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ON GENERALIZATIONS OF A PROBLEM OF
DIOPHANTUS

YANN BUGEAUD AND KATALIN GYARMATI

Abstract. Let k ≥ 2 be an integer and let A and B be two sets of
integers. We give upper bounds for the number of perfect k-th powers

of the form ab+1, with a in A and b in B. We further investigate several
related questions.

1. Introduction

The Greek mathematician Diophantus of Alexandria noted that the ratio-
nal numbers 1/16, 33/16, 17/4, and 105/16 have the following property: the
product of any two of them increased by 1 is a square of a rational number.
Later, Fermat found that the set of four positive integers {1, 3, 8, 120} shares
the same property. A finite set of m positive integers a1 < · · · < am such that
aiaj + 1 is a perfect square whenever 1 ≤ i < j ≤ m is commonly called a
Diophantine m-tuple. A famous conjecture asserts that there does not exist
a Diophantine 5-tuple. This question has been nearly solved in a remarkable
paper by Dujella [3], who proved that there does not exist a Diophantine 6-
tuple and that the elements of any Diophantine 5-tuple are less than 101026

.
We direct the reader to [3] for further references.

This problem was extended to higher powers by Bugeaud and Dujella [2].
They proved that if k ≥ 3 is a given integer and A is a set of positive integers
such that aa′+1 is a perfect k-th power for all distinct a and a′ inA, thenA has
at most 7 elements. In the present paper, we investigate related questions and,
among other results, we provide, for an arbitrary set A of positive integers,
estimates for the number nA of pairs (a, a′) with a, a′ in A such that aa′ + 1
is a perfect k-th power. It is clear that, for all m, there exists a set A =
{a1, a2, . . . , am} such that them−1 integers a1a2+1, a2a3+1, . . . , am−1am+1
are perfect k-th powers; for such sets A, the number nA is at least equal to
the cardinality of A minus one. In the present paper, we combine results from
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[2] with graph theory (see Theorem 1) to give an upper estimate for nA that
is much sharper than the trivial bound (which is the square of the cardinality
of A).

Acknowledgements. We warmly thank the referee for having detected
many inaccuracies in an earlier version, and for having made numerous re-
marks, which helped us to considerably improve the presentation of the paper.

2. Results

Throughout this paper, the cardinality of a set S is denoted by |S|. Given
an integer k ≥ 3 and two finite sets A and B, our first result provides us with
an upper bound for the number of perfect k-th powers of the form ab+1, with
a in A and b in B.

Theorem 1. Let k ≥ 3 be an integer. Let A and B be two sets of positive
integers with |A| ≥ |B| and set

S = {(a, b) : a ∈ A, b ∈ B, ab+ 1 is a k-th power}.

We then have

|S| ≤ 2 · 61/3 |A| · |B|2/3 + 4 |A| ≤ 7.64 |A| · |B|2/3 if k = 3,

|S| ≤ 2
√

3 |A| · |B|1/2 + 2 |A| ≤ 5.47 |A| · |B|1/2 if k ≥ 4.

It follows from Theorem 1 that, if A and B have same cardinality (in
particular, if A = B), then the number of pairs (a, b) with a in A and b in
B such that ab + 1 is a k-th power for a fixed k is less than 8 |A|5/3 if k = 3
and is less than 6 |A|3/2 if k ≥ 4. We further notice that there is no positive
integer a such that a2 + 1 is a perfect power, a result due to V. A. Lebesgue
[9].

We were unable to treat the case k = 2 in Theorem 1. However, if the sets
A and B are equal, it is possible to slightly improve the trivial estimate.

Theorem 2. Let A be a set of positive integers with |A| ≥ 6. Then the
set

{(a, a′) : a, a′ ∈ A, a > a′, aa′ + 1 is a square}

has at most 0.4 |A|2 elements.

The results from [2] also enable us to improve upon Theorems 1 and 2 of
Gyarmati, Sárközy and Stewart [6]. For any integer k ≥ 2, set

Vk = {x` : x ∈ Z+ and 2 ≤ ` ≤ k}.
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Theorem 3. Let k ≥ 2 be an integer. Let A be a set of positive integers
with the property that aa′ + 1 is in Vk whenever a and a′ are distinct integers
from A. We then have

(1) |A| < 85000
(

k

log k

)2

.

Theorem 3 considerably improves Theorem 2 of [6], where the authors
obtained the upper bound

(2) |A| < 160
(

k

log k

)2

log log
(

max
a∈A

a

)
,

instead of (1). We point out that the right-hand side of (2) depends on the
maximum of the elements of A, unlike the right-hand side of (1).

The next result follows from Theorem 3 by noticing that if xk is a positive
integer in {2, . . . , N}, then k is at most equal to (logN)/(log 2).

Corollary 1. Let A be a set of positive integers at most equal to N . If
aa′+ 1 is a perfect power for all distinct integers a and a′ in A, then we have

(3) |A| < 177000
(

logN
log logN

)2

.

Corollary 1 slightly refines Theorem 1 of [6], where the upper bound

|A| < 340
(logN)2

log logN

is proved, instead of (3).
In Theorem 3, we make the strong assumption that aa′ + 1 is always a

power. Our method also provides new results under the weaker assumption
that aa′+ 1 is a power for many pairs (a, a′) in A2. For any integer k ≥ 3, set

Wk = {x` : x ∈ Z+ and 3 ≤ ` ≤ k},

and, if k ≥ 4, define

Xk = {x` : x ∈ Z+ and 4 ≤ ` ≤ k}.

Theorem 4. Let k ≥ 3 be an integer. Let A and B be two sets of positive
integers. If ab+ 1 is in Wk for at least 15(max{|A| , |B|})5/3 pairs (a, b) with
a in A and b in B, then

max{|A| , |B|} <
(

k

log k

)6

.
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If k ≥ 4 and if there exists α > 3/2 such that ab + 1 is in Xk for at least
(max{|A| , |B|})α pairs (a, b) with a in A and b in B, then

max{|A| , |B|} < c(α)
(

k

log k

)2/(2α−3)

,

for a suitable constant c(α), depending only on α.

Erdős [4] and Moser [12] posed the following additive analogue of the prob-
lem of Diophantus: Is it true that, for all m, there are integers a1 < a2 <
· · · < am such that ai + aj is a perfect square for all i 6= j? Rivat, Sárközy
and Stewart [10] proved that, if A is contained in {1, 2, . . . , N} and a+ a′ is
a perfect square for all a, a′ ∈ A with a 6= a′, then |A| � logN . We can also
investigate what happens if the sums a+a′ are replaced by other polynomials
in a and a′, and perfect squares by higher powers (see, e.g., Gyarmati, Sárközy
and Stewart [7]). First we study the case of a− a′. For a given integer k ≥ 3
and an arbitrary set A of distinct positive integers, the set

{(a, a′) : a, a′ ∈ A, a > a′, a− a′ is a k-th power}

has at most 0.25 |A|2 elements, since the related graph (the graph whose
vertices are the elements of A and two vertices are joined if, and only if,
their difference is a k-th power) does not contain a triangle (apply Lemma 3
below). Indeed, otherwise we would have three elements a1, a2, a3 in A such
that a1− a2 = xk, a2− a3 = yk, a3− a1 = zk for some integers x, y, z, and so
xk + yk + zk = 0. By Fermat’s Last Theorem [13] this is not possible.

So far, we have studied problems for which shifted products aa′ + 1 are
perfect powers for many pairs (a, a′) in A2. Theorem 5 below deals with the
polynomial a2 + a′

2.

Theorem 5. There exists a positive integer N0 with the following prop-
erty: For any integer N ≥ N0 and any set A contained in {1, 2, . . . , N}
such that a2 + a′

2 is a perfect square for all a, a′ ∈ A, a 6= a′, we have
|A| ≤ 4(logN)1/2.

The remainder of the paper is organized as follows. Section 3 is devoted
to auxiliary results taken from [2] and to classical results from graph the-
ory. Proofs of Theorems 1–4 are given in Section 4, whereas Theorem 5 is
established in Section 5.

3. Auxiliary results

We shall need the following lemmas, extracted from [2]. Their proofs rest
heavily on Baker’s theory of linear forms in logarithms.
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Lemma 1. Assume that the integers 0 < a < b < c < d1 < · · · < dm are
such that adi + 1, bdi + 1 and cdi + 1 are perfect cubes for any 1 ≤ i ≤ m.
Then we have m ≤ 6.

Proof. This is [2, Theorem 3]. �

Lemma 2. Let k ≥ 4 be an integer. Assume that the integers 0 < a < b <
c1 < · · · < cm are such that aci + 1 and bci + 1 are perfect k-th powers for
any 1 ≤ i ≤ m. Then there exists an effectively computable constant C1(k)
depending only on k, such that m ≤ C1(k). More precisely, we may take
C1(4) = 3, C1(k) = 2 for 5 ≤ k ≤ 176, C1(k) = 1 for 177 ≤ k.

Proof. This is [2, Theorems 1 and 2]. �

We further need two results from graph theory. Throughout this paper,
for a graph G, we denote by v(G) the number of its vertices and by e(G) the
number of its edges.

Lemma 3. Let G be a graph on n vertices having at least

r − 2
2(r − 1)

n2

edges for some positive integer r ≥ 3. Then G contains a complete subgraph
on r edges.

Proof. This is a consequence of Turán’s graph theorem (see, for example,
[1, p. 294, Theorem 1.1]) combined with the upper bound∑

0≤i<j<r−1

[
n+ i

r − 1

] [
n+ j

r − 1

]
≤ r − 2

2(r − 1)
n2,

which follows from the method of Lagrange multipliers. �

Lemma 4. Assume that G(V1, V2) is a bipartite graph with |V1| = n ≤
|V2| = m, and the vertices are labelled by positive real numbers. Suppose that
G(V1, V2) does not contain a Kr,t subgraph G0 of the form

G0 =

a1 a2 · · · ar

b1 b2 · · · bt
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with ai < bj for all 1 ≤ i ≤ r, 1 ≤ j ≤ t (where the a’s belong to V1 and the
b’s belong to V2 or vice versa). Then G has at most

e(G) ≤ 2(t− 1)1/rmn1−1/r + 2(r − 1)m

edges.

Proof. The proof is very similar to that of the Kőváry–Sós–Turán theorem
[8]. For any vertex x, set

dx = |{y ∈ v(G) : y < x, (x, y) is an edge in G}| ,
e1 =

∑
x∈V1

dx and e2 =
∑
x∈V2

dx. Then we have e(G) = e1 + e2. First we
get an upper bound for e1.

Denote by H the number of subgraphs G1 of G of the form

G1 =

b

a1 a2 · · · ar
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with b ∈ V1, ai ∈ V2 and b > ai for 1 ≤ i ≤ r. Since the graph G does not
contain G0 we have

(4) H ≤ (t− 1)
(
m

r

)
,

by Dirichlet’s Schubfachprinzip. We further have

H =
∑
x∈V1

(
dx
r

)
and, by the Cauchy-Schwarz inequality, we get

(5) H ≥ n
(
e1/n

r

)
Combining (4) and (5) yields

e1 ≤ (t− 1)1/rmn1−1/r + (r − 1)n,

and, similarly, exchanging the roles of V1 and V2 in the definition of G1 (b ∈
V2, ai ∈ V1 and b > ai for 1 ≤ i ≤ r), we obtain

e2 ≤ (t− 1)1/rnm1−1/r + (r − 1)m.

It then follows that

e(G) = e1 + e2 ≤ 2 max{(t− 1)1/rmn1−1/r, (t− 1)1/rnm1−1/r}+ 2(r − 1)m

≤ 2(t− 1)1/rmn1−1/r + 2(r − 1)m,
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which completes the proof of the lemma. �

4. Proofs of Theorems 1–4

Proof of Theorem 1. Let k ≥ 2 be an integer. Let a1, . . . , an and b1, . . . , bm
denote the elements of A and B, respectively. We define a graph G on the
n + m vertices v1, . . . , vn+m in the following way. For any integers i and j
with 1 ≤ i ≤ n and 1 ≤ j ≤ m, an edge joins the vertices vi and vn+j if, and
only if, aibj + 1 is a perfect k-th power. No edge joins two vertices vi and vj
if either 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ n+m.

For k = 3, Lemma 1 implies that G does not contain a subgraph G0 defined
by

G0 =

a b c

d1 d2 d3 d4 d5 d6 d7
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with a < b < c < di for 1 ≤ i ≤ 7.
When k ≥ 4, Lemma 2 implies that the graph G does not contain a sub-

graph G0 defined by

G0 =

a b

c1 c2 c3 c4
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with a < b < ci for 1 ≤ i ≤ 4.
These two remarks combined with Lemma 4 give Theorem 1. �

Proof of Theorem 2. Let a1, a2, . . . , an denote the elements ofA. We define
a graph G on n vertices v1, . . . , vn as in the proof of Theorem 1. For any
integers i and j with 1 ≤ i < j ≤ n, an edge joins the vertices vi and vj
if, and only if, aiaj + 1 is a square. By Dujella’s result [3] recalled in the
Introduction, the graph G does not contain K6 as a subgraph. Lemma 3 then
implies that G has at most 0.4n2 = 0.4 |A|2 edges. This proves Theorem
2. �

Proof of Theorem 3. The proof of Theorem 3 is very similar to that of
Theorem 2 from [6]. However, instead of introducing the sets Am as in [6],
we use Theorem 1 and we work directly with the complete graph G labelled
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by the elements of A. We colour the edge joining the vertices a and a′ by the
smallest integer ` larger than one for which aa′ + 1 is a perfect `-th power.
Thus, each edge is coloured by a prime number. For i = 2, 3, . . . , k, let bi
denote the number of edges of G which are coloured with the integer i. Set
n = |A| and assume that n ≥ 85000(k/ log k)2. By Theorem 2, we have
b2 ≤ 0.4n2. Thus k ≥ 3 and

b3 + · · ·+ bk ≥
n(n− 1)

2
− 2n2

5
=
n2

10
− n

2
.

Furthermore, we infer from Theorem 1 that b3 ≤ 7.64n5/3. Consequently, we
have k ≥ 5. By Corollary 2 of Rosser and Schoenfeld [11], the number of
prime numbers up to k is at most (5k)/(4 log k). Thus, there exists a prime
number p with 5 ≤ p ≤ k such that

bp ≥
4 log k

5k

(
n2

10
− n

2
− 7.64n5/3

)
≥ 5.5n3/2,

since n > 85000(k/ log k)2. Let Gp be the subgraph of G whose vertices are
those of G and whose edges are the edges of G coloured by the prime p.
Theorem 1 implies that bp ≤ 5.47n3/2, which is the desired contradiction. �

Proof of Theorem 4. Let k ≥ 3 be an integer. Let a1, . . . , an and b1, . . . , bm
denote the elements of A and B, respectively. For simplicity, we assume that
m ≥ n. We define a graph G on the n + m vertices v1, . . . , vn+m in the
following way. No edge joins two vertices vi and vj if either 1 ≤ i, j ≤ n or
n+ 1 ≤ i, j ≤ n+m. For any integers i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ m,
an edge joins the vertices vi and vn+j if, and only if, aibj + 1 is a perfect cube
or a higher power. We colour it with the smallest integer ` at least equal to 3
such that ab + 1 is a perfect `-th power. Observe that each edge is coloured
by 4 or by an odd prime number. For any integer i = 3, . . . , k, denote by bi
the number of edges of G which are coloured by the integer i. Denoting by
N the number of edges of G, we have

b3 + · · ·+ bk = N.

By Theorem 1, we have b3 ≤ 7.64 m5/3. Since, by assumption, N is greater
than 15 m5/3, we get

b4 + · · ·+ bk = N − b3 ≥ 7.36 m5/3.

Arguing now as in [6] and in the proof of Theorem 3, we infer that there exists
an integer p with 4 ≤ p ≤ k such that

bp ≥
(

4 log k
5k

)
7.36 m5/3 > 5.88 m5/3 log k

k
.

By Theorem 1, we have bp ≤ 5.47 m3/2. Hence the desired result follows.
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The proof of the second assertion of Theorem 4 follows along the same
lines, but in this case we obtain

b4 + · · ·+ bk = N ≥ mα.

Thus, there exists an integer p with 4 ≤ p ≤ k such that

bp ≥
4 log k

5k
mα.

By Theorem 1 we have bp ≤ 5.47m3/2. Hence the desired result follows. �

5. Proof of Theorem 5

We begin by proving an auxiliary lemma.

Lemma 5. For any sufficiently large integer N and any set A = {a1, a2,
. . . , an} contained in {1, 2, . . . , N}, there exists a prime p such that p ≡ ±3
(mod 8), p divides at most [n/3] numbers from the set A, and p satisfies

p ≤ 3
log 1.6

logN.

Proof. We argue by contradiction. Suppose that all prime numbers p ≡ ±3
(mod 8) with p ≤ 3

log 1.6 logN divide at least [n/3] numbers from the set A.
Each of these primes satisfies

p[n/3] | a1a2 . . . an.

Hence we get

(6)
( ∏
p≤ 3

log 1.6 logN

p≡±3 (mod 8)

p
)[n/3]

| a1a2 . . . an.

It follows from the prime number theorem for arithmetic progressions of small
moduli that for all sufficiently large x we have

1.6x <
∏

p≤x, p≡±3 (mod 8)

p.

Thus, by (6), we get

Nn ≤
(

1.6
3

log 1.6 logN
)[n/3]

<
( ∏
p≤ 3

log 1.6 logN

p≡±3 (mod 8)

p
)[n/3]

≤ a1a2 . . . an ≤ Nn,

which is a contradiction. �
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Let N and A be as in the statement of Lemma 5, and let p be a prime which
satisfies the conclusion of that lemma. Assume that a2 + a′

2 is a square for
any a, a′ in A with a 6= a′. Let us consider the numbers from the set A which
are not divisible by p. These are b1, b2, . . . , bt, t ≥ d2n/3e. If b2i ≡ b2j (mod p)
for i 6= j, then b2i + b2j ≡ 2b2i is a quadratic residue modulo p. Therefore 2
is also a quadratic residue modulo p. But this contradicts the assumption
p ≡ ±3 (mod 8). Thus b21, b

2
2, . . . , b

2
t are incongruent modulo p.

We further need the following lemma.

Lemma 6. Let p be a prime number. Let B be a set of positive integers
coprime with p and whose residues modulo p are all distinct. Assume that for
all b, b′ ∈ B with b 6= b′ the number b+ b′ is a perfect square modulo p. Then
we have |B| ≤ p1/2 + 3.

Proof of Lemma 6. See [5]. �

We now have all the tools for the proof of Theorem 5. The sum of any two
elements of the set {b21, b22, . . . , b2t} is a perfect square, so we get by Lemma 5
and Lemma 6 that

2n/3 ≤ t ≤ p1/2 + 3 ≤
(

3
log 1.6

logN
)1/2

+ 3.

From this we obtain
|A| = n ≤ 4(logN)1/2,

for N sufficiently large. This completes the proof of Theorem 5. �
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