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POINTWISE CONVERGENCE OF THE ERGODIC
BILINEAR HILBERT TRANSFORM

CIPRIAN DEMETER

Abstract. We prove that the ergodic bilinear Hilbert transform con-
verges almost everywhere for pairs of bounded functions. We also give
a proof along the same lines of Bourgain’s analog result for averages.

1. Introduction

Let X = (X,Σ,m, τ) be a dynamical system, i.e., a complete probability
space (X,Σ,m) equipped with an invertible bimeasurable transformation τ :
X → X such that mτ−1 = m. The starting point in this discussion is a result
proved by Bourgain for bilinear averages.

Theorem 1.1 ([3]). For each f, g ∈ L∞(X) the averages

1
N

N−1∑
n=0

f(τnx)g(τ−nx)(1.1)

converge for almost every x.

Bourgain’s method consists of turning the issue of almost everywhere con-
vergence into a quantitative problem regarding multipliers on the torus, which
are investigated by using classical Fourier analysis. An important reduction
of ergodic theoretic nature in his argument concerns the fact that g can be
assumed to be orthogonal to the linear space L2(K), where K = (X,K,m)
and K ⊂ Σ is the σ- algebra generated by the eigenfunctions of τ . This is
because the convergence is trivial in the case g is an eigenfunction, as it is eas-
ily seen from Birkhoff’s ergodic theorem [2]. This reduction has the following
consequence for the spectral behavior of any g orthogonal to L2(K):

lim
N→∞

sup
|z|=1

∣∣∣∣∣ 1
N

N−1∑
n=0

g(τ−nx)zn

∣∣∣∣∣ = 0;(1.2)
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see [1] for a proof of this and of some related results. Using this, Bourgain
identifies the limit to be 0 for such a g. More generally,

lim
N→∞

1
N

N−1∑
n=0

f(τnx)g(τ−nx) = lim
N→∞

1
N

N−1∑
n=0

f(τnx)PKg(τ−nx),

for each g ∈ L∞(X), where PKg is the projection of g onto L2(K). A different
way of putting this is to say that the Kronecker algebra K is a characteristic
factor for the almost everywhere convergence of the averages (1.1).

In this paper we will prove the convergence of the ergodic bilinear Hilbert
transform.

Theorem 1.2. For each f, g ∈ L∞(X) the series
N∑′

n=−N

f(τnx)g(τ−nx)
n

converges for almost every x.

Remark 1.3. As a consequence of the above result and of the bilinear
maximal inequality for very general kernels in [7], it follows that Theorem 1.2
holds for all f ∈ Lp(X), g ∈ Lq(X), whenever 1 < p, q ≤ ∞ and 1

p + 1
q <

3
2 .

Bourgain’s approach does not seem to be applicable to the context of series,
in part due to the fact that the characteristic factors for weighted operators
other than the usual averages are much less understood, and probably of less
relevance to the essence of the problem. In particular, (1.2) fails if the averages
are replaced with the truncations of the ergodic Hilbert transform.

We prove Theorem 1.2 using time-frequency harmonic analysis, and by a
similar argument we also give a new proof of Theorem 1.1. Our methods
will not perceive the difference between the differentiation and the singular
integral versions of the above result, due to a common decomposition of both
operators into discrete model sums.

Interestingly, our argument does not appeal to characteristic factors or in
general to any concrete spectral analysis. Moreover, only a little ergodic the-
ory is needed in the whole argument, when integration along individual orbits
allows us to transfer certain oscillation inequalities from harmonic analysis.
However, the structure of the Kronecker factor is deeply rooted into our ap-
proach. Since the (linear) exponentials eiλx are the eigenfunctions for rota-
tions on the torus, it is probably the case that their presence in the wave
packet decomposition of g is reminiscent of the expansion of PKg into a ba-
sis consisting of eigenfunctions for τ . This also suggests that, perhaps, a
time-frequency approach to the similar open questions concerning trilinear
averages will involve quadratic exponentials like eiλx2

, which are second order
eigenfunctions for the rotations on the torus.
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Both theorems above will be consequences of the following very general
harmonic analysis result, as explained in Section 3. We will use the notation

Dilps h(x) = s−1/ph
(x
s

)
,

Modθ g(x) = e2πiθxg(x).

Theorem 1.4. Let K : R → R be an L2 kernel satisfying the following
requirements:

K̂ ∈ C∞(R \ {0}),(1.3)

|K̂(ξ)| . min
{

1,
1
|ξ|

}
, ξ 6= 0,(1.4) ∣∣∣∣ dn

dξn
K̂(ξ)

∣∣∣∣ . 1
|ξ|n

min
{
|ξ|, 1

|ξ|

}
, ξ 6= 0, n ≥ 1.(1.5)

Then for each d = 21/n, n ∈ N, each f, g ∈ L∞(R) with bounded support
and each finite sequence of integers u1 < u2 < · · · < uJ ,∥∥∥∥∥

(
J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣
∫
f(x+ y)g(x− y)×(1.6)

×
(
Dil1dk K(y)−Dil1duj+1 K(y)

)
dy

∣∣∣∣∣
2)1/2∥∥∥∥∥

L1,∞
x

. J1/4‖f‖L2‖g‖L2 ,

with the implicit constants depending only on n.

Remark 1.5. Due to the assumptions that f and g are bounded and have
bounded support it follows that for each x ∈ R the integral∫

f(x+ y)g(x− y)(Dil1dk K(y)−Dil1duj+1 K(y))dy(1.7)

converges absolutely. The same remark applies to the following two theorems.

Remark 1.6. The proof of this theorem is inspired by ideas from [4], [5]
and [6]. The same techniques can extend the theorem to a larger range for p
and q and eliminate the dependence on J of the bound in the above inequality.
However, its current form suffices for our purposes. Moreover, the argument
for a more general result as mentioned would have to be more technical and
would require us to revisit most of the main results in [4], making the whole
presentation much longer. In particular, one of the advantages of the current
approach is that it does not rely on any type of interpolation, being a purely
L2 argument.
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Our hope is that by keeping technicalities to a minimum, the whole argu-
ment will become easier to follow. The interested reader is certainly referred
to [4] for details on some of the results we are quoting here.

As an immediate corollary of Theorem 1.4 we get a particular case of
Lacey’s inequality for the bilinear maximal function:

Corollary 1.7 ([7]). The following inequality holds for each f, g ∈ L2(R):

∥∥∥∥∥sup
ε>0

1
ε

∫
|y|>ε

|f(x+ y)g(x− y)|dy

∥∥∥∥∥
L1,∞

x

. ‖f‖2‖g‖2.

Theorem 1.4 will follow from two distinct results of dyadic analysis. The
first one, Theorem 1.8, is the particular case d = 2 of the above result and
captures the main difficulty of the problem. The second one, Theorem 1.9, is
a square function estimate and will be used to control error terms.

To understand better the connection between these three theorems we in-
troduce some notation. Let x : (0,∞) → C. Let also u1 < · · · < uJ be as in
Theorem 1.4 and define a1 ≤ · · · ≤ aJ such that ajn ≤ uj < (aj + 1)n. Then
observe that

(
J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣x
(
k

n

)
− x

(uj+1

n

) ∣∣∣∣∣
2)1/2

.
n−1∑
i=0

(
J−1∑
j=1

sup
k∈Z

aj≤k<aj+1

∣∣∣∣x(k +
i

n

)
− x

(
aj+1 +

i

n

)∣∣∣∣2
)1/2

+
n−1∑
i,j=0
i 6=j

(∑
k∈Z

∣∣∣∣x(k +
i

n

)
− x

(
k +

j

n

)∣∣∣∣2
)1/2

.

Using this inequality and a dilation argument, Theorem 1.4 will follow
immediately from the two results below.

Theorem 1.8. Let K : R → R be an L2 kernel satisfying (1.3), (1.4) and
(1.5). Then for each finite sequence of integers u1 < u2 < · · · < uJ and each
f, g ∈ L∞(R) with bounded support,
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(

J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣
∫
f(x+ y)g(x− y)×

×
(
Dil12k K(y)−Dil12uj+1 K(y)

)
dy

∣∣∣∣∣
2)1/2∥∥∥∥∥

L1,∞
x

. J1/4‖f‖L2‖g‖L2 ,

with some universal implicit constant.

Theorem 1.9. Let K : R → R be an L2 kernel satisfying (1.3), (1.4) and
(1.5) and the extra requirement

|K̂(ξ)| . |ξ|, ξ 6= 0.(1.8)

Then for each f, g ∈ L∞(R) with bounded support,∥∥∥∥∥
(∑

k∈Z

∣∣∣∣∣
∫
f(x+ y)g(x− y) Dil12k K(y)dy

∣∣∣∣∣
2)1/2∥∥∥∥∥

L1,∞
x

(1.9)

. ‖f‖L2‖g‖L2 ,

with some universal implicit constant.

In Section 3 we indicate how the result of Theorem 1.4 can be transferred
to a similar inequality in a dynamical system, and how this implies the con-
vergence in Theorems 1.1 and 1.2. In Section 4 we discretize the operator
in Theorem 1.8, while the remaining sections are concerned with proving its
boundedness. In the last section we briefly sketch how the same procedure
can be applied to prove Theorem 1.9.

We thank Camil Muscalu for pointing out an error in the original argument
for Theorem 6.1.

2. Notation

In this section we set up some notation and terminology for the rest of the
paper.

If I is an interval, then c(I) denotes the center of I, while cI is the interval
with the same center and length c times the length of I. By 1A we denote the
characteristic function of the set A ⊂ R, while for any dyadic interval I,

χI(x) =

(
1 +

(x− c(I))2

|I|2

)−1/2

.

A tile P is a rectangle P = IP × ωP such that IP is a dyadic interval and
|IP | · |ωP | = 1. A multitile s is a box s = Is × ωs,1 × · · · × ωs,n such that Is is
a dyadic interval, |ωs,1| = · · · = |ωs,n| and |Is| · |ωs,1| = 1.



1128 CIPRIAN DEMETER

For each E of finite measure, X(E) will denote the set of all functions
supported in E with ‖f‖∞ ≤ 1, while X2(E) will denote the L2 normal-
ized set of all functions supported in E with ‖f‖∞ ≤ |E|−1/2. Also Mf(x) =
supr>0

1
2r

∫ x+r

x−r
|f |(y)dy denotes the classical Hardy-Littlewood maximal func-

tion.
The notation a . b means that a ≤ cb for some universal constant c, while

a ∼ b means that a . b and b . a. Sometimes we will write a .parameters b to
indicate that a ≤ cb with c depending only on the specified parameters.

3. Pointwise convergence for averages and series

3.1. Bounded oscillation implies convergence. Assume we have a
sequence Wk of weighted operators defined on a dynamical system X =
(X,Σ,m, τ) by the formula

Wk(f, g)(x) =
∑
n∈Z

wk,nf(τnx)g(τ−nx), k ∈ N.

Lemma 3.1. If for some f, g ∈ L2(X)∥∥∥∥∥
(

J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣Wk(f, g)(x)−Wuj+1(f, g)(x)
∣∣2)1/2∥∥∥∥∥

L1,∞

(3.1)

. J1/4‖f‖L2‖g‖L2

uniformly in J and all finite sequences of positive integers u1 < u2 < · · · < uJ ,
then

lim
k→∞

Wk(f, g)(x)

exists for almost every x ∈ X.

Proof. To see this, assume for contradiction that the convergence does not
hold. It follows that there is a measurable set X ′ ⊂ X with m(X ′) > 0 and
some α > 0, such that for each x ∈ X ′

lim sup
k→∞

Wk(f, g)(x)− lim inf
k→∞

Wk(f, g)(x) > α.

An elementary measure theoretic argument shows that one can then choose
a subset X ′′ ⊆ X ′ of positive measure and a sequence of positive integers
(uj)j∈N such that

sup
uj≤k<uj+1

|Wk(f, g)(x)−Wuj+1(f, g)(x)| > α,
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for each j ∈ N and for each x ∈ X ′′. We immediately get that for each J∥∥∥∥∥
(

J∑
j=1

sup
uj≤k<uj+1

∣∣Wk(f, g)(x)−Wuj+1(f, g)(x)
∣∣2)1/2∥∥∥∥∥

1,∞

≥ J1/2αm(X ′′),

which contradicts inequality (3.1). �

3.2. Proof of Theorem 1.1. Let M ∈ N be arbitrary. We apply Theo-
rem 1.4 to a C∞ kernel KM satisfying

1[0,1] ≤ KM ≤ 1[− 1
M ,1+ 1

M ]

Then we invoke standard transfer methods like in [4] to get the following
corollary.

Corollary 3.2. For each d = 21/n, n ∈ N, each finite sequence of posi-
tive integers u1 < u2 < · · · < uJ and each f, g ∈ L2(X)∥∥∥∥∥

(
J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣ (Adk −Aduj+1 )(f, g)

+ (Edk,M − Eduj+1 ,M )(f, g)

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

.M,n J
1/4‖f‖L2‖g‖L2 ,

where for each real r > 1 we denote

Ar(f, g)(x) =
1
[r]

∑
0≤n≤r

f(τnx)g(τ−nx),

while

Er,M (f, g)(x) =
∑
n∈Z

wr,n,Mf(τnx)g(τ−nx)

is some error term with

sup
r>1

∑
n∈Z

|wr,n,M | . M−1.(3.2)

By using this and Lemma 3.1 we find that there is a set X0 of full measure
such that for each M ∈ N, each d = 21/n and each x ∈ X0 the following limit
exists:

lim
k→∞

(Adk(f, g)(x) + Edk,M (f, g)(x)).
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Fix now some f, g ∈ L∞(X) with ‖f‖∞, ‖g‖∞ ≤ 1. Based on (3.2) we now
get that for almost every x ∈ X0

lim sup
k→∞

Ak(f, g)(x)− lim inf
k→∞

Ak(f, g)(x)

≤ lim sup
k→∞

(Adk(f, g)(x) + Edk,M (f, g)(x))

− lim inf
k→∞

(Adk(f, g)(x) + Edk,M (f, g)(x))

+ lim sup
k→∞

Ek(f, g)(x)− lim inf
k→∞

Ek(f, g)(x) + 10n−1

. n−1 +M−1.

Since we can take M and n to be as large as we want, it follows that

lim
k→∞

Ak(f, g)(x)

exists almost everywhere.

3.3. Proof of Theorem 1.2. Since the Hilbert kernel involved in Theo-
rem 1.2 is not integrable, the route towards proving convergence in this case
poses some extra difficulties. As a consequence, we will present a more de-
tailed argument in this case.

The point is again to prove the almost everywhere convergence of the series
N∑′

n=−N

f(τnx)g(τ−nx)
n

along lacunary sequences and then invoke the boundedness of both f and g to
get the convergence along the full sequence of positive integers. For simplicity
we choose to present the argument in the particular case N = 2k.

Let M ∈ N be arbitrary. We apply Theorem 1.4 to a C∞ kernel KM

satisfying

KM (x) =
1
x

for |x| ≥ 1,

|KM1[−1,1]| ≤ 2× 11− 1
M≤|x|≤1.

Introduce the discrete kernels Hk,M : R → R, k ≥ 1, defined by

Hk,M (x) =
∑

−2k≤i≤2k−1

1[i,i+1)(x)
1
2k
KM

(
i

2k

)
+

∑
i∈Z\[−2k,2k−1]

1[i,i+1)(x)
1
i
.

Let k1 < k2 < · · · < kJ be an arbitrary sequence of positive integers. The
fact that the terms of the sequence are positive is a crucial fact, exploited in
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the following. Indeed, we note that

|Hk,M (y)−Dil12k KM (y)| .M

{
1

22k , |y| ≤ 2k,
1
y2 , |y| ≥ 2k.

From the boundedness of the maximal averages in Corollary 1.7 we deduce
that∥∥∥∥∥

(∑
k≥1

∣∣∣∣∣
∫
f(x+ y)g(x− y)(Hk,M (y)−Dil12k KM (y))dy

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

.M ‖ sup
ε>0

1
ε

∫
|y|>ε

|f(x+ y)g(x− y)|dy‖1,∞

. ‖f‖2‖g‖2.

As a consequence of this and Theorem 1.4 applied to KM , we get that∥∥∥∥∥
(

J−1∑
j=1

sup
kj≤k<kj+1

∣∣∣∣∣
∫
f(x+ y)g(x− y)

(
Hk,M (y)(3.3)

−Hkj+1,M (y))dy

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

.M J1/4‖f‖2‖g‖2.

The next step consists of transferring (3.3) to the integers. By considering
functions like f : R → R with

f(x) =

{
φ([x]), [x] + 1

4 ≤ x ≤ [x] + 1
2 ,

0, otherwise,

and g : R → R with

g(x) =

{
ψ([x]), [x] + 1

4 ≤ x ≤ [x] + 1
2 ,

0 otherwise,

we get that for each φ, ψ : Z → Z with finite support∥∥∥∥∥
(

J−1∑
j=1

sup
kj≤k<kj+1

∣∣∣∣∣∑
b∈Z

φ(a+ b)ψ(a− b)×(3.4)

×
(
Hk,M (b)−Hkj+1,M (b)

)∣∣∣∣∣
2)1/2∥∥∥∥∥

l1,∞(Z)

.M J1/4‖φ‖l2(Z)‖ψ‖l2(Z).
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For each k ≥ 1 introduce the kernels Ak,M : Z → Z and Sk,M : Z → Z
defined by

Ak,M (i) =

{
Hk,M (i), −2k ≤ i ≤ 2k,

0, otherwise,

Sk,M (i) =

{
1
i , −2k ≤ i ≤ 2k, i 6= 0,
0, otherwise,

and note that for each k < k′

Hk,M −Hk′,M = Ok,M −Ok′,M := (Ak,M − Sk,M )− (Ak′,M − Sk′,M ).

Thus (3.4) gives

∥∥∥∥∥
(

J−1∑
j=1

sup
kj≤k<kj+1

∣∣∣∣∣∑
b∈Z

φ(a+ b)ψ(a− b)×

×
(
Ok,M (b)−Okj+1,M (b)

) ∣∣∣∣∣
2)1/2∥∥∥∥∥

l1,∞(Z)

.M J1/4‖φ‖l2(Z)‖ψ‖l2(Z).

Standard transfer to a dynamical system X = (X,Σ, µ, τ), as in [4], leads
to

∥∥∥∥∥
(

J−1∑
j=1

sup
kj≤k<kj+1

∣∣∣∣∣∑
n∈Z

f(τnx)g(τ−nx)×(3.5)

×
(
Ok,M (n)−Okj+1,M (n)

) ∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

.M J1/4‖f‖2‖g‖2.

By invoking Lemma 3.1 it follows that if ‖f‖L∞ , ‖g‖L∞ ≤ 1, then

lim
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Ok,M (n)
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exists for almost every x ∈ X. Finally,

lim sup
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Sk,M (n)

− lim inf
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Sk,M (n)

≤ lim sup
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Ok,M (n)

− lim inf
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Ok,M (n)

+ lim sup
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Ak,M (n)

− lim inf
k→∞

∑
n∈Z

f(τnx)g(τ−nx)Ak,M (n)

. CM−1.

Since this holds for arbitrary M , we get that

lim
k→∞

2k∑′

n=−2k

f(τnx)g(τ−nx)
n

exists almost everywhere.

4. Discretization

Definition 4.1. A set G′ of (not necessarily dyadic) intervals is called a
grid if

• I, I ′ ∈ G′ and |I ′| ≤ |I| imply that either I ′ ⊂ I or I ∩ I ′ = ∅;
• I ∈ G′ implies that |I| = 2k, for some k ∈ Z.

The standard dyadic grid is

S = { [2il, 2i(l + 1)] : i, l ∈ Z}.(4.1)

We will also be interested in a more general type of grid. For each odd integer
N ≥ 3, each 0 ≤ t ≤ N − 2 and 0 ≤ L ≤ N − 1, the collection

GN,t,L :=

{[
2i

(
l +

L

N

)
, 2i

(
l +

L

N
+ 1

)]
:

i ≡ t (mod N − 1), l ∈ Z

}
is a grid, as easily follows from the fact that 2N−1 ≡ 1 (mod N). We note
that for each fixed N the grids GN,t,L are pairwise disjoint, for 0 ≤ t ≤ N − 2
and 0 ≤ L ≤ N − 1.
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For each L2 kernel K, each f, g ∈ L∞(R) with bounded support and each
sequence U = (uj)J

j=1 define the quantity

OK,U(f, g)(x) =

(
J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣
∫
f(x+ y)g(x− y)

(
Dil12k K(y)−Dil12uj+1 K(y)

)
dy

∣∣∣∣∣
2)1/2

.

In the following we indicate how to discretize it. Choose η : R → R
such that η̂ is a C∞(R \ {0}) function which equals limξ→0+ K̂(ξ) on

(
0, 1

2

]
,

limξ→0− K̂(ξ) on
[
− 1

2 , 0
)
, and 0 outside [−1, 1]. The two limits exist due to

the fact that | d
dξK(ξ)| . 1 for ξ 6= 0. It suffices to prove

‖Oη,U(f, g)‖1,∞ . J1/4‖f‖2‖g‖2,(4.2)

‖OK−η,U(f, g)‖1,∞ . J1/4‖f‖2‖g‖2.(4.3)

The proofs for the above inequalities will follow from a more general principle,
as explained below. The crucial property of the multiplier K̂ − η that will be
used later is the following:∣∣∣∣ dn

dξn
K̂ − η(ξ)

∣∣∣∣ . 1
|ξ|n

min
{
|ξ|, 1

|ξ|

}
, n ≥ 0.(4.4)

Note that the additional inequality |K̂ − η(ξ)| . |ξ| for ξ 6= 0 is a consequence
of the fact that | d

dξ K̂(ξ)| . 1 for ξ 6= 0. Write

K̂ − η(ξ) =
∞∑

j=−∞
K̂ − η(ξ)q

(
ξ

2j

)
,(4.5)

where q is some Schwartz function supported in the annulus 1
2 < |ξ| < 2 such

that ∑
j∈Z

q

(
ξ

2j

)
= 1, ξ 6= 0.

Define gj = K̂ − η(ξ)q(ξ/2j). As a consequence of (4.4) we get that both the
function η and each function Dil12j ǧj satisfy

|η(x)| .M
1

(1 + |x|)M
,∣∣∣∣ 1

2j
ǧj

( x
2j

)∣∣∣∣ .M
2−|j|

(1 + |x|)M
,
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for all M ≥ 0 and x ∈ R, uniformly in j ∈ Z. Moreover, each of the above
functions has the Fourier transform constant on both {0 < ξ ≤ 1

2} and {− 1
2 ≤

ξ < 0}, as well as on {|ξ| ≥ 2}.
For each j ∈ Z define the shifted sequence U′

j = U−j. Since the operators
Oǧj ,U and ODil1

2j ǧj ,U′
j

coincide, inequalities (4.2) and (4.3) will immediately
follow if we prove that

‖Oθ̌,U(f, g)‖1,∞ . J1/4‖f‖2‖g‖2,(4.6)

uniformly in all C∞(R \ {0}) functions θ which are constant on both {0 <
ξ ≤ 1

2} and {− 1
2 ≤ ξ < 0}, as well as on {|ξ| ≥ 2}, and which satisfy

|θ̌(x)| .M
1

(1 + |x|)M
(4.7)

for all M ≥ 0 and x ∈ R.
By a similar reduction we can assume instead that θ is constant on {|x| ≤

1000} and on {|x| ≥ 4000}. This extra assumption will serve later for the
purpose of creating disjointness of some sort between multitiles. Note that

θ(2kξ) =
∑
i≥k

θi(ξ),

where θi(ξ) = θ(2iξ)−θ(2i+1ξ) is supported in the annulus {500×2−i ≤ |ξ| ≤
4000× 2−i}.

Pick a Schwartz function ψ such that ψ̂ is supported in [0, 2
5 ] and satisfies

the following property for every ξ ∈ R:

∑
l∈Z

∣∣∣∣∣ ψ̂
(
ξ − l

5

)∣∣∣∣∣
2

= 1.

For each scale i use the following expansion for both f and g, valid in every
Lp norm, 1 < p <∞:

f =
∑

m,l∈Z

〈f, ψi,m, l
5
〉ψi,m, l

5
,

g =
∑

m,l∈Z

〈g, ψi,m, l
5
〉ψi,m, l

5
,

where

ψi,m,l(x) = 2−i/2ψ(2−ix−m)e2πi2−ixl.
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The fundamental properties of ψi,m,l that will be used in the following are∣∣∣∣ dn

dxn
Mod−l2−i ψi,m,l(x)

∣∣∣∣(4.8)

.M 2(−1/2−n)i 1
(1 + |2−ix−m|)M

, M ≥ 0,

supp ψ̂i,m,l ⊂
[
l

5
2−i,

(
l

5
+ 1
)

2−i

]
.(4.9)

The above properties can be summarized by saying that the tile [m2i, (m +
1)2i]× [ l

52−i, ( l
5 + 1)2−i] is a Heisenberg box for ψi,m,l.

With the notation

ϕi,~m,~l(x) := 2i/2

∫
ψ

i,m1,
l1
5
(x+ y)ψ

i,m2,
l2
5
(x− y)θ̌i(y)dy

it follows that

Oθ̌,U(f, g)(x) =(
J−1∑
j=1

sup
k∈Z

kj≤k<kj+1

∣∣∣∣∣
kj+1−1∑

i=k

∑
~m,~l∈Z2

2−i/2〈f, ψ
i,m1,

l1
5
〉〈g, ψ

i,m2,
l2
5
〉ϕi,~m,~l(x)

∣∣∣∣∣
2)1/2

.

The triangle inequality then shows that Theorem 1.8 follows once we prove
that ∥∥∥∥∥∑

m≥0

(
J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣
uj+1−1∑

i=k

∑
~m,~l∈Z2

|m1−m2|=m

(4.10)

2−i/2〈f, ψ
i,m1,

l1
5
〉〈g, ψ

i,m2,
l2
5
〉ϕi,~m,~l

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

. J1/4‖f‖2‖g‖2.

The computations that follow are meant to reveal the decay and localization
of the functions ϕi,~m,~l.

We first observe that since

ϕ̂i,~m,~l(ξ) =
∫
ψ̂

i,m1,
l1
5
(η)ψ̂

i,m2,
l2
5
(ξ − η)θ(2η − ξ)dη,

it turns out that

supp ϕ̂i,~m,~l ⊆ supp ψ̂i,m1,l1 + supp ψ̂i,m2,l2 ⊂
[
l3
5

2−i,

(
l3
5

+ 1
)

2−i

]
,(4.11)

where from now on we denote

l3 = l1 + l2.(4.12)
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We next observe that for each M ≥ 0

|2i/2ϕi,~m,~l(2
ix)| .

∫
|ψ(x+ y −m1)ψ(x− y −m2)θ̌(y)|dy

.M
1

(1 + |x−m1|)M (1 + |x−m2|)M

.M
1

(1 + |m1 −m2|)M (1 + |x− m1+m2
2 |)M

.

A similar estimate holds for all derivatives, and we conclude that

(4.13)
∣∣∣∣ dn

dxn
Mod− l3

5 2−i ϕi,~m,~l(x)
∣∣∣∣

.M 2(−1/2−n)i 1
(1 + |m1 −m2|)M (1 + |2−ix− m1+m2

2 |)M
,

for each n,M ≥ 0.
We thus see that ϕi,~m,~l satisfies the same type of properties as ψi,m,l, with

some extra uniform decay in m = |m1 −m2|. In particular, if Ii,~m is one of
the (at most two) dyadic intervals of length 2i which contains m1+m2

2 , then
Ii,~m × [ l3

5 2−i,
(

l3
5 + 1

)
2−i] is certainly a Heisenberg box for ϕi,~m,~l.

Finally, since

ϕi,~m,~l(x) =
∫
ψ̂

i,m1,
l1
5
(ξ1)ψ̂i,m2,

l2
5
(ξ2)θi(ξ2 − ξ1)e2πix(ξ1+ξ2)dξ1dξ2,

it follows that in order for ϕi,~m,~l to not be the zero function we must have

102 <

∣∣∣∣ l15 − l2
5

∣∣∣∣ < 104.(4.14)

The next reduction concerns the fact that there is a finite universal set
E ∈ Z, such that every l1, l2, l3 satisfying (4.12) and (4.14) will also satisfy
the following:

l2 = l1 + e(4.15)

for some e ∈ E. We will restrict the summation in (4.10) to those vectors ~l
satisfying (4.15) for some fixed e ∈ E.

For each ~l ∈ Z3 and each i ∈ Z define the cubes Q~l,i =
∏3

j=1[
lj
5 2−i,

( lj
5 + 1)2−i]. Note that every frequency interval [2−i lj

5 , 2
−i( lj

5 + 1)] of a cube
Q~l,i belongs to one of the grids G5,t,L, 0 ≤ t ≤ 3, 0 ≤ L ≤ 4. This allows

us to further restrict the summation in (4.10) to those ~l and i for which each
interval [2−i lj

5 , 2
−i( lj

5 + 1)] is in a fixed grid depending on j.
Denote by D′ the union over all i ∈ Z and all l1, l2, l3 ∈ Z which are subject

to all the indicated restrictions, of the set of all the cubes Q~l,i. For each m ≥ 0
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introduce the set of generalized multitiles Pm to be

{
P =

3∏
j=1

IP,j ×Q~l,i : IP,j = [mj2i, (mj + 1)2i], j ≤ 2,

IP,3 = Ii,~m, Q~l,i ∈ D′, |m1 −m2| = m
}
.

Each such multitile can be thought of as the product of 3 tiles Pj := IP,j ×
[lj2−i, (lj + 1)2−i]. For each multitile P as above define ψP,j = ψi,mj ,lj for
j = 1, 2 and ψP,3 = ϕi,~m,~l. Thus (4.10) will follow if we prove that∥∥∥∥∥
(

J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣ ∑
P∈Pm

2k≤|IP |<2uj+1−1

|IP |−1/2〈f, ψP,1〉〈g, ψP,2〉ψP,3

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

. (1 +m)−2J1/4‖f‖2‖g‖2,

where |IP | is defined as the common value of all |IP,j |.
As will easily follow from our later analysis, it is enough to prove the above

for m = 0. The extra decay in m for the other terms will be a consequence
of the extra decay in (4.13). The choice of working with m = 0 will simplify
the notation, not the argument. Indeed, this implies that for each P , IP,1 =
IP,2 = IP,3.

A last harmless reduction consists of sparsifying the set of the dyadic inter-
vals in the grids. More precisely, we will assume that if for two time intervals
I, I ′ we have |I′|

|I| > 1, then |I′|
|I| ≥ 2∆, where ∆ is a sufficiently large constant

to be chosen later (∆ = 1000 will certainly suffice). Moreover, we can also
assume that two frequency intervals of equal length are separated by at least
10 times their length.

We now summarize all the various reductions made so far in the following
theorem, which implies Theorem 1.8.

Theorem 4.2. Let G, G1, G2 and G3 be four grids with G satisfying

G ⊂ S,(4.16)

I, I ′ ∈ G ⇒ max{|I||I ′|−1, |I ′||I|−1} ≥ 2∆,(4.17)

ω, ω′ ∈ Gj , |ω| = |ω′| ⇒ dist(|ω|, |ω′|) ≥ 10|ω|.(4.18)

Let e be a number with 102 ≤ |e| ≤ 105 and define

D =

{
3∏

j=1

[
lj
5

2i,

(
lj
5

+ 1
)

2i

]
∈

3∏
j=1

Gj : l2 = l1 + e, l3 = l1 + l2

}
.



POINTWISE CONVERGENCE OF THE BILINEAR HILBERT TRANSFORM 1139

Define also the set of multitiles

S =
{
s = Is ×Qs : Is ∈ G, Qs ∈ D with sidelength

1
|Is|

}
.

Assume that each multitile s = Is ×
∏3

j=1 ωs,j ∈ S is associated with three
functions (ψs,j)3j=1 satisfying∣∣∣∣ dn

dxn
Mod−c(ωs,j) ψs,j(x)

∣∣∣∣ .n,M |Is|−1/2−nχM
Is

(x), n,M ≥ 0,(4.19)

supp ψ̂s,j ⊂ ωs,j ,(4.20)

for each j = 1, 2, 3.
Then for each f, g ∈ L2(R) and each finite sequence of integers U := u1 <

u2 < · · · < uJ we have the estimate

∥∥∥∥∥
(

J−1∑
j=1

sup
k∈Z

uj≤k<uj+1

∣∣∣∣∣ ∑
s∈S

2k≤|Is|<2uj+1

|Is|−1/2〈f, ψs,1〉〈g, ψs,2〉ψs,3

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

(4.21)

. J1/4‖f‖2‖g‖2,

with the implicit constant depending only on the implicit constants in (4.19).

For each 1 ≤ j ≤ J − 1 let κj : R → {uj , uj + 1, . . . , uj+1 − 1} be some
arbitrary stopping time. For each s ∈ S with 2u1 ≤ |Is| < 2uJ define

φs,j(x) = ψs,j(x)

for j ∈ {1, 2} and

φs,3(x) = ψs,312κj(x)≤|Is|<2uj+1 (x),

where j is the unique integer such that 2uj ≤ |Is| < 2uj+1 . An equivalent
formulation for (4.21) that we will sometimes find easier to handle is∥∥∥∥∥

(
J−1∑
j=1

∣∣∣∣∣ ∑
s∈S

2uj≤|Is|<2uj+1

|Is|−1/2〈f, φs,1〉〈g, φs,2〉φs,3

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

(4.22)

. J1/4‖f‖2‖g‖2.

From now on we will fix e, ∆, S, the wave packets ψs,j , the sequence U
and the stopping times κj , and we will implicitly assume that for each s ∈ S
we have 2u1 ≤ |Is| < 2uJ .
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5. The combinatorics of the multitiles

In this section we start by defining a relation of order between multitiles.
This will alow us to split S into structured collections like trees and forests.
The model sum restricted to each tree is essentially a Littlewood-Paley dyadic
decomposition modulated with a frequency from the frequency interval of the
top of the tree. The estimation of the model sum restricted to each such tree
involves classical Calderon-Zygmund theory. This will be seen in Section 6.
The modern time-frequency side of the whole approach manifests itself in the
fact that S consists of many trees, modulated with possibly different frequen-
cies. The goal of this section is to prove that the model sums corresponding
to distinct trees are almost orthogonal, a principle quantified in various Bessel
type inequalities. The almost orthogonality will follow if the trees are selected
to be strongly disjoint, a combinatorial property which, as the name suggests,
is stronger than mere disjointness.

Definition 5.1. For two multitiles s, s′ ∈ S we write
• s′j < sj if Is′  Is and 3ωs,j  3ωs′,j ;
• s′j ≤ sj if s′j < sj or sj = s′j ;
• s′j . sj if Is′ ⊆ Is and ωs,j ⊂ 10eωs′,j ;
• s′j .′ sj if s′j . sj and 10ωs,j ∩ 10ωs′,j = ∅.

Lemma 5.2. Given any two multitiles s, s′ ∈ S such that s′i < si for some
i ∈ {1, 2, 3}, it follows that s′j .′ sj for each j ∈ {1, 2, 3} \ {i}.

Proof. We illustrate the proof on a particular case which is otherwise repre-
sentative for the general argument. Consider some Qs =

∏3
j=1[

lj
5 2i, ( lj

5 +1)2i],

Qs′ =
∏3

j=1[
l′j
5 2i′ , ( l′j

5 + 1)2i′ ] and assume that s′1 < s1. This implies that

|l′1 − 2i−i′ l1| ≤ 15.(5.1)

Assume now for contradiction that ωs,2 * 10eωs′,2. This in turn implies
that

|l′2 − 2i−i′ l2| > 10e.(5.2)

Inequalities (5.1) and (5.2) together with the fact that l2 − l1 = l′2 − l′1 = e
will immediately lead to the contradiction.

Assume next for contradiction that 10ωs,2 ∩ 10ωs′,2 6= ∅. This in turn
implies that

|l′2 − 2i−i′ l2| ≤ 50.(5.3)

Inequalities (5.1) and (5.3) together with the fact that l2 − l1 = l′2 − l′1 = e
will immediately lead to the contradiction. �

Let i, j ∈ {1, 2, 3}.
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Definition 5.3. A collection of multitiles T ⊂ S is called an i-tree with
top T ∈ S if

si < Ti for each s ∈ T \ {T}.

We say that T is a tree if it is an i-tree for some i. We call the tree T
j-lacunary if

sj .′ Tj for each s ∈ T \ {T}.

Remark 5.4. A tree does not necessarily contain its top. By Lemma 5.2
we know that a tree is j-lacunary if and only if it is an i-tree for some i 6= j.
Note also that by (4.18) each tree can contain at most one multitile with a
given time interval.

A very useful tool for proving estimates for a single tree T is its size, a
quantity which encodes the BMO properties of the model sum associated
with T.

Definition 5.5. Consider some j ∈ {1, 2, 3} and a finite subset of mul-
titiles S′ ⊂ S. Assume that each s ∈ S′ is associated with a function
Fs : R → C. Define the j-size of S′ relative to the collection (Fs) by the
formula

sizej(S′) = sup
T

(
1
|IT |

∑
s∈T

|〈Fs, φs,j〉|2
)1/2

,

where the supremum is taken over all the trees T ∈ S′ of lacunary type j.

To simplify notation, we will not add (Fs) as a superscript of size, since
(Fs) will always be clear from the context. Actually the 1-size and the 2-size
will always be understood with respect to the functions f and g, respectively.

Note that size is a monotone function with respect to S′. The following
lemma shows how to estimate tree paraproducts by using the size.

Lemma 5.6. If T is a tree, then∑
s∈T

|Is|−1/2
3∏

i=1

|〈Fs, φs,i〉| . |IT |
3∏

i=1

sizei(T).

Proof. Assume T is an i-tree. Apply l2 estimates for the terms correspond-
ing to j, k ∈ {1, 2, 3} \ {i} and l∞ for the terms corresponding to i. �

Definition 5.7. Let j ∈ {1, 2, 3}. Two trees T and T′ with tops T and
T ′ are said to be strongly j-disjoint if

• sj ∩ s′j = ∅ for each s ∈ T ∪ {T}, s′ ∈ T′ ∪ {T ′};
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• whenever s ∈ T ∪ {T}, s′ ∈ T′ ∪ {T ′} are such that ωs,j ( ωs′,j , then
one has IT ∩ Is′ = ∅, and similarly with T and T′ reversed.

A collection of trees is called mutually strongly j-disjoint if any two trees in
the collection are strongly j-disjoint and each tree is j-lacunary.

Remark 5.8. Each subset ST ⊂ T of an i-tree T can be decomposed in
a unique way as the disjoint union of i-trees T′ containing their tops

ST =
⋃

T′∈D(ST)

T′,

such that these tops have pairwise disjoint time intervals. Precisely, the tops
of the trees in the collection D(ST) will be the maximal multitiles in ST

with respect to the order <. If one has a collection F of mutually strongly
j-disjoint trees T and each T is associated with a subset ST ⊂ T, then the
decomposition

F =
⋃

T∈F

⋃
T′∈D(ST)

gives rise to a family of mutually strongly j-disjoint trees.

The concept of strong disjointness is the key ingredient behind the phe-
nomenon of almost orthogonality responsible for the following Bessel type
inequalities.

Proposition 5.9 (Nonmaximal Bessel’s inequality; see [6]). Let j ∈ {1, 2}.
Consider a collection S′ ⊆ S of multitiles and let sizej(·) denote the j-size with
respect to some function F ∈ L2(R). Then S′ can be written as a disjoint
union

S′ = S′1 ∪ S′2,

where

sizej(S′1) ≤
sizej(S′)

2
,

while S′2 consists of a family FS′2
of pairwise disjoint trees satisfying∑

T∈FS′2

|IT | . sizej(S′)−2‖F‖2
2,(5.4)

with the implicit constant independent of S′ and F .

For j = 3 we will need the following version of the above result. We call
forest any collection F of strongly 3-disjoint trees and we denote by

NF (x) =
∑
T∈F

1IT

the counting function of F .



POINTWISE CONVERGENCE OF THE BILINEAR HILBERT TRANSFORM 1143

Proposition 5.10 (Maximal Bessel’s inequality). Let S′ ⊆ S be a collec-
tion of multitiles and let U := u1 < u2 < · · · < uJ be an arbitrary sequence of
integers. For each s ∈ S′ let j(s) be the unique number in {1, 2, . . . , J−1} such
that 2uj(s) ≤ |Is| < 2uj(s)+1 . Consider also an arbitrary sequence of functions
h1, h2, . . . , hJ−1 : R → C satisfying

J−1∑
j=1

|hj |2 ≡ 1,

and a function h ∈ X2(E), where E is an arbitrary set of finite measure. Let
size3(·) denote the 3-size with respect to the functions Hs : R → C defined by

Hs = hhj(s).

Then S′ can be written as a disjoint union

S′ = S′1 ∪ S′2,

where

size3(S′1) ≤
size3(S′)

2
,

while S′2 consists of a family FS′2
of pairwise disjoint trees satisfying

∑
T∈FS′2

|IT | . J1/8 size3(S′)−2

(
1

size3(S′)|E|1/2

)ε

(5.5)

for each ε > 0, with the implicit constant depending only on ε.

This proposition will follow from a chain of successive reductions, as in [4].

Proposition 5.11 (Maximal Bessel’s inequality, first reduction). Assume
S′ ⊆ S can be organized as a forest F ′ of trees T with tops T . Let U := u1 <
u2 < · · · < uJ be an arbitrary sequence of integers. Consider also an arbitrary
sequence of functions h1, h2, . . . , hJ−1 : R → C satisfying

J−1∑
j=1

|hj |2 ≡ 1,

and a function h ∈ X2(E), where E is an arbitrary set of finite measure.
Define the functions Hs as before. Assume also that

2m ≤

(
1
|IT |

∑
s∈T

|〈Hs, φs,3〉|2
)1/2

≤ 2m+1



1144 CIPRIAN DEMETER

for each T ∈ F ′, and(
1

|IT ′ |
∑
s∈T

Is⊆IT ′

|〈Hs, φs,3〉|2
)1/2

≤ 2m+1

for each T ′ ∈ T ∈ F ′.
Then ∑

T∈F ′
|IT | . J1/82−2m

(
1

2m|E|1/2

)ε

for each ε > 0, with the implicit constant depending only on ε.

Proposition 5.11 implies Proposition 5.10 by a standard tree selection al-
gorithm; see [6].

The next reduction allows to replace the dependency on |E|1/2 with a
dependency on the counting function multiplicity. By linearity we can also
eliminate the size parameter 2m.

Proposition 5.12 (Maximal Bessel’s inequality, second reduction). As-
sume S′ ⊆ S can be organized as a forest F ′ of trees T with tops T . Let
U := u1 < u2 < · · · < uJ be an arbitrary sequence of integers. Consider also
an arbitrary sequence of functions h1, h2, . . . , hJ−1 : R → C satisfying

J−1∑
j=1

|hj |2 ≡ 1,(5.6)

and a function h ∈ L2(R). Define the functions Hs as before. Assume also
that

1 ≤

(
1
|IT |

∑
s∈T

|〈Hs, φs,3〉|2
)1/2

≤ 2(5.7)

for each T ∈ F ′, and(
1

|IT ′ |
∑
s∈T

Is⊆IT ′

|〈Hs, φs,3〉|2
)1/2

≤ 2(5.8)

for each T ′ ∈ T ∈ F ′. Let I0 be an interval which contains the support of
NF ′ .

Then ∑
T∈F ′

|IT | . J1/8‖NF ′‖ε
∞

∫
|h|2χ10

I0
(5.9)

for each ε > 0, with the implicit constant depending only on ε.



POINTWISE CONVERGENCE OF THE BILINEAR HILBERT TRANSFORM 1145

To see how Proposition 5.12 implies Proposition 5.11 we first introduce the
BMO norm of a forest F as

‖F‖BMO := sup
I

1
|I|

∑
T∈F :IT⊆I

|IT |,

where the supremum is taken over all the dyadic intervals I. We then recall
the following result from [4].

Lemma 5.13. Let F be a forest such that for some ε < 1 and for some
A,B > 0,

‖NF ′‖1 ≤ A‖NF ′‖ε
∞ and ‖F ′‖BMO ≤ B‖NF ′‖ε

∞

for all forests F ′ ⊆ F . Then we have

‖NF‖1 .ε AB
ε

1−ε .

Proof of Proposition 5.11 assuming Proposition 5.12. Let F ′ ⊂ F be arbi-
trary. From Proposition 5.12 with h replaced by h/2m, and I0 chosen to be
so large as to contain all the time intervals arising from F ′, we have

‖NF ′‖1 =
∑

T∈F ′
|IT |

.
∑

s∈
S

T∈F′ T

|〈Hs/2m, φs,3〉|2

.ε J
1/8‖NF ′‖ε

∞

∫
|h/2m|2

. J1/82−2m‖NF ′‖ε
∞

thanks to the L2 normalization of h ∈ X2(E).
On the other hand, if I0 is an arbitrary dyadic interval, then by replacing

F ′ with {T ∈ F ′ : IT ⊆ I0} in the above argument we see that

1
|I0|

∑
T∈F ′:IT⊆I0

|IT | .ε
J1/8

|I0|
‖NF ′‖ε

∞

∫
|f/2m|2χ10

I0

. J1/8‖NF ′‖ε
∞2−2m|E|−1

thanks to the uniform bound of |E|−1/2 on f ∈ X2(E). Taking the suprema
over I0 we conclude that ‖F ′‖BMO .ε J1/8‖NF ′‖ε

∞2−2m|E|−1. Applying
Lemma 5.13 we conclude that∑

T∈F

|IT | = ‖NF‖1 .ε J
1/82−2m(2−2m|E|−1)

ε
1−ε .

Since ε > 0 is arbitrary, the proof of Proposition 5.11 follows. �
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We next focus on proving Proposition 5.12. We will borrow some of the
terminology from [4] in order to quote some results from there. Let D0,D1,D2

be the dyadic grids

D0 := {[2−il, 2−i(l + 1)] : i, l ∈ Z} (i.e., the standard dyadic grid),

D1 := {[2−i(l + (−1)i/3), 2−i(l + 1 + (−1)i/3)] : i, l ∈ Z},
D2 := {[2−i(l − (−1)i/3), 2−i(l + 1− (−1)i/3)] : i, l ∈ Z}.

(5.10)

One can easily verify that for every interval J (not necessarily dyadic)
there exists a d ∈ {0, 1, 2} and a shifted dyadic interval J ′ ∈ Dd such that
J ⊆ J ′ ⊆ 3J ; we will say that J is d-regular.

Let A ≥ 1, and let d ∈ {0, 1, 2}. We shall say that a collection I ⊂ D0 of
time intervals is (A, d)-sparse if we have the following properties:

(i) If I, I ′ ∈ I are such that |I| > |I ′|, then |I| ≥ 2100A|I ′|.
(ii) If I, I ′ ∈ I are such that |I| = |I ′| and I 6= I ′, then dist(I, I ′) ≥

100A|I ′|.
(iii) If I ∈ I, then AI is d-regular, thus there exists an interval IA ∈ Dd

such that AI ⊆ IA ⊆ 3AI. We refer to IA as the A-enlargement of I.
If I is an (A, d)-sparse set of time intervals and P is a tile whose time

interval IP lies in I, we write IP,A for the A-enlargement of IP . We recall the
following two results from [4].

Theorem 5.14. Let A,D > 1 and let F ′ be a forest with ‖N ′
F‖∞ ≤ D.

Let also S′ :=
⋃

T∈F ′ T, and suppose that the time intervals

{Is : s ∈ S′} ∪ {IT : T ∈ F ′}
are (A, d)-sparse.

Then there exists an exceptional set S∗ ⊂ S′ of multitiles with∣∣∣∣∣ ⋃
s∈S∗

Is

∣∣∣∣∣ .ν (A−ν +D−ν)
∑

T∈F ′
|IT |(5.11)

such that we have the Bessel-type inequality∑
s∈S′\S∗

|〈f, φs,3〉|2 .ν ((log(2 +AD))10 +A10−νD10)‖f‖2
2

for each ν > 1 and each f ∈ L2(R).

Lemma 5.15 (Sparsification). Let I be a collection of time intervals. Then
we can split I = I1 ∪ · · · ∪ IL with L = O(A2) such that each Il for 1 ≤ l ≤ L
is (A, d)-sparse for some d = 0, 1, 2.

Proof of Proposition 5.12. We start by noting that it suffices to prove
Proposition 5.12 without the localizing weight χ10

I0
. This is because χ−10

I0

is a polynomial and hence χ−10
I0

ψs,3 satisfies the same properties (4.19) and



POINTWISE CONVERGENCE OF THE BILINEAR HILBERT TRANSFORM 1147

(4.20) as ψs,3. Let µ ≥ 20 be arbitrary. We first apply the above lemma with
A = Cµ(J‖NF ′‖∞)1/µ to the collection I := {Is : s ∈ S′} to split I into
I1, . . . , IL, for some L = O(A2). Each tree T ∈ F ′ will be disintegrated over
the collections Il. A further disintegration occurs by differentiating multitiles
according to their time length, so in the end

T =
⋃

1≤l≤L

⋃
1≤j≤J−1

ST,l,j .

Here

ST,l,j = {s ∈ T : Is ∈ Il, 2uj ≤ |Is| < 2uj+1}.

According to Remark 5.8, each collection

Fl,j =
⋃

T∈F ′

⋃
T′∈D(ST,l,j)

T′

is a forest. It is easy to see that each Fl,j satisfies the requirements of Theorem
5.14 with A as above, and moreover

‖NFl,j
‖∞ ≤ ‖NF ′‖∞,

‖NFl,j
‖1 ≤ ‖NF ′‖1.

Define

Sl,j =
⋃

T∈F ′
ST,l,j .

By applying Theorem 5.14 to each forest Fl,j with D = CµJ‖NF ′‖∞,
f = hhj and ν = 200µ we get an exceptional set Sl,j,∗ such that∣∣∣∣∣ ⋃

s∈Sl,j,∗

Is

∣∣∣∣∣ .µ C
−200µ
µ J−3‖NF ′‖−3

∞

∑
T∈Fl,j

|IT |(5.12)

and we have the Bessel-type inequality

(5.13)
∑

s∈Sl,j\Sl,j,∗

|〈hhj , φs,3〉|2

.µ

(
(log(2 + ‖NF ′‖∞))10 + (log(2 + J))10

)
‖hhj‖2

2.

Define now

S∗ : =
⋃
l,j

Sl,j,∗

and note that if Cµ is chosen sufficiently large, then∣∣∣∣∣ ⋃
s∈S∗

Is

∣∣∣∣∣ . 1
10

‖NF ′‖1

‖NF ′‖∞
.(5.14)
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By summing up in (5.13) and invoking (5.6) we get∑
s∈S′\S∗

|〈Hs, φs,3〉|2

.µ ‖NF ′‖2/µ
∞ J2/µ((log(2 + ‖NF ′‖∞))10 + (log(2 + J))10)‖h‖2

2

.µ ‖NF ′‖3/µ
∞ J1/8‖h‖2

2.

Write Ω :=
⋃

s∈S∗
Is. Then∑

s∈S′:Is 6⊆Ω

|〈Hs, φs,3〉|2 ≤
∑

s∈S′\S∗

|〈Hs, φs,3〉|2.

To prove (5.9), it thus suffices to show that

∑
s∈S′:Is⊆Ω

|〈HS , φs,3〉|2 ≤
1
2

∑
s∈S′

|〈Hs, φs,3〉|2.(5.15)

From (5.7), it thus suffices to show that

∑
s∈S′:Is⊆Ω

|〈Hs, φs,3〉|2 ≤
1
2
‖NF ′‖1.

For each tree T in F ′, consider the multitile set {s ∈ T : Is ⊆ Ω}. If s is any
tile in this set with Is maximal with respect to set inclusion, then Is ⊆ Ω and
from (5.8) we have ∑

s′∈T:Is′⊆Is

|〈Hs′ , φs′,3〉|2 ≤ 4|Is|.

Summing this over all such s upon noting that the Is are disjoint by dyadicity
and maximality, we conclude that

∑
s∈T:Is⊆Ω

|〈Hs, φs,3〉|2 ≤ 4|IT ∩ Ω| = 4
∫

Ω

1IT
.

Summing this over all T ∈ F ′ we obtain

∑
s∈S′:Is⊆Ω

|〈Hs, φs,3〉|2 ≤ 4
∫

Ω

NF ′ ≤ 4|Ω|‖NF ′‖∞

and the claim (5.15) follows now from (5.14). �
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6. Single tree estimate

Consider a 3-lacunary tree T and some coefficients (cs)s∈T. The following
representation holds for each 2k ≤ |IT |, assuming ∆ is chosen large enough:

(6.1)
∑

s∈T:|Is|≥2k

csψs,3(x)

=
∫
F

(∑
s∈T

csψs,3

)
(ξ)ζ(2k(ξ − c(ωT,3)))e2πiξxdξ.

Here ζ is some universal function equal to 1 on [−100e, 100e] and equal to 0
outside [−200e, 200e].

Theorem 6.1 (Single tree estimate). Let T be a 3-lacunary tree in S with
top T , and let

PT = {I dyadic : Is ⊆ I ⊆ Is′ for some s, s′ ∈ T}

be the time convexification of T. Consider a finite sequence of integers u1 <
u2 < · · · < uL. For each s ∈ T let l(s) be the unique number in {1, 2, . . . , L−1}
such that 2ul(s) ≤ |Is| < 2ul(s)+1 . Consider also an arbitrary sequence of
functions h1, h2, . . . , hL−1 : R → C satisfying

L−1∑
l=1

|hl|2 ≡ 1,

and a function h ∈ X(E), for some E ⊂ R of finite measure. For each s ∈ T
define Hs = hhl(s).

Then (
1
|IT |

∑
s∈T

|〈Hs, φs,3〉|2
)1/2

. sup
I∈PT

1
|I|

∫
E

χ2
I ,

with some universal implicit constant.

Proof. By frequency translation invariance we may assume that 0 ∈ ωT,3.
By using the monotonicity of PT′ relative to sub-trees T′ ⊆ T, it suffices

to prove that for each 3-lacunary tree satisfying the extra assumptions∑
s∈T

|〈Hs, φs,3〉|2 = α2|IT |,

and
|〈Hs, φs,3〉| ≤ α|Is|1/2

for each s ∈ T, we have

α . β := sup
I∈PT

1
|I|

∫
E

χ2
I .
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Assume for contradiction that the above inequality does not hold; more
precisely, assume

(6.2) α ≥ Kβ

for some sufficiently large K, whose (implicit) value will become clear after a
few lines of argument.

We first note that if H(1)
s denotes the restriction of Hs to the complement

of 2IT , then from the decay of φs,3 we get

|〈H(1)
s , φs,3〉| .

(
|Is|
|IT |

)10

|IT |−1/2

∫
E

χ2
Is

for all s ∈ T. So, if H(2)
s denotes the restriction of Hs to 2IT , we conclude

that if K is large enough, then

α2

2
|IT | ≤

∑
s∈T

|〈H(2)
s , φs,3〉|2 ≤ 2α2|IT |,(6.3)

|〈H(2)
s , φs,3〉| ≤ 2α|Is|1/2(6.4)

for each s ∈ T.
We will next prove that

1
|IT |

∫
2IT

h

(
L−1∑
l=1

∣∣∣∣∣ ∑
s∈T

2ul≤|Is|<2ul+1

〈H(2)
s , φs,3〉φs,3

∣∣∣∣∣
2)1/2

. αβ,

with an implicit constant independent of K. This together with the following
consequence of the lower bound in (6.3)

α2

2
≤ 1
|IT |

∫
2IT

h

(
L−1∑
l=1

∣∣∣∣∣ ∑
s∈T

2ul≤|Is|<2ul+1

〈H(2)
s , φs,3〉φs,3

∣∣∣∣∣
2)1/2

will contradict (6.2).
In view of (6.1) we can estimate∣∣∣∣∣ ∑

s∈T 2ul≤|Is|<2ul+1

〈H(2)
s , φs,3〉φs,3(x)

∣∣∣∣∣
≤ sup

ul≤k<ul+1

∣∣∣∣∣ ∑
s∈T

2k≤|Is|<2ul+1

〈H(2)
s , φs,3〉ψs,3(x)

∣∣∣∣∣ . M(Fl),

where
Fl(x) =

∑
s∈T

2ul≤|Is|<2
ul+1

〈H(2)
s , φs,3〉ψs,3(x).
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It thus suffices to show that

(6.5)
1
|IT |

∫
2IT

h

(
L−1∑
l=1

M(Fl)2
)1/2

. αβ.

For a dyadic interval J denote by J1, J2, J3 the three dyadic intervals of
the same length as J , sitting at the left of J , with J3 being adjacent to J .
Similarly let J5, J6, J7 be the three dyadic intervals of the same length as J ,
sitting at the right of J , with J5 being adjacent to J . Also define J4 = J . Let
J be the set of all dyadic intervals J with the following properties:

(a) J ∩ 2IT 6= ∅;
(b) @ I ∈ PT : |I| < |J | and I ⊂ 3J ;
(c) Ji ∈ PT for some 1 ≤ i ≤ 7.

We claim that 2IT ⊂
⋃

J∈J J . Indeed, assume by contradiction that there
exists some x ∈ 2IT \

⋃
J∈J J . Let J (0) ⊂ J (1) ⊂ J (2) ⊂ · · · be the sequence of

dyadic intervals of consecutive lengths containing x, with |J (0)| = minI∈PT
|I|.

Since J (0) /∈ J and since (a) and (b) are certainly satisfied for J (0), it follows
that J (0)

i /∈ PT for each 1 ≤ i ≤ 7. Moreover, note that for each 1 ≤ i ≤ 7
there is no I ∈ PT with I ⊂ J

(0)
i . We proceed now by induction. Assume

that for some j ≥ 0 we have proved that for each 1 ≤ i ≤ 7 we have J (j)
i /∈ PT

and also that there is no I ∈ PT with I ⊂ J
(j)
i . Note that this implies the

same for j + 1. Indeed, since 3J (j+1) ⊂ 7J (j) and by induction hypothesis, it
follows that (b) is satisfied for J (j+1). Hence J (j+1)

i /∈ PT for each 1 ≤ i ≤ 7.
We verify now the second statement of the induction. Note that if there were
an I ∈ PT with I ⊂ J

(j+1)
i , then the hypothesis of the induction and the fact

that 3J (j+1) ⊂ 7J (j) would imply that i ∈ {1, 2, 6, 7}. Hence I ⊂ J
(j+1)
i ⊂ IT ,

and by convexity of PT it would follow that J (j+1)
i ∈ PT, which is impossible.

This closes the induction. To see how the claim follows from here, observe
that IT = J

(j)
i for some i, j, which certainly contradicts the fact that IT ∈ PT.

The next thing we prove is that on each interval 2J with J ∈ J , the
function

F (x) :=

(
L−1∑
l=1

|Fj(x)|2
)1/2

is “essentially constant”. More exactly, we will show that if x ∈ 2J , then
|F (x)− F (c(J))| . α.
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Indeed, for each x ∈ 2J we use (4.19) and the fact that 0 ∈ ωT,3 to get(
L−1∑
l=1

|Fl(x)− Fl(c(J))|2
)1/2

≤ |J |
∑
s∈T

|Is|≥|J|

sup
x∈2J

∣∣∣∣ ddxψs,3(x)
∣∣∣∣ ∣∣∣〈H(2)

s , φs,3〉
∣∣∣

+ 2
∑
s∈T

|Is|<|J|,Is∩3J=∅

sup
x∈2J

|ψs,3(x)|
∣∣∣〈H(2)

s , φs,3〉
∣∣∣ ,

since, by construction, there exists no s ∈ T such that |Is| < |J | and Is ⊂ 3J .
By using (6.4), this is further bounded by

α|J |
∑
s∈T

|Is|≥|J|

1
|Is|

χ10
Is

(c(J)) + α
∑
s∈T

|Is|<|J|,Is∩3J=∅

χ10
Is

(c(J)) . α.

Define now the measure space X =
⋃

J∈J J and its sigma-algebra Υ gener-
ated by the maximal intervals J ∈ J . Recall that 2IT ⊂

⋃
J∈J J = X ⊂ 10IT .

We will see that for each x ∈ J(
L−1∑
l=1

M(Fl)2(x)

)1/2

.
1
|J |

∫
J

(
L−1∑
l=1

M(Fl)2(z)

)1/2

dz + α.(6.6)

Indeed, if rl > 1
2 |J |, then(

L−1∑
l=l

(
1

2rj

∫ x+rl

x−rl

|Fl|(z)dz

)2)1/2

. inf
y∈J

(
L−1∑
l=1

M(Fl)2(y)

)1/2

.
1
|J |

∫
J

(
L−1∑
l=1

M(Fl)2(z)

)1/2

dz.

On the other hand, if rl ≤ 1
2 |J |, then(

L−1∑
l=1

(
1

2rl

∫ x+rl

x−rl

|Fl|(z)dz

)2)1/2

. sup
y∈2J

(
L−1∑
l=1

|Fl|2(y)

)1/2

. inf
y∈J

(
L−1∑
l=1

|Fl|2(y)

)1/2

+ α

.
1
|J |

∫
J

(
L−1∑
l=1

M(Fl)2(z)

)1/2

dz + α.
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From (6.6) we can write

1
|IT |

∫
h

(
L−1∑
l=1

M(Fl)2
)1/2

.
1
|IT |

∫
X

hE

((
L−1∑
l=1

M(Fl)2
)1/2

|Υ

)
+ α sup

J∈J

1
|J |

∫
J

|h|

=
1
|IT |

∫
X

E(h|Υ)E

((
L−1∑
l=1

M(Fl)2
)1/2

|Υ

)
+ α sup

J∈J

1
|J |

∫
J

|h|

≤ 1
|IT |

‖E(h|Υ)‖L∞

∫
X

E

((
L−1∑
l=1

M(Fl)2
)1/2

|Υ

)
+ α sup

J∈J

1
|J |

∫
E

χ2
J

.

(
α+

[
1
|IT |

∫
X

E

((
L−1∑
l=1

M(Fl)2
)1/2

|Υ

)2]1/2)
sup
J∈J

1
|J |

∫
E

χ2
J

. α sup
J∈J

1
|J |

∫
E

χ2
J ,

where E(·|Υ) denotes the conditional expectation relative to Υ. To get the
last inequality above we have used the upper bound in (6.3) and the almost
orthogonality of {ψs,3, s ∈ T}. Finally, note that since for each J ∈ J ,
Ji ∈ PT for some i, we have that

sup
J∈J

1
|J |

∫
E

χ2
J . sup

I∈PT

1
|I|

∫
E

χ2
I ,

which certainly ends the proof of our theorem. �

7. The proof of Theorem 4.2

For each f, g ∈ L2(R) and each subset of tiles S′ ⊂ S define

MS′(f, g)(x) =

(
J−1∑
j=1

∣∣∣∣∣ ∑
s∈S′

2uj≤|Is|<2uj+1

|Is|−1/2〈f, φs,1〉〈g, φs,2〉φs,3

∣∣∣∣∣
2)1/2

.

In order to prove inequality (4.22) it suffices to show that

|{x : MS(f, g)(x) > λ}| . J1/4

λ
,

uniformly for each f, g with ‖f‖2 = ‖g‖2 = 1 and each λ > 0. We claim that
it suffices to prove the above for λ ∼ 1. Indeed, for arbitrary λ choose k ∈ Z
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such that 2k ≤ λ < 2k+1. Also, for each multitile

s = [m2i, (m+ 1)2i]×
3∏

j=1

[
lj
5

2−i,

(
lj
5

+ 1
)

2−i

]
∈ S

define

s(k) : = [m2i+k, (m+ 1)2i+k]×
3∏

j=1

[
lj
5

2−i−k,

(
lj
5

+ 1
)

2−i−k

]
∈ S.

Define also the collection of multitiles

S(k) = {s(k) : s ∈ S},

and the functions

ψs(k),j(x) =
1

2k/2
ψs,j

( x
2k

)
.

Note that S(k) and ψs(k),j satisfy all the requirements of Theorem 4.2 (with
a different choice of grids), with the same implicit constants as in (4.19). The
claim now follows by noting that

|Is|−1/2〈f, φs,1〉〈g, φs,2〉φs,3(x)

= |Is(k)|−1/2〈Dil22k f, φs(k),1〉〈Dil22k g, φs(k),2〉2kφs(k),3(2kx).

Define now Γ = max{[− log2(size1(S))], [− log2(size2(S))]}, where the 1-
size is understood here with respect to the function f , while the 2-size is
understood with respect to g. By iterating Proposition 5.9 simultaneously
for F = f and F = g, it follows that S can be written as a disjoint union
S =

⋃
n≥Γ Sn, with

sizej

 ⋃
m≥n

Sm

 ≤ 2−n(7.1)

for j = 1, 2, and each Sn consists of a family FSn of pairwise disjoint trees
satisfying ∑

T∈FSn

|IT | . 22n.(7.2)

The contributions coming from the collections S′ =
⋃

Γ≤n≤0 Sn and S′′ =⋃
n>0 Sn will be evaluated quite differently.
In the case of S′, crude estimates will suffice. Let T ∈ FSn . By using

(7.1), the decay in (4.19) and the triangle inequality we immediately get the
estimate

MT(f, g)(x) . 2−2nχ4
IT

(x)(7.3)
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for each x /∈ 2IT . For each Γ ≤ n ≤ 0 and each T ∈ FSn
set En = 2−nIT .

From (7.2) we get that the exceptional set E =
⋃

Γ≤n≤0En has measure . 1.
Also, (7.3) implies that

‖MS′(f, g)‖L1(Ec) ≤
∑

Γ≤n≤0

‖MSn(f, g)‖L1(Ec
n)

.
∑

Γ≤n≤0

2−2n23n

. 1.

We conclude that

|{x : MS′(f, g)(x) & 1}| . 1.(7.4)

We will focus next on the estimates for the collection S′′. This time we
will rely on the fact that size1(S′′) ≤ 1 and size2(S′′) ≤ 1. As before, for
each s ∈ S let j(s) denote the unique number in {1, 2, . . . , J − 1} such that
2uj(s) ≤ |Is| < 2uj(s)+1 . The 3-size will now intervene in a crucial way. Define

V : = {x : MS′′(f, g)(x) & 1}.

If |V | ≤ 1 there is nothing to prove, so we will assume |V | > 1. Let
h1, h2, . . . , hJ−1 : R → C be functions satisfying

J−1∑
j=1

|hj |2 ≡ 1

such that

MS′′(f, g)(x) =
∑
s∈S′′

|Is|−1/2〈f, φs,1〉〈g, φs,2〉hj(s)φs,3(x).

From Theorem 6.1 we know that the 3-size of the collection S′′ with respect
to the functions Hs := |V |−1/21V hj(s) is . 1. There is actually no restriction
in assuming that it is ≤ 1. By applying iteratively Propositions 5.9 and 5.10
to the collection S′′ it follows that S′′ can be written as a disjoint union
S′′ =

⋃
n≥0 S′′n, with

sizej(S′′n) ≤ 2−n(7.5)

for j ∈ {1, 2, 3}, and each S′′n consists of a family FS′′n of pairwise disjoint trees
satisfying ∑

T∈FS′′n

|IT | . J1/82
5
2 n.(7.6)
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Finally, by Lemma 5.6

|V |1/2 . 〈MS′′(f, g), |V |−1/21V 〉

=
∑
s∈S′′

|Is|−1/2〈f, φs,1〉〈g, φs,2〉〈Hs, φs,3〉

≤
∑
n≥0

∑
s∈S′′n

|Is|−1/2〈f, φs,1〉〈g, φs,2〉〈Hs, φs,3〉

.
∑
n≥0

2−3n
∑

T∈FS′′n

|IT |

.
∑
n≥0

2−3n2
5
2 nJ1/8

. J1/8.

We conclude that

|{x : MS′′(f, g)(x) & 1}| . J1/4.(7.7)

The estimates in (7.4) and (7.7) end the proof of Theorem 4.2.

8. The proof of Theorem 1.9

By applying discretization techniques like in Section 4, Theorem 1.9 will
be a consequence of the following.

Theorem 8.1. Let G, G1, G2 and G3 be four grids with G satisfying

G ⊂ S,
I, I ′ ∈ G ⇒ max{|I||I ′|−1, |I ′||I|−1} ≥ 2∆.

Let e be a number with 102 < |e| ≤ 105 and define

D =


3∏

j=1

[
lj
5

2i,

(
lj
5

+ 1
)

2i

]
∈

3∏
j=1

Gj : l2 = l1 + e, l3 = l1 + l2

 .

Define also the set of multitiles

S =
{
s = Is ×Qs : Is ∈ G, Qs ∈ D with sidelength

1
|Is|

}
.

Assume that each multitile s = Is ×
∏3

j=1 ωs,j ∈ S is associated with three
functions (ψs,j)3j=1 satisfying∣∣∣∣ dn

dxn
Mod−c(ωs,j) ψs,j(x)

∣∣∣∣ .n,M |Is|−1/2−nχM
Is

(x), n,M ≥ 0,(8.1)

supp ψ̂s,j ⊂ ωs,j ,(8.2)

for each j = 1, 2, 3.



POINTWISE CONVERGENCE OF THE BILINEAR HILBERT TRANSFORM 1157

Then for each f, g ∈ L2(R) we have the estimate∥∥∥∥∥
(

sup
k∈Z

∣∣∣∣∣ ∑
s∈S

|Is|=2k

|Is|−1/2〈f, ψs,1〉〈g, ψs,2〉ψs,3

∣∣∣∣∣
2)1/2∥∥∥∥∥

1,∞

. ‖f‖2‖g‖2,(8.3)

with the implicit constant depending only on the implicit constants in (8.1).

To prove this theorem amounts to proving Theorem 4.2 in the case u1, . . . , uJ

are consecutive integers, with a bound independent of J . By analyzing the
whole argument for Theorem 4.2, it follows that the dependency on J in there
comes from a single source, namely, the Maximal Bessel inequality in Propo-
sition 5.10. This dependency is eliminated by proving the following version of
Proposition 5.11.

Proposition 8.2. Assume S′ ⊆ S can be organized as a forest F ′ of trees
T with tops T . Consider an arbitrary sequence of functions hk : R → C,
k ∈ Z satisfying ∑

k∈Z

|hk|2 ≡ 1,

and a function h ∈ L2(R). Define the functions Hs by Hs = hhlog(|Is|).
Assume also that

2m ≤

(
1
|IT |

∑
s∈T

|〈Hs, ψs,3〉|2
)1/2

for each T ∈ F ′.
Then ∑

T∈F ′
|IT | . 2−2m‖h‖2

2.

Proof. It suffices to prove that∑
s∈S′

|Is|=2k

|〈f, ψs,3〉|2 . ‖f‖2
2,

uniformly in all k ∈ Z and all f ∈ L2(R). This in turn will follow by duality
from the following estimate∥∥∥∥∥ ∑

s∈S′

|Is|=2k

asψs,3

∥∥∥∥∥
2

2

.
∑
s∈S′

|Is|=2k

|as|2,

which holds for all sequence (as).
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Indeed,∥∥∥∥∥ ∑
s∈S′

|Is|=2k

asψs,3

∥∥∥∥∥
2

2

=
∑

ω∈G3:|ω|=2−k

∥∥∥∥∥∑
s∈S′
ωs=ω

asψs,3

∥∥∥∥∥
2

2

=
∑

ω∈G3:|ω|=2−k

∑
s,s′∈S′

ωs=ωs′=ω

asās′〈ψs,3, ψs′,3〉

.
∑

ω∈G3:|ω|=2−k

∑
s,s′∈S′

ωs=ωs′=ω

|asas′ |
(

1 +
dist(Is, Is′)

2k

)−10

.
∑

ω∈G3:|ω|=2−k

∑
s∈S′
ωs=ω

|as|2

=
∑
s∈S′

|as|2. �
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