
1 ≤ i ≤ t.

For the rest of Cs,i,l (l > 1 or l = 1, but i > t), we define γ to be a Borel
equivalence from Cs,i,l to Bs,i′,l′ if γ̃(Yi,l(s)) = yi,l(s).

We define γ on βj(Cs,i′,l′) to be αj ◦ γ ◦ β−j , j = 1, 2, . . . , n− 2.
Since X \

⋃n−2
j=0 α

j(G) (which is a compact subset of X which contains
αn−1(G)) and X \

⋃n−2
j=0 α

j(Ωj) (which is a compact subset of X which con-
tains αn−1(Ω)) are Borel equivalent, we obtain a Borel equivalence γ of X
which is bi-continuous on O =

⋃
i′,s Z(i′, 1, s). Note that γ maps

⋃n−2
j=0 β

j(Ω)
onto

⋃n−2
j=0 α

j(G). We also have γ(Z(i, 1, s)) ⊂ Z̃(i, 1, s). Since
⋃L
i=1Oi and⋃L1

i′=1 Ui have diameter less than η/2, by the construction, we see that O and
γ(O) are η -dense in X.

Moreover, on each βj(Cs,i′l′) with 0 ≤ j ≤ n− 2,

dist(γ−1αγ(x), β(x)) < η and dist(αγ(x), γβ(x)) < η.(5.15)

We also have, on each αj(Bi,l,s) with 0 ≤ j ≤ n− 2,

dist(γβγ−1(x), α(x)) < η and dist(βγ−1(x), γ−1α(x)) < η.(5.16)

Since

ν(βn−1(Ω)) < 1/n < ε/8 and µ(αn−1(G)) < 1/n < ε/8(5.17)

for all β-invariant probability measures ν and α-invariant probability measures
µ, we conclude that

ν({x ∈ X : dist(γ−1αγ(x), β(x)) > η}) < ε/4 and(5.18)

µ({x ∈ X : dist(γβγ−1(x), α(x)) > η}) < ε/4(5.19)

for all β-invariant probability measures ν and α-invariant probability measures
µ.

To complete the proof, it remains to check (3) of 5.2. to this end, we note
that, by (5.12), (5.13) and (5.14),∣∣∣∣∣∣

∑
s,i,l,j

f(αj(yi,l(s)))∆0(τ)(ps,i,l,j)−∆0(τ)(ψ ◦ (pjα(f)p))

∣∣∣∣∣∣ < ε/2(5.20)

and ∣∣∣∣∣∣
∑

s,i′,l′,j′

f(βj(Yi,l(s)))∆0(τ)(qs,i′,l′,j)−∆0(τ)(φ ◦ (qjβ(f)q))

∣∣∣∣∣∣ < ε/2(5.21)
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for all f ∈ F and τ ∈ T (Aβ). Note also that, for each s, ∆0(τ)(ps,i,l,j) =
∆0(τ)(qs,i′,l′,j) = cτ

R(s) for all i, i′, l, l′, j and for some non-negative constant
cτ .

We also estimate that, for each s,

(5.22)

∣∣∣∣∣ ∑
i′,l′,0≤j≤n−2

f ◦ γ(βj(Yi′,l′(s)))
cτ
R(s)

−
∑

i,l,0≤j≤n−2

f(αj(yi,l(s)))
cτ
R(s)

∣∣∣∣∣ < ε/8

and

(5.23)

∣∣∣∣∣ ∑
i,l,o≤j≤n−2

f ◦ γ−1(αj(yi,l(s)))
cτ
R(s)

−
∑

i,l,0≤j≤n−2

f(βj(Yi′,l′(s)))
cτ
R(s)

∣∣ < ε/8

for all f ∈ F and τ ∈ Tβ .
Define ∆ : Tβ → F (X) by∫

fd(∆(µ)) =
k0∑
s=1

∑
i′,l′,0≤j≤n−2

f(βj(Yi′.l′(s)))
cτ
R(s)

for all µ ∈ Tβ (where µ = µτ ) and all f ∈ C(X). Note that
∫
fd(r(µ)) =

r\(ĵα(f))(τ) (µ = µτ ). Combining (5.9), (5.10), (5.11), (5.14), (5.20) and
(5.22), we have ∣∣∣∣∫ fdµ−

∫
fd(∆(µ))

∣∣∣∣ < ε,(5.24) ∣∣∣∣∫ f ◦ γd(∆(µ))−
∫
fd(r(µ))

∣∣∣∣ < ε(5.25)

for all β-invariant probability measures µ and all f ∈ F .
Define ∆̃ : Tα → F (X) by ∆̃(ν) = ∆(r−1

\ (ν)) for ν ∈ Tα. Then we have,
by (5.9), (5.10), (5.11), (5.14), (5.21) and (5.23),∣∣∣∣∫ fd∆̃(ν)−

∫
fdν

∣∣∣∣ < ε,(5.26) ∣∣∣∣∫ f ◦ γ−1d∆̃(ν)−
∫
fd(r−1(ν))

∣∣∣∣ < ε(5.27)

for all α-invariant probability measures ν and all f ∈ F . �
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6. Concluding remarks

6.1. Let X be a compact metric space and T be a convex subset of prob-
ability Borel measures. Suppose that Γn,Γ : X → X are Borel maps and
Γn → Λn in measure uniformly on T . Then a uniform Egorov theorem holds.
Put

Sm,k = {x ∈ X : dist(Γm,Γ(x)) ≥ 1/k},(6.1)

k = 1, 2, . . . , and m = 1, 2, . . . Let δ > 0. For each k > 0, there exists an
integer n(k) such that

µ(Sn(k),k) <
δ

2k
(6.2)

for all µ ∈ T , if n ≥ n(k). Put

E =
∞⋂
k=1

∞⋂
m=n(k)

{x ∈ X : dist(Γm(x),Γ(x)) < 1/k}.(6.3)

Then Γn converges to Γ uniformly on E. Furthermore,

µ(X \ E) ≤ µ

( ∞⋃
k=1

Sn(k),k

)
≤

∞∑
k=1

µ(Sn(k),k) < δ(6.4)

for all µ ∈ T . Thus, in Theorem 5.6, for any δ > 0, there exists a Borel
subset E ⊂ X with µ(X \ E) < δ for all µ ∈ Tβ such that γ−1

n αγn converges
to β uniformly on E. Moreover, there exists a Borel subset E′ ⊂ X with
µ(X \ E′) < δ such that γnβγ−1

n converges to α uniformly on E′. A similar
measure theoretical argument, by taking a subsequence of {γn}, shows that
there exist Borel measurable subsets Fα, Fβ ⊂ X such that γ−1

n αγn converges
to β on Fβ and γnβγ

−1
n converges to α on Fα and X \ Fβ and X \ Fβ are

universally null, i.e., µ(X \ Fβ) = 0 for all µ ∈ Tβ and ν(X \ Fα) = 0 for all
ν ∈ Tα.

6.2. Suppose that X is the Cantor set and suppose that α, β : X → X are
two minimal homeomorphisms. Then in Theorem 3.4 G can be chosen to be
clopen. Since a non-empty clopen subset of the Cantor set can be divided into
m non-empty clopen subsets for any integer m > 0, in the proof of 5.6, Bi,l,s
and Ci′,l′,s can be chosen to be also non-empty clopen subsets of X. They all
are homeomorphic. It is then easy to see that the map γ in the proof can be
made a homeomorphism. In other words, we have the following corollary:

Corollary 6.1. Let X be the Cantor set and let α, β : X → X be mini-
mal homeomorphisms. Then α and β are approximately conjugate uniformly
in measure if and only if there is an affine homeomorphism r : Tα → Tβ.
Moreover, when α and β are approximately conjugate uniformly in measure,
the conjugating maps γn can be chosen to be homeomorphisms.
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