A NOTE ON COMMUTATORS OF FRACTIONAL INTEGRALS WITH RBMO (μ) FUNCTIONS

WENGU CHEN AND E. SAWYER

Abstract

Let μ be a Borel measure on \mathbb{R}^{d} which may be non-doubling. The only condition that μ must satisfy is $\mu(Q) \leq c_{0} l(Q)^{n}$ for any cube $Q \subset \mathbb{R}^{d}$ with sides parallel to the coordinate axes, for some fixed n with $0<n \leq d$. In this note we consider the commutators of fractional integrals with functions of the new BMO introduced by X. Tolsa.

1. Introduction

Let μ be a non-negative n-dimensional Borel measure on R^{d}, that is, a measure satisfying

$$
\mu(Q) \leq c_{0} l(Q)^{n}
$$

for any cube $Q \subset \mathbb{R}^{d}$ with sides parallel to the coordinate axes, where $l(Q)$ stands for the side length of Q and n is a fixed real number such that $0<$ $n \leq d$. Throughout this note, all cubes we shall consider will be those with sides parallel to the coordinate axes. For $r>0, r Q$ will denote the cube with the same center as Q and with $l(r Q)=r l(Q)$. Moreover, $Q(x, r)$ will be the cube centered at x with side length r.

The classical theory of harmonic analysis for maximal functions and singular integrals on $\left(\mathbb{R}^{n}, \mu\right)$ has been developed under the assumption that the underlying measure μ satisfies the doubling property, i.e., there exists a constant $c>0$ such that $\mu(B(x, 2 r)) \leq c \mu(B(x, r))$ for every $x \in \mathbb{R}^{n}$ and $r>0$. However, some recent results on Calderón-Zygmund operators ([4], [5], [6], [7]) and functions of bounded mean oscillation ([3], [8]) show that it should be possible to dispense with the doubling condition for most of the classical theory. The purpose of this note is to extend the main theorem in [1] to this new setting and strengthen the above point of view.

[^0]Let us introduce some notations and definitions. Let $0 \leq \beta<n$. Given two cubes $Q \subset R$ in \mathbb{R}^{d}, we set

$$
K_{Q, R}^{(\beta)}=1+\sum_{k=1}^{N_{Q, R}}\left[\frac{\mu\left(2^{k} Q\right)}{l\left(2^{k} Q\right)^{n}}\right]^{1-\beta / n}
$$

where $N_{Q, R}$ is the first integer k such that $l\left(2^{k} Q\right) \geq l(R)$. If $\beta=0$, then $K_{Q, R}^{(0)}=K_{Q, R}$. The latter concept was introduced by Tolsa in [8].

Given β_{d} (depending on d) large enough (for example, $\beta_{d}>2^{n}$), we say that a cube $Q \subset \mathbb{R}^{d}$ is doubling if $\mu(2 Q) \leq \beta_{d} \mu(Q)$.

Given a cube $Q \subset \mathbb{R}^{d}$, let N be the smallest integer ≥ 0 such that $2^{N} Q$ is doubling. We denote this cube by \widetilde{Q}.

Let $\eta>1$ be a fixed constant. We say that $b \in L_{\text {loc }}^{1}(\mu)$ is in $\operatorname{RBMO}(\mu)$ if there exists a constant c_{1} such that for any cube Q

$$
\begin{equation*}
\frac{1}{\mu(\eta Q)} \int_{Q}\left|b-m_{\tilde{Q}} b\right| d \mu \leq c_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|m_{Q} b-m_{R} b\right| \leq c_{1} K_{Q, R} \text { for any two doubling cubes } Q \subset R, \tag{2}
\end{equation*}
$$

where $m_{Q} b=(1 / \mu(Q)) \int_{Q} b d \mu$. The minimal constant c_{1} is the $\operatorname{RBMO}(\mu)$ norm of b, and it will be denoted by $\|b\|_{*}$. By Lemma 2.6 and Remark 2.9 in [8] one obtains equivalent norms in the space $\operatorname{RBMO}(\mu)$ with different parameters $\eta>1$ and $\beta_{d}>2^{n}$.

2. Statement of the theorem and its proof

Now we can state the main result in this note.
Theorem 1. Let $b(x) \in \operatorname{RBMO}(\mu)$. Then the operator

$$
\left[b, I_{\alpha}\right](f)(x)=b(x) I_{\alpha} f(x)-I_{\alpha}(b f)(x)
$$

satisfies

$$
\left\|\left[b, I_{\alpha}\right](f)\right\|_{q} \leq c\|b\|_{*}\|f\|_{p}
$$

where

$$
I_{\alpha} f(x)=\int_{\mathbb{R}^{d}} \frac{f(y)}{|x-y|^{n-\alpha}} d \mu(y)
$$

$1 / q=1 / p-\alpha / n, 1<p<n / \alpha$ and $0<\alpha<n$.
Before proving the theorem, we need another equivalent norm for $\mathrm{RBMO}(\mu)$ and some lemmas.

Suppose that for a given function $b \in L_{\text {loc }}^{1}(\mu)$ there exist some c_{2} and a collection of numbers $\left\{b_{Q}\right\}_{Q}$ (i.e., for each cube Q there exists $b_{Q} \in \mathbb{R}$) such that

$$
\begin{equation*}
\sup _{Q} \frac{1}{\mu(\eta Q)} \int_{Q}\left|b-b_{Q}\right| d \mu \leq c_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{Q}-b_{R}\right| \leq c_{2} K_{Q, R} \text { for any two cubes } Q \subset R \tag{4}
\end{equation*}
$$

Then we write $\|b\|_{* *}=\inf c_{2}$, where the infimum is taken over all the constants c_{2} and all the numbers $\left\{b_{Q}\right\}$ satisfying (3) and (4). By [8, Lemma 2.8, p. 99], for a fixed $\eta>1$, the norms $\|\cdot\|_{*}$ and $\|\cdot\|_{* *}$ are equivalent.

Lemma 1. If $p>1$ and $1 / q=1 / p-\alpha / n, 0<\alpha<n$, then

$$
\left\|I_{\alpha}(f)\right\|_{q} \leq c\|f\|_{p}
$$

If $p=1$, then

$$
\mu\left(\left\{x: I_{\alpha}(|f|)(x)>\lambda\right\}\right) \leq\left(c / \lambda\|f\|_{1}\right)^{n /(n-\alpha)}
$$

Proof. See [2, p. 1269].
Lemma 2. Let $p<r<n / \alpha$ and $1 / q=1 / r-\alpha / n$. Then

$$
\left\|M_{p,(\eta)}^{(\alpha)} f\right\|_{q} \leq c\|f\|_{r}
$$

where for $\eta>1$ and $0 \leq \beta<n / p, M_{p,(\eta)}^{(\beta)}$ is the non-centered maximal operator

$$
M_{p,(\eta)}^{(\beta)} f(x)=\sup _{x \in Q}\left(\frac{1}{\mu(\eta Q)^{1-\beta p / n}} \int_{Q}|f(y)|^{p} d \mu(y)\right)^{1 / p}
$$

and when $\beta=0$, we denote $M_{p,(\eta)}^{(0)}$ by $M_{p,(\eta)}$.
Proof. Note that for $0 \leq \beta<n / p$ and $\eta>1, M_{p,(\eta)}^{(\beta)}$ is controlled by the operator defined as

$$
\widetilde{M}_{p,(\eta)}^{(\beta)} f(x)=\sup _{x \in \eta^{-1} Q}\left(\frac{1}{\mu(Q)^{1-\beta p / n}} \int_{Q}|f(y)|^{p} d \mu(y)\right)^{1 / p}
$$

We only need to prove the lemma for $\widetilde{M}_{p,(\eta)}^{(\alpha)}$. We first prove that

$$
\mu\left(\left\{x: \widetilde{M}_{p,(\eta)}^{(\alpha)} f(x)>\lambda\right\}\right) \leq\left(c / \lambda\|f\|_{p}\right)^{n p /(n-\alpha p)}
$$

Let us consider the set E defined by

$$
E=\left\{x: \widetilde{M}_{p,(\eta)}^{(\alpha)} f(x)>\lambda\right\}
$$

By the Besicovitch covering lemma it follows that there exists a sequence of cubes Q_{j}, with bounded overlap, so that $E \subset \bigcup_{j} Q_{j}$ and on each Q_{j} we have

$$
\frac{1}{\mu\left(Q_{j}\right)^{1-\alpha p / n}} \int_{Q_{j}}|f|^{p} d \mu \geq \lambda^{p} .
$$

Let $q=n p /(n-\alpha p)$. Then $p / q \leq 1$. Hence,

$$
\mu(E)^{p / q} \leq \mu\left(\bigcup_{j} Q_{j}\right)^{p / q} \leq \sum_{j} \mu\left(Q_{j}\right)^{p / q}
$$

Now

$$
\mu\left(Q_{j}\right)^{1-\alpha p / n} \leq \frac{1}{\lambda^{p}} \int_{Q_{j}}|f|^{p} d \mu
$$

and since $p / q=1-\alpha p / n$,

$$
\sum_{j} \mu\left(Q_{j}\right)^{p / q} \leq \frac{1}{\lambda^{p}} \int|f|^{p}\left(\sum_{j} \chi_{Q_{j}}\right) d \mu
$$

Hence

$$
\mu(E) \leq \frac{c}{\lambda^{q}}\|f\|_{p}^{q}
$$

Note now that if $p<s<n / \alpha$, then using Hölder's inequality

$$
\widetilde{M}_{p,(\eta)}^{(\alpha)} f(x) \leq \widetilde{M}_{s,(\eta)}^{(\alpha)} f(x)
$$

Hence by the preceding arguments we have

$$
\mu(E) \leq\left(\frac{c}{\lambda}\|f\|_{s}\right)^{n s /(n-\alpha s)}
$$

The lemma follows by the Marcinkiewicz interpolation theorem.
Lemma 3. For $K_{Q, R}^{(\beta)}, 0 \leq \beta<n$, we have the following properties:
(1) If $Q \subset R \subset S$ are cubes in \mathbb{R}^{d}, then $K_{Q, R}^{(\beta)} \leq K_{Q, S}^{(\beta)}, K_{R, S}^{(\beta)} \leq c K_{Q, S}^{(\beta)}$ and $K_{Q, S}^{(\beta)} \leq c\left(K_{Q, R}^{(\beta)}+K_{R, S}^{(\beta)}\right)$.
(2) If $Q \subset R$ have comparable sizes, then $K_{Q, R}^{(\beta)} \leq c$.
(3) If N is a positive integer and the cubes $2 Q, 2^{2} Q, \ldots, 2^{N-1} Q$ are nondoubling, then $K_{Q, 2^{N} Q}^{(\beta)} \leq c$. So, $K_{Q, \widetilde{Q}}^{(\beta)} \leq c$.

Proof. The properties (1) and (2) are easy to check. Let us prove (3). Note that $\beta_{d}>2^{n}$. For $k=1, \ldots, N-1$, we have $\mu\left(2^{k+1} Q\right)>\beta_{d} \mu\left(2^{k} Q\right)$. Thus

$$
\mu\left(2^{k} Q\right)<\frac{\mu\left(2^{N} Q\right)}{\beta_{d}^{N-k}}
$$

for $k=1, \ldots, N-1$. Therefore

$$
\begin{aligned}
K_{Q, 2^{N} Q}^{(\beta)} & \leq 1+\sum_{k=1}^{N-1}\left[\frac{\mu\left(2^{N} Q\right)}{\beta_{d}^{N-k} l\left(2^{k} Q\right)^{n}}\right]^{1-\beta / n}+\left[\frac{\mu\left(2^{N} Q\right)}{l\left(2^{N} Q\right)^{n}}\right]^{1-\beta / n} \\
& \leq 1+c_{0}^{1-\beta / n}+\left[\frac{\mu\left(2^{N} Q\right)}{l\left(2^{N} Q\right)^{n}}\right]^{1-\beta / n} \sum_{k=1}^{N-1}\left[\frac{1}{\beta_{d}^{N-k} 2^{(k-N) n}}\right]^{1-\beta / n} \\
& \leq 1+c_{0}^{1-\beta / n}+c_{0}^{1-\beta / n} \sum_{k=1}^{\infty}\left(2^{n} / \beta_{d}\right)^{k(1-\beta / n)} \leq c .
\end{aligned}
$$

In [8], Tolsa defined a sharp maximal operator $M^{\#} f(x)$ such that

$$
f \in \operatorname{RBMO}(\mu) \Longleftrightarrow M^{\#} f \in L^{\infty}(\mu)
$$

In order to prove the theorem, we need to introduce a variant of this sharp maximal operator $M^{\#,(\beta)} f(x)$ such that $M^{\#} f(x)=M^{\#,(0)} f(x)$. We define

$$
M^{\#,(\beta)} f(x)=\sup _{x \in Q} \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|f-m_{\widetilde{Q}} f\right| d \mu+\sup _{\substack{x \in Q \subset R \\ Q, R \text { doubling }}} \frac{\left|m_{Q} f-m_{R} f\right|}{K_{Q, R}^{(\beta)}}
$$

We also consider the non-centered doubling maximal operator N, defined by

$$
N f(x)=\sup _{\substack{x \in Q \\ Q \text { doubling }}} \frac{1}{\mu(Q)} \int_{Q}|f| d \mu
$$

By Remark 2.3 of [8], for μ-almost all $x \in \mathbb{R}^{d}$ one can find a sequence of doubling cubes $\left\{Q_{k}\right\}_{k}$ centered at x with $l\left(Q_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ such that

$$
\lim _{k \rightarrow \infty} \frac{1}{\mu\left(Q_{k}\right)} \int_{Q_{k}} b(y) d \mu(y)=b(x)
$$

So, $|f(x)| \leq N f(x)$ for μ-a.e. $x \in \mathbb{R}^{d}$. Moreover, it is easy to show that N is of weak type $(1,1)$ and bounded on $L^{p}(\mu), p \in(1, \infty]$.

Lemma 4. Let $f \in L_{\text {loc }}^{1}(\mu)$ with $\int f d \mu=0$ if $\|\mu\|<\infty$. For $1<p<\infty$, if $\inf (1, N f) \in L^{p}(\mu)$, then for $0 \leq \beta<n$ we have

$$
\|N f\|_{L^{p}(\mu)} \leq c\left\|M^{\#,(\beta)} f\right\|_{L^{p}(\mu)}
$$

When $\beta=0$, this is Theorem 6.2 of [8]. With minor changes in the proof one can obtain the present lemma. We omit the proof here for brevity.

LEMMA 5. For $0 \leq \beta<n$ there exists a constant P_{β} (large enough) depending on c_{0}, n and β such that if $Q_{1} \subset Q_{2} \subset \cdots \subset Q_{m}$ are concentric
cubes with $K_{Q_{i}, Q_{i+1}}^{(\beta)}>P_{\beta}$ for $i=1,2, \ldots, m-1$, then

$$
\sum_{i=1}^{m-1} K_{Q_{i}, Q_{i+1}}^{(\beta)} \leq c_{3} K_{Q_{1}, Q_{m}}^{(\beta)}
$$

where c_{3} depends only on c_{0}, n and β.
Proof. Let Q_{i}^{\prime} be a cube concentric with Q_{i} such that $l\left(Q_{i}\right) \leq l\left(Q_{i}^{\prime}\right)<$ $2 l\left(Q_{i}\right)$ with $l\left(Q_{i}^{\prime}\right)=2^{k} l\left(Q_{1}\right)$ for some $k \geq 0$. Then

$$
c_{4}^{-1} K_{Q_{i}, Q_{i+1}}^{(\beta)} \leq K_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}^{(\beta)} \leq c_{4} K_{Q_{i}, Q_{i+1}}^{(\beta)}
$$

for all i with c_{4} depending on c_{0}, n and β.
Observe also that if we take P_{β} so that $c_{4}^{-1} P_{\beta} \geq 2$, then $K_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}^{(\beta)}>2$ and so

$$
K_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}^{(\beta)} \leq 2 \sum_{k=1}^{N_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}}\left[\frac{\mu\left(2^{k} Q_{i}^{\prime}\right)}{l\left(2^{k} Q_{i}^{\prime}\right)^{n}}\right]^{1-\beta / n}
$$

Therefore

$$
\begin{equation*}
\sum_{i=1}^{m-1} K_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}^{(\beta)} \leq 2 \sum_{i=1}^{m-1} \sum_{k=1}^{N_{Q_{i}^{\prime}}, Q_{i+1}^{\prime}}\left[\frac{\mu\left(2^{k} Q_{i}^{\prime}\right)}{l\left(2^{k} Q_{i}^{\prime}\right)^{n}}\right]^{1-\beta / n} \tag{5}
\end{equation*}
$$

On the other hand, if P_{β} is large enough, then $Q_{i}^{\prime} \neq Q_{i+1}^{\prime}$. Indeed,

$$
c_{0}^{1-\beta / n} N_{Q_{i}, Q_{i+1}} \geq \sum_{k=1}^{N_{Q_{i}, Q_{i+1}}}\left[\frac{\mu\left(2^{k} Q_{i}\right)}{l\left(2^{k} Q_{i}\right)^{n}}\right]^{1-\beta / n} \geq P_{\beta}-1
$$

and so $N_{Q_{i}, Q_{i+1}} \geq\left(P_{\beta}-1\right) / c_{0}^{1-\beta / n}>2$, assuming P_{β} large enough. This implies $l\left(Q_{i+1}\right)>2 l\left(Q_{i}\right)$, so $Q_{i}^{\prime} \neq Q_{i+1}^{\prime}$. As a consequence, there is no overlapping in the terms $\left[\mu\left(2^{k} Q_{i}^{\prime}\right) / l\left(2^{k} Q_{i}^{\prime}\right)^{n}\right]^{1-\beta / n}$ on the right hand side of (5). Thus

$$
\sum_{i=1}^{m-1} K_{Q_{i}, Q_{i+1}}^{(\beta)} \leq c_{4} \sum_{i=1}^{m-1} K_{Q_{i}^{\prime}, Q_{i+1}^{\prime}}^{(\beta)} \leq 2 c_{4} K_{Q_{1}^{\prime}, Q_{m}^{\prime}}^{(\beta)} \leq 2 c_{4}^{2} K_{Q_{1}, Q_{m}}^{(\beta)}
$$

LEMmA 6. For $0 \leq \beta<n$ there exists a constant P_{β}^{\prime} (large enough) depending on c_{0}, n and β such that if $x \in \mathbb{R}^{d}$ is a fixed point and $\left\{f_{Q}\right\}_{Q \ni x}$ is a collection of numbers such that $\left|f_{Q}-f_{R}\right| \leq K_{Q, R}^{(\beta)} C_{x}$ for all doubling cubes $Q \subset R$ with $x \in Q$ such that $K_{Q, R}^{(\beta)} \leq P_{\beta}^{\prime}$, then

$$
\left|f_{Q}-f_{R}\right| \leq c_{5} K_{Q, R}^{(\beta)} C_{x} \text { for all doubling cubes } Q \subset R \text { with } x \in Q
$$

where c_{5} depends on c_{0}, n and β.

Proof. Let $Q \subset R$ be two doubling cubes in \mathbb{R}^{d} with $x \in Q=: Q_{0}$. Let Q_{1} be the first cube of the form $2^{k} Q, k \geq 0$, such that $K_{Q, Q_{1}}^{(\beta)}>P_{\beta}$. Since $K_{Q, 2^{-1} Q_{1}}^{(\beta)} \leq P_{\beta}$, we have $K_{Q, Q_{1}}^{(\beta)} \leq 2 P_{\beta}+c_{6}$ by Lemma 3 . So, for the doubling cube \widetilde{Q}_{1}, we have $K_{Q, \widetilde{Q}_{1}}^{(\beta)} \leq c_{7}$ with c_{7} depending on P_{β}, n, c_{0} and β.

In general, given $\widetilde{Q_{i}}$, we denote by Q_{i+1} the first cube of the form $2^{k} \widetilde{Q_{i}}, k \geq$ 0 , such that $K_{\widetilde{Q_{i}}, Q_{i+1}}^{(\beta)}>P_{\beta}$. We consider the doubling cube $\widetilde{Q_{i+1}}$. We have $K_{\widetilde{Q_{i}},}^{(\beta)} \widetilde{Q_{i+1}} \leq c_{7}$ and $K_{\widetilde{Q_{i}}}^{(\beta)} \widetilde{Q_{i+1}} \geq K_{\widetilde{Q_{i}}, Q_{i+1}}^{(\beta)}>P_{\beta}$. Then we obtain

$$
\begin{equation*}
\left|f_{Q}-f_{R}\right| \leq \sum_{i=1}^{N}\left|f_{\widetilde{Q_{i-1}}}-f_{\widetilde{Q_{i}}}\right|+\left|f_{\widetilde{Q_{N}}}-f_{R}\right| \tag{6}
\end{equation*}
$$

where $\widetilde{Q_{N}}$ is the first cube of the sequence $\left\{\widetilde{Q_{i}}\right\}_{i}$ such that $\widetilde{Q_{N+1}} \supset R$. Since $K_{\widetilde{Q_{N}}}^{(\beta)}, \widetilde{Q_{N+1}} \leq c_{7}$, we also have $K_{\widetilde{Q_{N}}, R}^{(\beta)} \leq c_{7}$. By (6) and Lemma 5, if we set $P_{\beta}^{\prime}=c_{7}$, we get

$$
\begin{aligned}
\left|f_{Q}-f_{R}\right| & \leq \sum_{i=1}^{N} K_{\widetilde{Q_{i-1}}, \widetilde{Q}_{i}}^{(\beta)} C_{x}+K_{\widetilde{Q_{N}}, R}^{(\beta)} C_{x} \\
& \leq c K_{Q, \widetilde{Q_{N}}}^{(\beta)} C_{x}+K_{\widetilde{Q_{N}}, R}^{(\beta)} C_{x} \leq c K_{Q, R}^{(\beta)} C_{x}
\end{aligned}
$$

Proof of Theorem 1. For all $p \in(1, n / \alpha)$ we will prove the following sharp maximal function estimate:
$M^{\#,(\alpha)}\left(\left[b, I_{\alpha}\right] f\right)(x) \leq c_{p}\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x)+I_{\alpha}(|f|)(x)\right)$.
Then, if we take r such that $1<r<p<n / \alpha$ and $1 / q=1 / p-\alpha / n$, we get

$$
\begin{aligned}
\left\|\left[b, I_{\alpha}\right] f\right\|_{q} & \leq\left\|N\left(\left[b, I_{\alpha}\right] f\right)\right\|_{q} \leq c\left\|M^{\#,(\alpha)}\left(\left[b, I_{\alpha}\right] f\right)\right\|_{q} \\
& \leq c\|b\|_{*}\left(\left\|M_{r,(9 / 8)}^{(\alpha)} f\right\|_{q}+\left\|M_{r,(3 / 2)}\left(I_{\alpha} f\right)\right\|_{q}+\left\|I_{\alpha}(|f|)\right\|_{q}\right) \\
& \leq c\|b\|_{*}\|f\|_{p}
\end{aligned}
$$

Thus it remains to prove the above sharp maximal function estimate.
Let $\left\{b_{Q}\right\}_{Q}$ be a family of numbers satisfying

$$
\int_{Q}\left|b-b_{Q}\right| d \mu \leq 2 \mu(2 Q)\|b\|_{* *}
$$

for any cube Q, and

$$
\left|b_{Q}-b_{R}\right| \leq 2 K_{Q, R}\|b\|_{* *}
$$

for all cubes $Q \subset R$. For any cube Q, we set

$$
h_{Q}:=m_{Q}\left(I_{\alpha}\left(\left(b-b_{Q}\right) f \chi_{\mathbb{R}^{d} \backslash(4 / 3) Q}\right)\right)
$$

We will prove that

$$
\begin{align*}
& \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|\left[b, I_{\alpha}\right] f-h_{Q}\right| d \mu \tag{7}\\
& \leq c\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x)\right)
\end{align*}
$$

for all x and Q with $x \in Q$, and

$$
\begin{equation*}
\left|h_{Q}-h_{R}\right| \leq c\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+I_{\alpha}(|f|)(x)\right) K_{Q, R} K_{Q, R}^{(\alpha)} \tag{8}
\end{equation*}
$$

for all cubes $Q \subset R$ with $x \in Q$.
To get (7) for some fixed cube Q and x with $x \in Q$, we write $\left[b, I_{\alpha}\right] f$ in the form

$$
\begin{equation*}
\left[b, I_{\alpha}\right] f=\left(b-b_{Q}\right) I_{\alpha} f-I_{\alpha}\left(\left(b-b_{Q}\right) f_{1}\right)-I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right), \tag{9}
\end{equation*}
$$

where $f_{1}=f \chi_{(4 / 3) Q}$ and $f_{2}=f-f_{1}$.
Let us first estimate the term $\left(b-b_{Q}\right) I_{\alpha} f$:

$$
\begin{align*}
& \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|\left(b-b_{Q}\right) I_{\alpha} f\right| d \mu \leq\left(\frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|b-b_{Q}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}} \tag{10}\\
& \times\left(\frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|I_{\alpha} f\right|^{p} d \mu\right)^{1 / p} \\
& \leq c\|b\|_{*} M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x) .
\end{align*}
$$

Next we are going to estimate the second term on the right hand side of (9). We take $s=\sqrt{p}$. Then we have

$$
\begin{align*}
& \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{1}\right)\right| d \mu \leq \frac{\mu(Q)^{1-1 / r}}{\mu((3 / 2) Q)}\left\|I_{\alpha}\left(\left(b-b_{Q}\right) f_{1}\right)\right\|_{L^{r}(\mu)} \tag{11}\\
& \leq c \frac{\mu(Q)^{1-1 / r}}{\mu((3 / 2) Q)}\left\|\left(b-b_{Q}\right) f_{1}\right\|_{L^{s}(\mu)} \quad(1 / r=1 / s-\alpha / n) \\
& \leq c \frac{\mu(Q)^{1-1 / r}}{\mu((3 / 2) Q)}\left(\int_{(4 / 3) Q}\left|\left(b-b_{Q}\right) f_{1}\right|^{s} d \mu\right)^{1 / s} \\
& \leq c \frac{1}{\mu((3 / 2) Q)^{1 / r}}\left(\int_{(4 / 3) Q}\left|b-b_{Q}\right|^{s s^{\prime}} d \mu\right)^{1 / s s^{\prime}}\left(\int_{(4 / 3) Q}|f|^{p} d \mu\right)^{1 / p} \\
& \leq c\left(\frac{1}{\mu((3 / 2) Q)} \int_{(4 / 3) Q}\left|b-b_{Q}\right|^{s s^{\prime}} d \mu\right)^{1 / s s^{\prime}} \\
& \quad \times\left(\frac{1}{\mu((3 / 2) Q)^{1-\alpha p / n}} \int_{(4 / 3) Q}^{\left.|f|^{p} d \mu\right)^{1 / p}}\right. \\
& \leq c\|b\|_{*} M_{p, 9 / 8)}^{(\alpha)} f(x) .
\end{align*}
$$

By (9), (10) and (11), to get (7) it remains to estimate the difference $\left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)-h_{Q}\right|$. For $y_{1}, y_{2} \in Q$ we have

$$
\begin{align*}
& \left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\left(y_{1}\right)-I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\left(y_{2}\right)\right| \tag{12}\\
& \leq c \int_{\mathbb{R}^{d} \backslash(4 / 3) Q} \frac{\left|y_{2}-y_{1}\right|}{\left|z-y_{1}\right|^{n+1-\alpha}}\left|b(z)-b_{Q} \| f(z)\right| d \mu(z) \\
& \leq c \sum_{k=1}^{\infty} \int_{2^{k}(4 / 3) Q \backslash 2^{k-1}(4 / 3) Q} \frac{l(Q)}{\left|z-y_{1}\right|^{n+1-\alpha}}\left(\left|b(z)-b_{2^{k}(4 / 3) Q}\right|\right. \\
& \left.+\left|b_{Q}-b_{2^{k}(4 / 3) Q}\right|\right)|f(z)| d \mu(z) \\
& \leq c \sum_{k=1}^{\infty} 2^{-k} \frac{1}{l\left(2^{k} Q\right)^{n-\alpha}} \int_{2^{k}(4 / 3) Q}\left|b(z)-b_{2^{k}(4 / 3) Q} \| f(z)\right| d \mu(z) \\
& +c \sum_{k=1}^{\infty} k 2^{-k}\|b\|_{*} \frac{1}{l\left(2^{k} Q\right)^{n-\alpha}} \int_{2^{k}(4 / 3) Q}|f(z)| d \mu(z) \\
& \leq c \sum_{k=1}^{\infty} 2^{-k}\left(\frac{1}{\mu\left(2^{k}(3 / 2) Q\right)} \int_{2^{k}(4 / 3) Q}\left|b-b_{2^{k}(4 / 3) Q}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}} \\
& \times\left(\frac{1}{\mu\left(2^{k}(3 / 2) Q\right)^{1-\alpha p / n}} \int_{2^{k}(4 / 3) Q}|f|^{p} d \mu\right)^{1 / p} \\
& +c \sum_{k=1}^{\infty} k 2^{-k}\|b\|_{*}\left(\frac{1}{\mu\left(2^{k}(3 / 2) Q\right)^{1-\alpha p / n}} \int_{2^{k}(4 / 3) Q}|f|^{p} d \mu\right)^{1 / p} \\
& \leq c \sum_{k=1}^{\infty} 2^{-k}\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)+c \sum_{k=1}^{\infty} k 2^{-k}\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x) \\
& \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x),
\end{align*}
$$

where we used the fact that

$$
\left|b_{Q}-b_{2^{k}(4 / 3) Q}\right| \leq 2 K_{Q, 2^{k}(4 / 3) Q}\|b\|_{* *} \leq c k\|b\|_{*} .
$$

Taking the mean over $y_{2} \in Q$, we get

$$
\begin{aligned}
\left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\left(y_{1}\right)-h_{Q}\right| & =\left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\left(y_{1}\right)-m_{Q}\left(I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\right)\right| \\
& \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|I_{\alpha}\left(\left(b-b_{Q}\right) f_{2}\right)\left(y_{1}\right)-h_{Q}\right| d \mu\left(y_{1}\right) \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x), \tag{13}
\end{equation*}
$$

and so (7) holds.
Now we have to check the regularity condition (8) for the numbers $\left\{h_{Q}\right\}_{Q}$. Consider two cubes $Q \subset R$ with $x \in Q$. We set $N=N_{Q, R}+1$. We write the difference $\left|h_{Q}-h_{R}\right|$ in the form

$$
\begin{aligned}
& \left|m_{Q}\left(I_{\alpha}\left(\left(b-b_{Q}\right) f \chi_{\mathbb{R}^{d} \backslash(4 / 3) Q}\right)\right)-m_{R}\left(I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash(4 / 3) R}\right)\right)\right| \\
& \quad \leq\left|m_{Q}\left(I_{\alpha}\left(\left(b-b_{Q}\right) f \chi_{2 Q \backslash(4 / 3) Q}\right)\right)\right|+\left|m_{Q}\left(I_{\alpha}\left(\left(b_{Q}-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash 2 Q}\right)\right)\right| \\
& \quad+\left|m_{Q}\left(I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{2^{N} Q \backslash 2 Q}\right)\right)\right|+\left|m_{R}\left(I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{2^{N} Q \backslash(4 / 3) R}\right)\right)\right| \\
& \quad \quad+\left|m_{Q}\left(I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash 2^{N} Q}\right)\right)-m_{R}\left(I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash 2^{N} Q}\right)\right)\right| \\
& \quad:=U_{1}+U_{2}+U_{3}+U_{4}+U_{5} .
\end{aligned}
$$

Let us estimate U_{1}. For $y \in Q$ we have

$$
\begin{aligned}
& \left|I_{\alpha}\left(\left(b-b_{Q}\right) f \chi_{2 Q \backslash(4 / 3) Q}\right)(y)\right| \leq \frac{c}{l(Q)^{n-\alpha}} \int_{2 Q}\left|b-b_{Q} \| f\right| d \mu \\
& \quad \leq \frac{c}{l(Q)^{n-\alpha}}\left(\int_{2 Q}\left|b-b_{Q}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}\left(\int_{2 Q}|f|^{p} d \mu\right)^{1 / p} \\
& \quad \leq c\left(\frac{1}{\mu(3 Q)} \int_{2 Q}\left|b-b_{Q}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}\left(\frac{1}{\mu((9 / 4) Q)^{1-\alpha p / n}} \int_{2 Q}|f|^{p} d \mu\right)^{1 / p} \\
& \quad \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x) .
\end{aligned}
$$

Hence we obtain

$$
U_{1} \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

Next, consider the term U_{2}. For $x, y \in Q$, it is easily seen that

$$
\left|I_{\alpha}\left(f \chi_{\mathbb{R}^{d} \backslash 2 Q}\right)(y)\right| \leq I_{\alpha}(|f|)(x)+c M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

Thus

$$
\begin{aligned}
U_{2} & =\left|\frac{1}{\mu(Q)} \int_{Q}\left(b_{Q}-b_{R}\right) I_{\alpha}\left(f \chi_{\mathbb{R}^{d} \backslash 2 Q}\right)(y) d \mu\right| \\
& \leq c K_{Q, R}\|b\|_{*}\left(I_{\alpha}(|f|)(x)+M_{p,(9 / 8)}^{(\alpha)} f(x)\right) .
\end{aligned}
$$

The term U_{4} is easy to estimate. Calculations similar to those carried out for U_{1} yield

$$
U_{4} \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

Let us now turn to the term U_{5}. Arguing as in (12), for any $y, z \in R$, we get

$$
\left|I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash 2^{N} Q}\right)(y)-I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{\mathbb{R}^{d} \backslash 2^{N} Q}\right)(z)\right| \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

Taking the mean over Q for y and over R for z, we obtain

$$
U_{5} \leq c\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

Finally, it remains to deal with U_{3}. For $y \in Q$ we have

$$
\begin{aligned}
& \left|I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{2^{N} Q \backslash 2 Q}\right)(y)\right| \leq c \sum_{k=1}^{N-1} \frac{1}{l\left(2^{k} Q\right)^{n-\alpha}} \int_{2^{k+1} Q \backslash 2^{k} Q}\left|b-b_{R}\right||f| d \mu \\
& \quad \leq c \sum_{k=1}^{N-1} \frac{1}{l\left(2^{k} Q\right)^{n-\alpha}}\left(\int_{2^{k+1} Q}\left|b-b_{R}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}\left(\int_{2^{k+1} Q}|f|^{p} d \mu\right)^{1 / p}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left(\int_{2^{k+1} Q}\left|b-b_{R}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}} \\
& \quad \leq\left(\int_{2^{k+1} Q}\left|b-b_{2^{k+1} Q}\right|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}+\mu\left(2^{k+1} Q\right)^{1 / p^{\prime}}\left|b_{2^{k+1} Q}-b_{R}\right| \\
& \quad \leq c K_{Q, R}\|b\|_{*} \mu\left(2^{k+2} Q\right)^{1 / p^{\prime}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|I_{\alpha}\left(\left(b-b_{R}\right) f \chi_{2^{N} Q \backslash 2 Q}\right)(y)\right| \\
& \quad \leq c K_{Q, R}\|b\|_{*} \sum_{k=1}^{N-1} \frac{\mu\left(2^{k+2} Q\right)^{1 / p^{\prime}}}{l\left(2^{k} Q\right)^{n-\alpha}}\left(\int_{2^{k+1} Q}|f|^{p} d \mu\right)^{1 / p} \\
& \quad \leq c K_{Q, R}\|b\|_{*} \sum_{k=1}^{N_{Q, R}} \frac{\mu\left(2^{k+2} Q\right)^{1-\alpha / n}}{l\left(2^{k} Q\right)^{n-\alpha}}\left(\frac{1}{\mu\left(2^{k+2} Q\right)^{1-\alpha p / n}} \int_{2^{k+1} Q}|f|^{p} d \mu\right)^{1 / p} \\
& \quad \leq c K_{Q, R} K_{Q, R}^{(\alpha)}\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
\end{aligned}
$$

Taking the mean over Q, we get

$$
U_{3} \leq c K_{Q, R} K_{Q, R}^{(\alpha)}\|b\|_{*} M_{p,(9 / 8)}^{(\alpha)} f(x)
$$

From the estimates on $U_{1}, U_{2}, U_{3}, U_{4}$ and U_{5}, the regularity condition (8) follows.

Let us see how from (7) and (8) one obtains the sharp maximal function estimate. By (7), if Q is a doubling cube and $x \in Q$, we have

$$
\begin{align*}
\left|m_{Q}\left(\left[b, I_{\alpha}\right] f\right)-h_{Q}\right| & \leq \frac{1}{\mu(Q)} \int_{Q}\left|\left[b, I_{\alpha}\right] f-h_{Q}\right| d \mu \tag{14}\\
& \leq c\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x)\right)
\end{align*}
$$

Also, for any cube Q with $x \in Q, K_{Q, \widetilde{Q}} \leq c$ and $K_{Q, \widetilde{Q}}^{(\alpha)} \leq c$, we have, by (7) and (8),

$$
\text { (15) } \begin{aligned}
& \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|\left[b, I_{\alpha}\right] f-m_{\widetilde{Q}}\left(\left[b, I_{\alpha}\right] f\right)\right| d \mu \\
& \quad \leq \frac{1}{\mu((3 / 2) Q)} \int_{Q}\left|\left[b, I_{\alpha}\right] f-h_{Q}\right| d \mu+\left|h_{Q}-h_{\widetilde{Q}}\right|+\left|h_{\widetilde{Q}}-m_{\widetilde{Q}}\left(\left[b, I_{\alpha}\right] f\right)\right| \\
& \quad \leq c\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x)+I_{\alpha}(|f|)(x)\right) .
\end{aligned}
$$

On the other hand, for all doubling cubes $Q \subset R$ with $x \in Q$ such that $K_{Q, R}^{(\alpha)} \leq P_{\alpha}^{\prime}$, where P_{α}^{\prime} is the constant in Lemma 6 , we have by (8)

$$
\left|h_{Q}-h_{R}\right| \leq c K_{Q, R}\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+I_{\alpha}(|f|)(x)\right) P_{\alpha}^{\prime}
$$

Hence by Lemma 6 we get

$$
\left|h_{Q}-h_{R}\right| \leq c K_{Q, R}^{(\alpha)}\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+I_{\alpha}(|f|)(x)\right)
$$

for all doubling cubes $Q \subset R$ with $x \in Q$, and using (14) again, we obtain

$$
\begin{aligned}
& \left|m_{Q}\left(\left[b, I_{\alpha}\right] f\right)-m_{R}\left(\left[b, I_{\alpha}\right] f\right)\right| \\
& \quad \leq c K_{Q, R}^{(\alpha)}\|b\|_{*}\left(M_{p,(9 / 8)}^{(\alpha)} f(x)+M_{p,(3 / 2)}\left(I_{\alpha} f\right)(x)+I_{\alpha}(|f|)(x)\right) .
\end{aligned}
$$

From this estimate and (15) we get the sharp maximal function estimate.

References

[1] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
[2] J. García-Cuerva and J. Martell, Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J. 50 (2001), 1241-1280.
[3] J. Mateu, P. Mattila, A. Nicolau, and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), 533-565.
[4] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1997, no. 15, 703-726.
[5] _ Weak type estimates and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1998, no. 9, 463-487.
[6] X. Tolsa, L^{2}-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98 (1999), 269-304.
[7] _, Cotlar's inequality and existence of principal values for the Cauchy integral without the doubling condition, J. Reine Angew. Math. 502 (1998), 199-235.
[8] , BMO, H^{1} and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), 89-149.

Wengu Chen, Capital Normal University, Beijing, 100037, P.R. China
E-mail address: shenwg@mail.cnu.edu.cn
Current address: Institute of Applied Physics and Computational Mathematics, Beijing, 100088, P.R. China

[^1]
[^0]: Received April 29, 2002; received in final form September 9, 2002.
 2000 Mathematics Subject Classification. 42B20, 42B25.
 The first author was supported by NNSF of China (No. 19901021), the Beijing Natural Science Foundation (No. 1013006) and a China Scholarship.

[^1]: E. Sawyer, McMaster University, Hamilton, Ontario, Canada L8S 4K1

 E-mail address: sawyer@mcmaster.ca

