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MINIMAL SURFACES IN M
2 × R

HAROLD ROSENBERG

Abstract. We study the geometry and topology of properly embedded

minimal surfaces in M × R, where M is a Riemannian surface. When
M is a round sphere, we give examples of all genus and we prove such
minimal surfaces have exactly two ends or equal M ×{t}, for some real

t. When M has non-negative curvature, we study the conformal type of
minimal surfaces in M × R, and we prove half-space theorems. When

M is the hyperbolic plane, we obtain a Jenkins-Serrin type theorem.

Introduction

In this paper we will discuss minimal surfaces Σ in M × R, where M
will be the 2-sphere (with the constant curvature one metric) or a complete
Riemannian surface with a metric of non-negative curvature, or M will be the
hyperbolic plane. This last case will be treated in detail in a joint paper with
Barbara Nelli; here we will state some of the results. The author wishes to
thank L. Hauswirth for stimulating conversations.

The theory is naturally inspired by that of minimal surfaces in R2×R = R
3.

When M has non-negative curvature, one expects results as in R3. In H2×R,
the theory is quite different.

In each ambient space, we begin with some examples, and then we prove
some theorems. A natural technique to construct global examples is to begin
with a geodesic polygon Γ inN = M×R and let Σ0 be a solution to the Plateau
problem inN with boundary Γ. When Γ is composed of horizontal and vertical
geodesic segments, then Σ0 can be extended across Γ by symmetry in each
edge of Γ. By appropriate choices of Γ this will yield properly embedded
minimal surfaces in N , by continually repeating symmetry in the sides of all
the polygons obtained.

A variant of this procedure will produce surfaces analogous to Scherk’s
periodic minimal surfaces. Starting with Γ and its Plateau solution Σ0, one
lets some sides of Γ tend to infinity in length, so that the associated Plateau
solutions all pass through a fixed compact region in N (this will be assured
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by certain symmetries in the Γ we use). Then a subsequence of the Plateau
solutions will converge to a minimal surface bounded by a geodesic polygon
with edges of infinite length. One completes this surface by symmetry in the
edges of Γ.

In this paper, we often solve Plateau problems, finding least area surfaces
with fixed boundary in a given isotopy class. Some references for doing this in
3-manifolds are [F-H-S] and [M-S-Y]. A reference for finding minimax surfaces
of controlled topology is [Rub].

1. Surfaces in S × R; unduloids

Let S denote the 2-sphere of curvature one, and S(t) = S × (t). We refer
to S(t) as the horizontal sphere at height t, and we denote by h the height
function on S ×R, which is the R-coordinate of a point. In a very interesting
paper concerning isoperimetric-hypersurfaces in Q × R, Q an n-dimensional
simply connected space-form, Pedrosa and Ritore [P-R] found and studied the
minimal hypersurfaces of Sn×R invariant under the group of rotations of the
first factor. When n = 2, they call these surfaces unduloids (embedded) and
nodoids, in analogy with the Delaunay surfaces. They are foliated by circles
C(t) in the sphere S(t), of radius r(t); the radius function determines the
surface.

Before writing the equations of these surfaces found by Pedrosa and Ritore,
we describe their existence by Plateau techniques.

Let p denote a fixed point of S (e.g., the north pole) and let r denote
distance to p on S. Denote by C(0) the geodesic r = π/2 of S. Then Σ =
C(0)×R is a totally geodesic minimal annulus in N = S×R; we will refer to
this as a vertical flat annulus. Let D1, D2 be the two disks of S(0) bounded
by C(0). For T > 0, T small, Σ(T ) (the part of Σ between heights 0 and T )
is a stable minimal surface with boundary C(0) ∪ C(T ). Also, C(0) ∪ C(T )
bounds another stable surface in D1×R, the union of the two horizontal disks.
So there is an unstable surface in D1 × R with boundary C(0) ∪ C(T ). It is
a connected annulus since the only compact minimal surface bounded by a
C(h) is a horizontal disk. This annulus can then be extended to an embedded
complete minimal annulus by rotation by π about the geodesic boundaries.
This rotation about C(0) is the composition of the isometries (x, t) 7→ (x,−t),
and the isometry which is reflection of each S(t) by the geodesic C(t).

Calculations of M. Ritore show that as T tends to 0, these unstable annuli
converge to a double cover of the horizontal disk, with a singularity at the
center of the disk, just as a catenoid converges to a doubly-covered plane by
contraction.

Pedrosa and Ritore call these surfaces unduloids. They deform the flat
vertical annulus Σ in the same manner as the Delaunay mean curvature one
surfaces in R3 deform the cylinder of mean curvature one.
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They derive the equations for rotationally invariant constant mean curva-
ture H hypersurfaces in S×R; more generally, in (a space form)×R. (This is
the only place in this paper we change the order of the factors in S × R. We
do this until the end of this section to respect the order chosen by Pedrosa
and Ritore.) Here is their solution.

Identify the orbit space with [0, π]×R. An invariant hypersurface is deter-
mined by its generating curve γ in the quotient space. Parametrize γ by arc
length s and write

(x′(s), y′(s)) = (cosσ(s), sinσ(s)).

Then Σ has mean curvature H in Sn × R is equivalent to γ satisfying the
system:

x′ = cosσ,

y′ = sinσ,

σ′ = H + (n− 1)cot(y) cos(σ).

In addition to the embedded unduloid solutions, they show there are im-
mersed solutions as well; they call them nodoids.

The unduloids are invariant under vertical translation by 2πT , hence yield
embedded minimal tori in S1(r)× S2.

2. Helicoids in S × R

We obtain a helicoid by rotating the geodesic C(0) at a constant speed
as one rises on the vertical axis at a constant speed. This yields a complete
minimal annulus Σ in S × R and by passing to the quotient by a suitable
vertical translation, an embedded minimal torus in S × S1.

A conformal parametrization of a helicoid can be obtained as follows. Let

X(u, v) = (cos f(u) cos v, cos f(u) sin v, sin f(u), v).

Then X is conformal in terms of z = u + iv if f satisfies the equation (an
elliptic function)

f ′(u)2 = 1 + cos2 f(u).

The mean curvature vector of Σ in R4 (S × R ⊂ R
3 × R = R

4) is easily
calculated in terms of

∂2X

∂u2
+
∂2X

∂v2
·

A simple calculation then shows the projection of this mean curvature vector
onto the unit normal of Σ in S × R is zero. Hence Σ is minimal in S × R.
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3. Properties of minimal annuli in S × R

Let A be a properly immersed minimal annulus in S×R; A is topologically
D∗ = {z ∈ C | 0 < |z| ≤ 1}, with ∂A corresponding to {|z| = 1}. We will see
that A behaves in the same way as when the ambient space is T ×R, T a flat
2-torus [M-R]; i.e., we will see that A is conformally D∗ and a subend of A
meets each horizontal sphere transversally and in at most one Jordan curve.
First we assure the height function is harmonic on A.

Lemma 3.1. Let Σ be a minimal hypersurface of a Riemannian manifold
N . Let X be a Killing vector field on N . If X = ∇f is the gradient of some
function f on N , then f is harmonic on Σ.

Proof. Let e1, e2,. . . , ek, n be an orthonormal frame in a neighborhood of
a point of Σ, where n is normal to Σ. Since X is a Killing vector field on N ,
we have:

div(X) = 0 = 〈∇nX,n〉.
Thus

0 =
k∑
i=1

〈∇ei X, ei〉+ 〈∇nX,n〉 =
k∑
i=1

〈∇ei X, ei〉.

Write X = X⊥ +∇Σ f , X⊥ the normal component of X. Then

0 =
k∑
i=1

〈∇ei ∇Σ f, ei〉+
k∑
i=1

〈∇ei (X⊥, ei〉

= ∆Σf −
k∑
i=1

〈(X⊥,∇ei ei〉 = ∆Σf − 〈(X⊥,H〉 = ∆Σf. �

Corollary 3.2. The only compact minimal surfaces (with no boundary)
in S × R are the S(t).

Proposition 3.3. Let A be a properly immersed minimal annulus in M×
R, M a compact surface. Then A is conformally the punctured disk D∗, and
a subend of A can be conformally parametrized by D∗ so that h = c`n|z|. In
particular, this subend meets each M(t) transversally in at most one Jordan
curve.

Proof. We proceed as in [M-R]. Since A is proper, A must go up or go
down, but not both. So we can suppose A goes up, zero is a regular value of
h, and h/∂A < 0. Then ∆ = h−1(−∞, 0] is a smooth compact surface; one
component of the boundary of ∆ is below zero (namely ∂A), and the others
are smooth Jordan curves in M(0). There is no compact minimal surface with
boundary in M(0) (other than a part of M(0)) since the harmonic function
h would have an interior extremum on such a surface. A is an annulus, so it
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follows there is exactly one component of the boundary of ∆ in M(0). By the
same reasoning, A meets each M(t), t > 0, transversally and in one Jordan
curve. Now it is easy to parametrize the subend h−1[0,∞) so that h = `n|z|.
Use the facts that any compact annulus is conformally S1 × [1, R], and a
harmonic function on this annulus, constant on each boundary circle, is of the
form a log |z|+ b, for some constants a, and b. �

Remark. Bill Meeks pointed out to us how these surfaces arise from
constant mean curvature annuli and tori in R3, such as the Delaunay surfaces
and Wente tori.

Given a torus M of constant mean curvature in R3, its Gauss map f to the
unit sphere S is a harmonic map. Its holomorhic Hopf quadratic differential
is

Q(f) =

[(∣∣∣∣∂f∂x
∣∣∣∣)2

−
(∣∣∣∣∂f∂y

∣∣∣∣)2

− 2i〈∂f
∂x
,
∂f

∂y
〉

]
dz2.

Since M is a torus, this is constant:

Q(f) = cdz2.

After a linear change of coordinates we can assume the constant c is one.
Then the map

F : S1 × R −→ S × R, F (x, y) = (f(x, y), y)

is a conformal harmonic map, i.e., a minimal surface. The Delaunay surfaces
yield the unduloids and nodoids.

4. Some surfaces of higher genus

We will now construct properly embedded minimal surfaces of finite topol-
ogy in S × R. They will be conformally equivalent to a compact Riemann
surface of genus g with two punctures. They have one top end, one bottom
end and each is asymptotic to a flat vertical annulus. We will then prove
that any properly embedded minimal surface has exactly one top end and one
bottom end (or is some S(t)).

Recall that C(0) is a fixed geodesic of S(0). Let D1, D2 be the two disks
of S(0) bounded by C(0). Consider S × R as the union of the two vertical
solid cylinders (D1×R)∪ (D2×R), identified along their common boundary;
the flat vertical annulus C(0)× R.

Consider geodesic coordinates (r, θ) in D1, where the center of D1 is r = 0,
and C(0) is r = π/2. The rays r(θ) = {θ = constant, 0 ≤ r ≤ π/2} are
geodesics, and the circular arcs of C(0) between two θ values, θ1 and θ2, we
denote by C(θ1, θ2). When |θ1 − θ2| < π, C(θ1, θ2) denotes the arc of C(0)
of length less than π. In these coordinates, the end points of C(θ1, θ2) are
(r = π/2, θ1) and (r = π/2, θ2). Let T be a fixed number, and denote by
Γ(T, θ1, θ2) the geodesic polygon in S×R, with the five sides, r(θ1), r(θ2), the
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two vertical geodesic segments {(π/2, θ1, t) | 0 ≤ t ≤ T}, {(π/2, θ2, t) | 0 ≤
t ≤ T}, and the arc (C(θ1, θ2), T ) of C(T ); cf. Figure 1 below.

r(θ2)

r(θ1)

D1

Γ

T

Figure 1

Let Σ be a least area compact minimal surface with boundary Γ =
Γ(T, θ1, θ2). We claim Σ is an embedded disk and int(Σ) is a vertical graph
over the domain in D1 bounded by r(θ1) ∪ r(θ2) ∪ C(θ1, θ2).

To see this notice that Rado’s theorem is true for minimal surfaces in
D1×R : if Γ ⊂ D1×R is a Jordan curve which has a convex projection to D1

then any compact minimal surface in D1 × R bounded by Γ is an embedded
disk and its interior is a vertical graph over the domain in D1 bounded by
the projection of Γ. Vertical translation in D1 × R is an isometry, and the
height function is harmonic on a minimal surface, so the usual proof of Rado’s
theorem goes through.

In our case, ∂D1 × R is a good barrier for solving the Plateau problem in
D1 × R, so Σ ⊂ D1 × R and Rado’s theorem applies.

Next observe that Σ can be continued by rotation by π about each edge in
its boundary. Given a geodesic C in some S(t), rotation by π about C is the
ambient isometry which is the composition of symmetry of S(t) by C, and
symmetry of S×R by S(t). Given a vertical geodesic B of S×R, rotation by
π about B is the symmetry of each S(t) through the point S(t) ∩ B. Notice
that when B ⊂ ∂D1 × R, the rotation by π about B permutes D1 × R and
D2 × R. On the other hand, rotation about an r(θ) in D1 × R sends Σ into
D1 × R. Consider the rotation of Σ about r(θ1). The polygon Γ has image
a polygon Γ(1) as depicted in Figure 2 below, and the image of Σ is easy to
understand.

Continuing to reflect across the rays, the resulting surface will close-up after
2k successive reflections when θ2 − θ1 = π/k (for some integer k = 1, 2, . . . ).
Then the (2k) images of Σ yield an embedded minimal disk Σ(k) whose interior
is a smooth vertical graph over D1, and whose boundary is a geodesic polygon
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on ∂D1 × R, composed of vertical and horizontal geodesics. The vertical
geodesics go from height −T to height T ; the case k = 2 is depicted in Figure
3 below.

Σ

Γ

Γ(1)

Figure 2 Figure 3

Notice that the height function on Σ(k) has a critical point at the center
of D1, which is on Σ(k), of index 1 − k, and no critical points elsewhere on
Σ(k).

There are two natural ways to proceed now to obtain properly embedded
minimal surfaces from Σ(k). We can let T →∞, or we can do all symmetries
of Σ(k) across the geodesic boundaries.

First consider the surface obtained by fixing T and doing all the symmetries
in the sides of Σ = Σ(k, T ). This yields a properly embedded minimal surface
in S × R which is invariant by vertical translation by 2T . In the quotient
S × R

/
2T = S × S1, one obtains a compact surface of genus k (just count

the indices of the critical points of h). Notice that the surface k = 1 is an
embedded minimal annulus in S ×R; in fact, it is the helicoid we introduced
previously.

Next consider letting T → ∞. Recall that the Plateau solution Σ(T )
with boundary Γ(T, θ1, θ2) is a vertical graph over the geodesic triangle ∆ =
r(θ1) ∪ r(θ2) ∪ C(θ1, θ2), of the function u(T ) with boundary values zero on
the sides r(θ1) ∪ r(θ2) and the value T on C(θ1, θ2). The function u(T ) is
continuous at all points of ∆ except the two endpoints of C = C(θ1, θ2). We
will prove shortly that the functions u(T ) converge uniformly (on compact
subsets of ∆−C), to a function u(∞), defined on ∆−C, provided θ1 − θ2 is
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strictly less then π. The graph of u(∞) is a minimal surface with boundary
Γ(∞, θ1, θ2), and its gradient approaches infinity as one approaches C from
the interior of ∆ (cf. Theorem 4.1).

Thus, when θ2 − θ1 = π/k (for some integer k = 2, 3, . . . ), the surfaces
Σ(k) converge to a minimal surface Σ(∞) bounded by the complete vertical
geodesics B(i π/k), i = 1, . . . , 2k, the vertical lines over the points on ∂D1,
given by (r = π/2, θi = iπ/k). Clearly Σ(∞) = Σ(k,∞) is a graph over D1

(i.e., its interior).
Now do rotation by π about the vertical geodesic B(π/k). This induces a

diffeomorphism from ∂Σ(k,∞) to itself and extends Σ(k,∞) to a complete
properly embedded surface M with no boundary. The reader can verify that
there is one top end, one bottom end, and each of these ends is asymptotic
to a flat vertical annulus. The height function has exactly two critical points,
each of index 1 − k. They are the centers of D1 and D2. Since the top and
bottom ends each give rise to a critical point of index one at the punctures,
it follows that M is conformally diffeomorphic to a closed Riemann surface of
genus k − 1 punctured in two points.

The Gauss-Bonnet theorem yields the total curvature of Σ(k, T ) to be
2π(1− k). Since this does not depend on T , the total curvature of Σ(k,∞) is
also 2π(1−k). Hence the total curvature of M is 4π(1−k), which is 2πX(M).

Now we will prove the existence of the Scherk-type surface we discussed.
Assume 0 < θ1 < θ2 < π, and Σ(T ) is the least area Plateau solution with

boundary Γ(T, θ1, θ2). We know that Σ(T ) is the minimal graph of a function
u(T ) with boundary values equal to zero on the two sides of the triangle
{θ = θ1, 0 ≤ r < 1}, {θ = θ2, 0 ≤ r < 1}, and equal to T on the third side
of the triangle C = C(θ1, θ2) = {r = 1, θ1 ≤ θ ≤ θ2}.

Theorem 4.1. As T →∞, u(T ) converges to the function u(∞) defined
on the triangle with boundary values zero on the sides of the triangle r(θ1)
and r(θ2) and the value infinity on the third side C = C(θ1, θ2). Moreover the
gradient of u(∞) diverges as one approaches the third side from the interior
of the triangle.

Proof. To show that u(∞) exists we will prove that for any compact set
K of the triangle minus the third side C, the functions u(T ) are all bounded
above on K, with the bound independent of T. We will construct a barrier
over the graph of the u(T ) on K.

Let ε and δ be small positive numbers (to be determined) and define a
geodesic quadrilateral in D1 with sides A(δ), B(δ), C(δ), D(δ) defined as
follows:

A(δ) = {(r, θ)|ε ≤ r ≤ 1, θ = θ1 − δ} ,
B(δ) = {(r, θ)|ε ≤ r ≤ 1, θ = θ2 + δ} ,
C(δ) = {(r, θ)|r = 1, θ1 − δ ≤ θ ≤ θ2 + δ} ,
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and D(δ) is the minimizing geodesic joining (ε, θ1 − δ) to (ε, θ2 + δ), whose
length we call ε1. Let F denote the convex domain on D(1) bounded by this
quadrilateral.

Let h > 0 and denote by R(1, h) and R(2, h) the Jordan curves which
are the boundary of A(δ)× [0, h] and B(δ)× [0, h], respectively. The area of
each of these disks is (π/2− ε)h. Consider the piecewise smooth annulus with
boundary R(1, h)∪R(2, h) : F ∪F (h)∪ (C × [0, h])∪ (D× [0, h]) (we omitted
δ in C and D). The area of this annulus is at most π + π + l(δ)h + ε1h,
where l(δ) = (θ2 + δ) − (θ1 − δ). Clearly one can choose ε small so that
for all δ sufficiently small and h sufficiently large, this annulus has less area
than the two disks R(1, h) ∪ R(2, h). By the Douglas criteria for the Plateau
problem, there exists a least area minimal annulus a(δ, h) with boundary
R(1, h)∪R(2, h). Henceforth, we assume h large enough so that a(δ, h) exists.

Observe that for each T > 0, the surface a(δ, h) is above the graph of u(T ),
in the following sense. Vertically translate a(δ, h) a height T (so every point
of a(δ, h) is then above height T ). Now continuously lower the translated
a(δ, h) back to height zero. By the maximum principle there is no point of
contact between the surfaces as one goes from height T to height zero; we
chose δ > 0, so the boundary of a(δ, h) never touches the graph of u(T ). Thus
a(δ) is above u(T ) in the sense that if a vertical line meets both surfaces,
then the point of u(T ) is below the points of a(δ, h). Now we can let δ tend
to zero to conclude a(h) = a(0, h) is also above the graph of u(T ), and by the
boundary maximum principle, at each interior point of the vertical lines on
Γ(T, θ1, θ2), the tangent plane to a(h) is “outside” the tangent plane to the
graph of u(T ).

This barrier a(h) shows that u(T ) is uniformly bounded over some compact
domain of ∆ \C : the domain covered by a(h). The idea is now to show that
these compact domains exhaust ∆ \ C as h→∞.

For h2 > h1, one can use a(h1) as a barrier to solve the Plateau problem to
find a least area annulus a(h2) with boundary R(1, h2) ∪ R(2, h2). So as one
translates a(h1) vertically a height h2 − h1, there is no point where the two
surfaces touch, interior or boundary. Thus as h2 →∞, the angle the tangent
plane of a(h2) makes along the vertical boundary segments is controlled by
that of a(h1).

For each positive integer n, let M(n) be the surface a(2n) translated down
a distance n. A subsequence of the M(n) converges to a minimal surface
M(∞). Notice that a(h1) can be translated up to +∞, and down to −∞,
without ever touching M(∞). So there is some component M of M(∞) whose
boundary equals the vertical lines L1, L2 passing through the endpoints of C;
L1 ∪L2 = ∂(C ×R). Moreover the maximum distance between M and C ×R
is strictly less than π/2. To complete the proof of Theorem 4.1, it suffices to
show M = C × R.
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Recall that D1 is the hemisphere of S(0) containing the spherical triangle
∆. Choose a point p ∈ ∂D1 \C and let α(t) denote the family of geodesic arcs
of D1 joining p to −p, such that α(0) = α, α(1) is the geodesic arc of ∂D1

joining p to −p that contains the arc C, and let α(t) foliate the half-disk E of
D1 between α(0) and α(1), 0 ≤ t ≤ 1. Denote by F (t) the minimal surfaces
α(t)×R, 0 ≤ t ≤ 1. The F (t) foliate the region E×R; the foliation is singular
at {p} × R and {−p} × R.

Now M ⊂ ∆×R ⊂ E×R. As t goes from 0 to 1, the family of surfaces F (t)
can not touch M at some first t < 1, since M would then equal F (t) by the
maximum principle. So either M = C×R or there is a smallest positive t < 1
such that M is asymptotic to F (t) at infinity. The latter case is impossible. If
not, let xn ∈M be such that dist(xn, F (t)) tends to zero as n→∞. Let Σ(n)
be the minimal surface M vertically translated so the height of xn becomes
zero. A subsequence of Σ(n) converges to a minimal surface Σ that touches
F (t) at some point (at height zero), so Σ = F (t).

Consider a compact domain K of F (t), K a positive distance from ∂F (t),
and choose K so that the vertical projection on D1 contains points of E \∆.
Domains of M(n) converge uniformly to K as n → ∞, so there are also
points of M(n) whose vertical projection is in E \∆. This is impossible since
M(n) and M have the same vertical projection. This completes the proof of
Theorem 4.1. �

Now we will see that the end structure of the surfaces we constructed is
typical.

Theorem 4.2. Let M be a properly embedded minimal surface in S × R
of finite topology. Then M has exactly one top end and one bottom end, or
M = S(t) for some t.

Proof. M of finite topology means M is homeomorhic to a compact surface
minus a finite number of points. A neighborhood of each such point in M can
be chosen homeomorhic to an annulus. If M is bounded above or below, then
the height function would have an extremum on M and then M equals some
S(t) by the maximum principle for harmonic functions. So we can assume M
has at least one annular end going up and another annular end going down.
It suffices to prove that there can not be more than one end (going up say).
Suppose on the contrary that A1 and A2 are annular ends going up.

By Proposition 3.3, we can assume A1 and A2 both meet each S(t) transver-
sally in exactly one Jordan curve C1(t) and C2(t), respectively, for each t ≥ 0.

Denote by E(t) the annular region of S(t) bounded by C1(t) ∪ C2(t). For
each integer n, let B(n) be the union of the E(t), 0 ≤ t ≤ n. Notice that
∂B(n) is a good barrier for solving a Plateau problem in B(n). Also, C1(0)
and C1(n) are homologous in B(n), but neither C1(0) nor C1(n) is homologous
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to zero in B(n). Thus there is a least area connected annulus Σ(n) in B(n)
with boundary C1(0) ∪ C1(n).

By standard curvature estimates, a subsequence of the Σ(n) converges to
a complete stable minimal annulus Σ, with ∂Σ = C1(0).

As before, we can assume Σ meets each S(t) transversally in one Jordan
curve γ(t).

Now we observe that the area of Σ is infinite. Let ν be the upward pointing
conormal vector along γ(t). The height function h is harmonic on Σ, hence
has a constant non-zero flux across each γ(t). This flux is∫

γ(t)

|∇h| ds,

where s is arc length along γ(t).
By the coarea formula, the area of Σ is∫ ∞

t=0

(∫
γ(t)

ds

|∇h|

)
dt ≥

∫ ∞
t=0

(∫
γ(t)

|∇h|ds

)
dt =∞.

However by the work of Doris Fischer-Colbrie and Silveira [DF-C], [Sil], there
is no stable minimal surface in S × R of infinite area. The stability operator
is L = ∆−K + q, where K is the intrinsic curvature of Σ, q = T + |A|2/2, T
the scalar curvature of S × R (which is one) and A the second fundamental
form. Stability yields a positive function u satisfying L(u) = 0. The metric
u ds = ds̃ is then a complete metric on Σ whose curvature K̃ is non negative
and given by

K̃ =
1
u2

(
q +
|∇u|2

u2

)
.

Then ∫
Σ

qdA ≤
∫

Σ

K̃ dÃ <∞,

so
∫
Σ

TdA <∞, which contradicts infinite area. �

The techniques used in Theorem 4.2 also give information about intersec-
tion of minimal submanifolds.

Theorem 4.3. Let Σ1, Σ2 be properly embedded minimal submanifolds of
S × R. Then Σ1 ∩ Σ2 6= ∅ or Σ1 = S(t1), Σ2 = S(t2) for some t1, t2.

Proof. We know that a properly immersed minimal submanifold is either
some S(t), or meets each S(t) in a non empty compact set. We can assume
the latter case holds for both Σ1 and Σ2. We will assume Σ1 ∩ Σ2 = ∅ and
arrive at a contradiction.

Elementary separation properties imply Σ1 ∪ Σ2 = ∂B, B a domain of
S × R. Then Σ1(t) ∪ Σ2(t) = ∂B(t) for each t such that Σ1 and Σ2 meet
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S(t) transversally. Σ1(t) is homologous to Σ1(0) in B ∩ [0, t] and Σ1(t) is not
homologous to zero in B ∩ [0, t]. Thus Σ1(t)∪Σ1(0) bounds a connected least
area minimal surface Σ(t) in B ∩ [0, t]. A subsequence of the Σ(t), as t→∞,
converges to a stable minimal surface Σ with ∂Σ = Σ1(0). As in the proof of
Theorem 4.2, no such stable surface exists. This proves the theorem. �

Remark. Notice that the above argument shows one need not assume
finite topology in Theorem 4.2.

We can say something for properly immersed surfaces.

Theorem 4.4. Let Σ be a properly immersed minimal surface in S × R.
Then Σ meets every flat vertical annulus.

Proof. Let A = C(0)×R be a flat vertical annulus and assume A∩Σ = ∅.
We can assume (after a possible rotation of the S factor) that dist(A,Σ) = 0;
so some sequence of points in Σ is converging to A at infinity.

Let F be a (small) compact piece of an unduloid, chosen so that ∂F ⊂ A
and F ∩ Σ = ∅. Such an F can be found since Σ is properly immersed and
unduloids exist arbitrarily close to A.

Now translate F vertically. Since Σ is asymptotic to A at infinity, there
will be a first point of contact of the translated F with Σ. Then Σ equals
this translated unduloid by the maximum principle. This contradicts Σ∩A =
∅. �

We finish this section with a conjecture: a properly embedded minimal
annulus in S×R meets each S(t) in a circle. There is a 2-parameter family of
such annuli, and each properly embedded minimal annular end is asymptotic
to the end of a surface in this family.

5. Non-negative curvature

Now let M be a complete surface of non-negative curvature and consider
minimal surfaces in M × R.

One has a Bernstein-type theorem: a minimal (vertical) graph over all of
M is totally geodesic. This follows since such a minimal graph Σ is stable
(vertical translation is an isometry of M × R so Σ is a leaf of a minimal
foliation. In [R], we proved that a limit leaf of a minimal lamination is stable,
and R. Schoen [Sch] has proved that a complete stable minimal surface in a 3-
manifold of non-negative Ricci curvature, is totally geodesic. In R2 ×R = R

3

there are results on the conformal geometry of minimal surfaces [C-K-M-R].
We will see that they generalize to the present situation.

For the next result we assume the geodesic curvature of all geodesic circles
of M (from some fixed point p) of radius at least one is bounded by some
constant C.
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Proposition 5.1. Let r be the distance in M to the point p, and let
f = `n r be the natural extension of r to M × R (independent of the height),
defined where r 6= 0. Let Σ be a minimal surface in M ×R. Then, for r ≥ 1,

∆Σ(f) ≤ c

r
|∇Σh|2.

Proof. Let ∆ denote the Laplacian of M ×R. Since f does not depend on
the height, we have

∆M (f) = ∆(f), and

∆M (f) =
∆M (r)
r

− |∇M (r)|2

r2
=

∆M (r)
r

− 1
r2
·

By the Laplacian comparison theorem, and since M has non-negative curva-
ture, we have

∆M (r) ≤ 1
r
, and

∆M (f) ≤ 0.

Let e1, e2, n be an orthonormal frame in a neighborhood of a point of Σ,
where e1, e2 are tangent to Σ, and n is normal to Σ. Then

∆M (f) =
2∑
i=1

〈∇ei ∇f, ei〉+ 〈∇n∇f, n〉,

where ∇f is the gradient in M × R.
Write ∇f as its tangent and normal part to Σ:

∇f = (∇f)⊥ +∇Σ f.

Then
〈∇ei ∇f, ei〉 = 〈∇ei ∇Σ f, ei〉+ df(n)〈∇ei n, ei〉.

Hence ∆Mf = ∆Σf + df(n)H + 〈∇n∇f, n〉, where H is the mean curvature
of Σ. Since Σ is minimal, this last equation becomes

∆M f = ∆Σ f + Hess(f)(n, n),

where Hess is the hessian in M × R.
Now evaluate Hess(f) using an orthonormal frame v1, v2, e where v1, v2

are tangent to M , e =
∂

∂t
= ∇h, and h is the height function.

Since f depends only on the M coordinates, we have

Hess(f)(e, e) = 0, and

Hess(f)(v) = HessM (f)(v),
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for v tangent to M . Let π be projection of M ×R to the M factor and let A
be the endomorphism of the tangent space of M defined by A(Y ) = ∇Y (∇f).
So

Hess f(Y, Y ) = 〈∇Y (∇f), Y 〉
= 〈∇π(Y )(∇f), π(Y )〉
= 〈A(π(Y )), π(Y )〉.

Since ∆M (f) ≤ 0, we have

∆Σ(f) ≤ −Hess f(n, n) ≤ |A| |π(n)|2.
A simple calculation shows |π(n)| = |∇Σh|; it remains to estimate |A|. Let

q ∈M , d(p, q) = r, and let v be a unit tangent vector to M at q. Then

Hess f(v, v) =
〈
∇v
(
∇r
r

)
, v

〉
=

1
r
〈∇v(∇r), v〉+ v

(
1
r

)
〈∇r, v〉.

When v = ∇r, the first term is zero, so

Hess f(v, v) = − 1
r2
〈∇r, v〉.

When v = (∇r)⊥ = T , this is
1
r
〈∇T (∇r), T 〉.

Since T is the unit tangent vector to the geodesic circle of radius r through

the point q, this last term equals
1
r
kg(q). This proves Proposition 5.1. �

A Riemann surface Σ is parabolic if a bounded harmonic function is de-
termined by its boundary values. If ∂Σ = ∅ the condition is that a bounded
harmonic function is constant. It is well known that a proper subdomain of
a parabolic surface is parabolic and removing a compact domain does not
alter parabolicity. Also, if a bounded harmonic function is positive on the
boundary of a parabolic surface Σ, then it is positive on Σ. Finally, it is easy
to see that if Σ admits a proper non-negative superharmonic function, then
Σ is parabolic.

Proposition 5.2. Let M be a surface satisfying the hypothesis of Propo-
sition 5.1. Then a properly immersed minimal surface Σ in M ×R+ is para-
bolic.

Proof. As in R3, we first show Σ(T ) = Σ ∩ (M × [0, T ]) is parabolic. Con-
sider the function

ϕ = `n(r) + (T − h2).
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Clearly ϕ is proper and non-negative on the part of ΣT outside the cylinder
r ≥ 1. By Proposition 5.1, ϕ is superharmonic outside of some larger cylinder
r ≥ r0. Since Σ is proper, the part of Σ(T ) inside this cylinder is compact.
Hence Σ(T ) is parabolic.

Now let u be any test function on Σ, i.e., u is harmonic, 0 ≤ u ≤ 1, and u
is zero on ∂Σ (if ∂Σ 6= ∅).

Then for any T > 0, we have

0 ≤ u ≤ h

T
,

on ∂Σ(T ). So for any p ∈ Σ(T ),

0 ≤ u(p) ≤ h(p)
T

,

since Σ(T ) is parabolic. But this also holds for any T0 > T . Hence u ≡ 0. �

Corollary 5.3 (Half-space theorem). Under the above hypothesis on M ,
a properly immersed minimal surface in a half-space M×[0,∞) is some M(T ).

Proof. Σ is parabolic and h is harmonic and bounded on each Σ(T ), so h
is determined by its boundary values on Σ(T ). Hence if Σ ∩M(T ) 6= ∅, then
h = T on Σ. �

Proposition 5.4. With the previous hypothesis on the geodesic curvature
of the geodesic circles of M , let Σ be a properly immersed minimal surface in
the region of M ×R defined by |h| ≤ c `n(r), for some c > 0 and r ≥ 1. Then
Σ is parabolic and if Σ has a compact boundary, then Σ has quadratic area
growth.

The proof of Proposition 5.4 is as in R3; we refer the reader to [C-K-M-R].

6. Negative curvature

Now we discuss M×R, where M is the hyperbolic plane. We take as model
for M the unit disk {x2

1 + x2
2 < 1} with the constant curvature −1 metric

ds2 =
dx2

1 + dx2
2

F
, F =

(
1− x2

1 − x2
2

2

)2

.

In this section we will announce some results obtained in collaboration with
Barbara Nelli [N-R].

The minimal surface equation of a vertical graph over M , u = u(x1, x2), is

div
(
∇u
τ

)
= 0,

where
τ =

√
1 + F |∇u|2.
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One can explicitly solve this equation to find the catenoidal surfaces of revolu-
tion about the x3-axis. Rather than write the elliptic functions parametrizing
the trace curves of these catenoids, I describe some of their properties. Let
C±(t) be the two circles at infinity of M × R defined by

{x2
1 + x2

2 = 1, x3 = ±t}.
Then for each t > 0, there exists a catenoid Σ(t) whose asymptotic boundary
is C+(t) ∪C−(t). As t→ 0, Σ(t) converges to a doubly covered disk M , with
one singularity at the origin. As t→∞, the surfaces Σ(t) diverge in M × R.
The limiting asymptotic angle of the Σ(t) varies from 0 to π/2 as t goes from
0 to infinity.

The helicoid
X(u, v) = (v cos au, v sin au, u)

is a minimal surface in M × R. Here v ∈ (−1, 1), u ∈ R, and a 6= 0.
There are many minimal graphs over M , non-constant, so there is no Bern-

stein theorem here. We prove:

Theorem 6.1. Let Γ be a rectifiable Jordan curve at infinity of M × R,
Γ a vertical graph over {x2

1 +x2
2 = 1, x3 = 0}. Then there is a minimal graph

over M whose asymptotic boundary is Γ.

We prove a removable singularities theorem for the minimal surface equa-
tion.

Theorem 6.2. Let u be a solution of the minimal surface equation over
a punctured disk in M . Then u extends smoothly to the puncture.

Also we establish a Jenkins-Serrin type theorem for minimal graphs over
domains in M bounded by geodesic polygons.

Theorem 6.3. Let Γ be a convex geodesic polygon in M , with sides la-
belled a1, b1, a2, b2, . . . , an, bn, as one traverses Γ once. Let P be a simple
closed polygon strictly inscribed in Γ, whose vertices are chosen among the
vertices of Γ. A necessary and sufficient condition that there exist a minimal
graph u in the domain bounded by Γ taking the values +∞ on a1, . . . , an and
−∞ on b1, . . . , bn is that

2
∑
ai∈P

|ai| < |P |, 2
∑
bi∈P

|bi| < |P |

for any polygon P chosen as above and
n∑
i=1

|ai| =
n∑
j=1

|bj |.

Here |a| means the length of a and |P | the perimeter of P.
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Figure 4

Just as in classical Jenkins-Serrin theorem we can also prescribe continuous
data on convex arcs of the boundary.

Let us illustrate this theorem when Γ is a regular octogon in M . When Γ
is chosen so the interior angles are all π/2 then the minimal graph u extends
to a complete embedded minimal surface in M × R (a Scherk-type surface).
The graph of u is bounded by the vertical geodesics over the vertices of Γ, so
one extends the graph by rotation by π about all the vertical edges that arise.

We will now explain why the graph u exists, taking the values plus and
minus infinity on alternating sides of the octogon Γ.

Label the vertices of Γ, p1, p2, . . . , p8, in order and let a1 be the edge
bounded by p1, p2, b1 the edge between p2 and p3, etc.; cf. Figure 4.

Let n be a positive integer and define Γ(n) to be the compact geodesic
polygon obtained by raising all the aj to height n, descending all the bj to
height −n, and then joining all the vertices of the raised ai to the lowered bi
by the vertical geodesics between the vertices. The vertical projection of Γ(n)
to M(0) is Γ.

Solve the Plateau problem for Γ(n) to obtain a least area disk Σ(n) with
boundary Γ(n). As before, Rado’s theorem is true in M × R since vertical
translation is an isometry; so Σ(n) is the graph of a function un defined in the
domain bounded by Γ. On ai, un takes the value n, and on bj , un takes the
value −n. Moreover, by symmetry of Γ(n), un(σ) = σ, where σ is the center
of Γ.

The proof of Theorem 4.1 works in the geodesic triangles here in hyperbolic
space. Hence the sequence un converges to a minimal graph u whose boundary
values are ±∞ as desired.

Notice that the completed minimal surface obtained from extending the
graph of u, is invariant by many Fuchsian groups. For example, one obtains



1194 HAROLD ROSENBERG

P −∞
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+∞

−∞

Figure 5

a (Scherk-type) surface which is a sphere with four top ends and four bottom
ends as follows. Let P be the regular octogon in the hyperbolic plane with π/2
angles, and let Q(j) be the 8 domains obtained by rotating P about its ver-
tices. Consider the 4 translations identifying alternate sides of P , and consider
the graph over the union of P and the Q(j). The translation identifying two
alternate sides is the translation along the edge between the sides. Quotient
this graph by the squares of the 4 translations. This gives the 8-punctured
sphere in the quotient; its total curvature is −12π.

The same construction works with any regular k-gon, with vertex angle π/2.
If one is not concerned about extending to an embedded complete surface, the
vertex angles need not be π/2.

Another interesting example is obtained by putting the vertices of Γ at
infinity; cf. Figure 5.

We leave it to the reader to construct a minimal graph u defined in the
interior of P and taking the values ±∞ on ∂P as indicated in Figure 5.

Another technique to construct surfaces is by desingularizing intersections
of minimal surfaces intersecting in a reasonable fashion. For example, desin-
gularizing the intersection of a flat vertical plane ( or annulus) with a totally
geodesic horizontal surface produces a singly-periodic Scherk-type surface.
Desingularizing the intersection of a catenoid with its plane of symmetry pro-
duces a Costa-Hoffman-Meeks surface. These desingularization theorems have
not yet been proved.
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