
Illinois Journal of Mathematics
Volume 46, Number 4, Winter 2002, Pages 1089–1109
S 0019-2082

JOHN FUNCTIONS, QUADRATIC INTEGRAL FORMS AND
O-MINIMAL STRUCTURES

K. KURDYKA AND J. XIAO

Abstract. Let Ω be a proper subdomain of Rn, n ≥ 2, and let ∂Ω
and δΩ(x) denote, respectively, the boundary of Ω and the Euclidean

distance of the point x ∈ Ω to Rn\Ω. Denote by K(Ω) the John space of
all C1 functions f : Ω→ R with supx∈Ω δΩ(x)|∇f(x)| < +∞. We study
K(Ω)-functions via quadratic integral forms and o-minimal structures.

Introduction

Let Ω be a proper subdomain of the Euclidean space Rn (n ≥ 2). In [Jo],
John introduced the class K(Ω) of all C1 functions f : Ω → R which have
bounded expansion

‖f‖K(Ω) = sup
x∈Ω

δΩ(x)|∇f(x)| < +∞,

where, here and afterwards, ∇ and δΩ(x) denote the gradient operator and the
Euclidean distance of the point x to the boundary ∂Ω of Ω, respectively. This
class is suggested by the well-known fact that uniformly bounded solutions to
many elliptic differential equations belong to K(Ω), regardless of boundary
conditions. Note, however, that not every f ∈ K(Ω) is bounded uniformly in
Ω. An example is the function log |x| in the punctured unit disc. This example
shows actually a general property of John’s class: A function f ∈ K(Ω) can
become unbounded at most like ‖f‖K(Ω) log δΩ(x) as x tends to ∂Ω.

On the other hand, while studying the structure of positive solutions to
a Schrödinger equation (−∆ + V (x))u(x) = 0, Murata [Mu] considered the
quadratic integral form ∫

Ω

|∇ψ(x)|2G(x)dx,
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where
√
G is a positive solution of the equation. This relates nicely to the

Green’s potential characterization of BMO functions on the hyperbolic do-
mains in R2 (see [ALXZ] or [Go], for example). Thus we introduce the fol-
lowing definition.

Suppose that Ω is a proper subdomain of Rn with the Green function gΩ(·, ·)
for the Laplacian ∆. For a C1 function f : Ω → R, we say that f ∈ KG(Ω)
provided

‖f‖KG(Ω) = sup
y∈Ω

(∫
Ω

|∇f(x)|2gΩ(x, y)dx
)1/2

< +∞.

In this paper we focus on the problem under what conditions on Ω John
functions have the quadratic form defined above. We give an answer in Theo-
rem 3.1 for a large class of proper subdomains of Rn. The domains in question
are definable in an o-minimal structure; in particular, the theorem applies to
the semi-algebraic domains in Rn. The most important feature of those do-
mains (see Lemma 2.2) is that their boundary is “piece-wise Lipschitz”, with
the Lipschitz constant being arbitrary small. This enables us to construct
finitely many John functions with a positive lower bound on the expansion
sum (see Theorem 2.3). The construction, given in Section 2, suggests that
one cannot expect that the type of elementary reasoning used in [Jo] can be
extended to these special John functions. In Section 3 we apply the results
of Section 2 to the KG(Ω)-characteristic of K(Ω) and relate them to certain
geometrical properties involving either the Green potentials or the Carleson-
like measures over the upper half space Rn+ = R

n−1 × (0,+∞) (as a typical
o-minimal set). In the last section we consider the Harnack and Poincaré
metric versions of the John functions, but also use a quadratic integral form
(determined by the Green function and the Poincaré metric) to give a geomet-
ric condition which characterizes the uniformly perfect domains in the sense
of Beardon and Pommerenke [BePo]. In the first section we gather some basic
(old and new) properties of the John functions.

It is our pleasure to thank M. Essén, S. Janson, V. Latvala, O. Martio, P.
Orro, K.J. Wirths and G.K. Zhang for interesting discussions. Also, we are
grateful to the referee for his/her very helpful comments on the first version
of the paper.

1. Essential properties of John functions

1.1. Bounded mean oscillation. The first way to recognize the John
functions is via John-Nirenberg’s BMO-characterization (cf. [JoNi]), as shown
in [Jo].



JOHN FUNCTIONS, 2-INTEGRAL FORMS AND O-MINIMAL STRUCTURES 1091

Proposition 1.1. Let Ω be a proper subdomain of Rn. Then f ∈ K(Ω)
has bounded mean oscillation in the sense that

(1.1) ‖f‖BMO(Ω) = sup
B⊂Ω

1
|B|

∫
B

∣∣∣∣f(x)− 1
|B|

∫
B

f(y)dy
∣∣∣∣ dx < +∞,

where the supremum is taken over all Euclidean balls B ⊂ Ω with volume |B|.

From now on, H(Ω) refers to the class of all real-valued harmonic functions
on Ω. With this notation, we may remark that any function f ∈ H(Ω)
satisfying (1.1) must lie in K(Ω); see [La] and [Os]. The concept of BMO
occurs naturally in connection with PDE’s and in many other areas; see, for
example, [Car], [CDS], and [Ste].

1.2. Global Lipschitz continuity. The second property is that all John
functions are Lipschitz continuous in a sufficiently small neighborhood of any
point in Ω (cf. [Jo], [La]). This can also be understood via the global Lipschitz
continuity with respect to the quasi-hyperbolic distance. Following [GeOs],
we denote by kΩ(x, y) the quasi-hyperbolic distance between two points x, y
in Ω,

kΩ(x, y) = inf
γ

∫
γ

(δΩ(z))−1ds(z),

where ds denotes the length element and the infimum ranges over all rectifiable
curves γ ⊂ Ω joining x and y.

Proposition 1.2. Let Ω be a proper subdomain of Rn. Then f ∈ K(Ω)
if and only if there exists a constant C > 0 independent of x, y ∈ Ω such that

(1.2) |f(x)− f(y)| ≤ CkΩ(x, y).

Proof. If f ∈ K(Ω), then, by [Mar], for any points x, y ∈ Ω there is a
quasi-hyperbolic geodesic γxy, which may be supposed to be smooth in the
arclength parameter. Let s denote arclength measured along γxy from x, and
let ζ = ζ(s) denote the corresponding representation for γxy. If l denotes the
length of γxy, then

|f(x)− f(y)| ≤
∫ l

0

∣∣∣∣∇f(ζ(s))
dζ(s)
ds

∣∣∣∣ ds ≤ ‖f‖K(Ω)

∫
γxy

(δΩ(z))−1ds(z),

which implies (1.2).
Conversely, if (1.2) holds, then

c(f, kΩ) = sup
x,y∈Ω,x 6=y

|f(x)− f(y)|
kΩ(x, y)

< +∞

is true. Since the quasi-hyperbolic distance kB(·, ·) of the ballB = B(x, r) ⊂ Ω
with the center x and radius r satisfies

kB(x, y) = log
r

r − |x− y|
, y ∈ B,
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one has kB(x, y) ≥ kΩ(x, y) when y ∈ B, as well as

|f(x)− f(y)| ≤ c(f, kΩ) log
r

r − |x− y|
, y ∈ B.

This leads to r|∇f(x)| ≤ nc(f, kΩ) which implies f ∈ K(Ω) by letting r →
δΩ(x). �

1.3. Asymptotic behavior. The third property is the asymptotic behav-
ior which shows that the John functions cannot asymptotically contain the
image of a nonconstant affine function on Rn (see [Min] for the holomorphic
R

2-case). More precisely, we have:

Proposition 1.3. Let Ω be a proper subdomain of Rn. If f ∈ K(Ω), then
there are no sequences {xk} ⊂ Ω and {tk} ⊂ (0,+∞) such that

(1.3) tk/δΩ(xk)→ 0; f(xk + tkx)− f(xk)→ 〈a, x〉,
where 〈a, x〉 is the standard scalar product of two points a, x in Rn, and |a| = 1.

Proof. Assuming that such sequences exist, and putting gk(x) = f(xk +
tkx)− f(xk), g(x) = a · x, |a| = 1, we have

1 = |∇g(0)| = lim
k→+∞

|∇gk(0)| = lim
k→+∞

tk(δΩ(xk))−1δΩ(xk)|∇f(xk)|.

This implies that δΩ(xk)|∇f(xk)| → +∞, and hence f 6∈ K(Ω), a contradic-
tion. �

Moreover, it is worth mentioning that if the above non-existence result
holds for f ∈ H(Ω), then f must lie in K(Ω). Indeed, if ‖f‖K(Ω) = +∞,
then we will get a contradiction again. To see this, let {Ωm} be a regular
exhaustion of Ω, i.e.,

⋃+∞
m=1 Ωm = Ω, Ωm ⊂ Ωm+1, and each Ωm is a compact

subset of Ω. Set Cm = maxx∈Ωm δΩm(x)|∇f(x)|. Because f is harmonic on
Ωm and δΩm(x) = 0 for x ∈ ∂Ωm, there is a point xm ∈ Ωm such that
Cm = δΩm(xm)|∇f(xm)|. It is easy to see that Cm ≤ Cm+1 and Cm → +∞.
Set now

rm = δΩm(xm)/Cm, gm(x) = f(xm + rmx)− f(xm).

Then rm/δΩm(xm) → 0 and gm is defined for |x| < Cm with gm(0) = 0,
|∇gm(0)| = rm|∇f(xm)| = 1. We will verify that {|∇gm|} is locally uniformly
bounded. Fix any compact subset E of Rn. Because Cm → +∞, there exists
a constant M = M(E) (depending only on E) such that E ⊂ {x ∈ Rn : |x| <
Cm} for all m ≥M . For x ∈ E and m ≥M we have

|∇gm(x)| = rm|∇f(xm + rmx)| ≤ rmCm
δΩm(xm + rmx)

≤
(

1− |x|
Cm

)−1

,

due to the following Lipschitz continuity of δΩm(·):
|δΩm(xm + rmx)− δΩm(xm)| ≤ rm|x|, for xm + rmx, xm ∈ Ωm.
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The above estimates on |∇gm(x)| tell us that {|∇gm|} is uniformly bounded
on E. Since gm(0) = 0, it follows that {gm} is also locally uniformly bounded.
Consequently, {gm} is a normal family. Thus, there is a subsequence {gmk}
which converges locally uniformly on Rn to a harmonic function g on Rn.
Clearly, g(0) = 0 and |∇g(0)| = 1 and |∇g(x)| ≤ 1 for all x ∈ Rn. The
Liouville Theorem implies that |∇g(x)| is a constant. Hence |∇g(x)| ≡ 1. It
follows that g(x) = 〈a, x〉 =

∑n
j=1 ajxj , where |a|2 =

∑n
j=1 |aj |2 = 1. This

obviously violates the non-existence assumption.

2. John functions on o-minimal domains

2.1. O-minimal structures. Recall first that a semi-algebraic set of Rn

is a finite Boolean combination of the sets {f ≥ 0}, where f is a polyno-
mial on Rn. The family of all semi-algebraic sets is stable under projections
(Tarski’s Theorem) and has nice finiteness properties (see, e.g., [BCR]). These
properties are also shared by global subanalytic sets (i.e., projections of sets
defined by analytic inequalities). Clearly, semi-algebraic domains are natu-
ral objects and one can deal with them practically. Many results in semi-
algebraic (or subanalytic) geometry of Rn hold true in a more general setting,
namely the theory of o-minimal structures on the real field. This has been
of great interest since Wilkie [Wi] proved that a natural extension of the
family of semi-algebraic sets which contains the exponential function is an
o-minimal structure. For more information on this theory, see [Dr], [DMM],
[Ku2], [LiRo], [Mil] and [Sh].

We say that the collection M =
⋃
n∈NMn is an o-minimal structure on

(R,+, ·), where each Mn is a family of subsets of Rn, provided that:
(1) Each Mn is closed under finite set-theoretical operations.
(2) If A ∈Mn and B ∈Mm, then A×B ∈Mn+m.
(3) If A ∈ Mn+m and π : Rn+m → R

n is the projection on the first n
coordinates of Rn+m, then π(A) ∈Mn.

(4) If f, g1, . . . , gk ∈ Q[X1, . . . , Xn], then

{x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gk(x) > 0} ∈ Mn.

(5) M1 consists of all finite unions of open intervals and points.
For a fixed o-minimal structure M on (R,+, ·) we say that A is an M

definable set (or definable in M ) if A ∈ Mn for some n ∈ N. We also say
that a map f : A → R

m, where A ⊂ Rn, is an M definable function if its
graph is M definable.

Example 2.1 (cf. [DrMi]). The following are useful examples of the o-
minimal structures:

(i) Semi-algebraic sets (by Tarski-Seidenberg): {x4 + y4 < 1}.
(ii) Global subanalytic sets (by Gabrielov): {0 < y < 1/ sinx, x ∈ (0, π)}.
(iii) (R, exp) definable sets (by Wilkie): {0 < y < exp(−1/x2), x ∈ (0, 1)}.
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(iv) (Ran, exp) definable sets (by van den Dries, Macintyre, Marker):
{x
√

2 ln(sin y) < 1, x > 0, y ∈ (0, π)}.
(v) (RRan) definable sets (by Miller): {x

√
2 exp(x/y) < 1, 0 < x}.

2.2. Construction of John functions. For A ⊂ Rn, define dA as the
Euclidean distance to the set A, and write ∂A = A \ A. Let Ω be a proper
subdomain of Rn definable in some o-minimal structureM on (R,+, ·). Then
the boundary ∂Ω is also definable inM (cf. [Dr], [Ku2] or [BCR] for the semi-
algebraic case). Thus we can decompose ∂Ω into a disjoint finite union

⋃N
i=1 Γi

of connected C1 submanifolds Γi of Rn in such a way that each Γi\Γi is union
of some of Γj , dim Γj < dim Γi. Moreover the manifolds Γi, i = 1, . . . , N , are
definable in M and verify some Lipschitz type conditions.

Lemma 2.2. There exist a decomposition ∂Ω =
⋃N
i=1 Γi and functions

fi : Rn \ Γi → R corresponding to Γi, i = 1, . . . , N , such that

(2.1) fi ∈ K(Rn \ Γi) ⊂ K(Ω)

and

(2.2) inf
{
dΓi(x)|∇fi(x)| : 0 < dΓi(x) < cid∂Γi(x)

}
≥ 1,

where ci > 0 is a constant, and if ∂Γi = ∅, then d∂Γi = +∞ by convention.

Proof. By a rather standard construction in semi-algebraic or subanalytic
geometry (which is also valid in any o-minimal category; see [Dr], [DrMi]), we
can partition the set ∂Ω into a finite, disjoint union of the sets Γi. Each Γi,
after a suitable orthogonal change of variables in Rn, is of the form

Γi = {(x′, x′′) ∈ Rk × Rn−k : x′′ = γi(x′), x′ ∈ Li},
where Li is an open, M-definable subset of Rk, and γi : Li → R

n−k is a C1

map. Moreover, ‖dx′γi‖ ≤ η, x′ ∈ Li, where the constant η > 0 can be chosen
(in advance) arbitrarily small. Here dx′γi denotes the differential of γi at the
point x′ ∈ Li.

Now the crucial point is that by a result of Kurdyka [Ku1] we may assume
that all Li have the following property (Whitney’s property): Any two points
x′1, x

′
2 ∈ Li can be joined, in Li, by a smooth arc of length ≤M |x′1−x′2|, where

M = M(k) > 1 is a constant depending only on the dimension k. Actually,
by [KuOr] the constant M can be taken arbitrarily close to 1, but we do not
need this. So, by the Mean Value Theorem, we conclude that γi is Lipschitz
with a constant ε = Mη > 0, which will be chosen sufficiently small.

Let us fix one set Γi = Γ and set Li = L and γi = γ in order to simplify
the notations. We will denote the corresponding function by fΓ (instead of
fi). In fact, the set L, which is an L-regular cell in the sense of Parusiński
[Pa] (i.e., after a suitable orthogonal change of variables in Rk), is of the form

L = {(x̃, xk) ∈ Rk−1 × R : ϕk(x̃) < xk < ψk(x̃), x̃ ∈ Lk−1},
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where Lk−1 is an L-regular cell in Rk−1, and ϕk, ψk : Lk−1 → R are Lipschitz
functions such that ϕk < ψk in Lk−1. One of the functions ϕk and ψk may
be equal to −∞ or to +∞. It is not difficult to prove the following result:

Fact 1. If Γ is unbounded, then Rn \ Γ is simply connected.

Whenever dim Γ = 0, Γ = {a} is a point we set fΓ(x) = log |x−a|. Suppose
now that dim Γ = k > 0. We first define a C∞ vector field ϑΓ : Rn \ Γ→ R

n

which will be the gradient of our function fΓ. To the end, we put

ϑΓ(x) =
∫
L

x− (ξ, γ(ξ))
|x− (ξ, γ(ξ))|k+2

dξ.

Note that the above integral converges absolutely (see (2.3) and (2.4) below).
Observe also that the integrated vector field is a gradient (with respect to x)
of −k−1|x−(ξ, γ(ξ))|−k. Hence it is easily seen that the 1-form corresponding
to ϑΓ is closed.

Suppose that Γ is unbounded. Then, by Fact 1, it follows that Rn \ Γ is
simply connected. So, by the classical Poincaré Lemma, there exists a C∞

function fΓ : Rn \ Γ→ R such that ϑΓ = ∇fΓ.
If Γ is bounded, then L is bounded too, and hence we can write fΓ explicitly

as follows:

fΓ(x) = −1
k

∫
L

|x− (ξ, γ(ξ))|−k dξ.

Let x = (x′, x′′) ∈ Rk×Rn−k, and let r = dΓ(x). Clearly, |x−(ξ, γ(ξ))| ≥ r
for any ξ ∈ B(x′, r), where B(x′, r) is the Euclidean ball of radius r about
center x′. Thus

(2.3)
∫
L∩B(x′,r)

dξ

|x− (ξ, γ(ξ))|k+1
≤ χkr

−1,

where χk denotes the volume of the unit ball in Rk. On the other hand, we
have

|x− (ξ, γ(ξ))| ≥ |x′ − ξ|, ξ ∈ Rk.
Consequently,

(2.4)
∫
L\B(x′,r)

dξ

|x− (ξ, γ(ξ))|k+1
≤ σkr

−1,

where σk denotes the volume of the unit sphere in Rk. Obviously (2.3) and
(2.4) imply that fΓ ∈ K(Rn \ Γ), and hence we have (2.1).

Next, we prove (2.2). For this, we introduce the notation DΓ(y) = |y′′ −
γ(y′)| for any y = (y′, y′′) ∈ L × Rn−k. Notice that DΓ is (bi-Lipschitz)
equivalent to the distance function dΓ in L × Rn−k, since the function γ is
Lipschitz.
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Fact 2. If ε > 0, the Lipschitz constant of γ, is small enough, then

inf
x∈T (Γ)

DΓ(x)|∇fΓ(x)| = c > 0,

where T (Γ) = {y = (y′, y′′) ∈ L× Rn−k : 0 < DΓ(y) < d∂L(y′)}.

Before proving Fact 2 let us show that it implies (2.2). Indeed, since DΓ is
(bi-Lipschitz) equivalent to the distance function dΓ, there exists a constant
cΓ > 0 such that

{y ∈ Rn : 0 < dΓ(y) < cΓd∂Γ(y)} ⊂ T (Γ).

Thus multiplying, if necessary, fΓ by a large constant and using the fact that
DΓ is equivalent to dΓ, we obtain (2.2).

Hence it remains to find an ε > 0 such that Fact 2 holds. Recall that the
mapping γ : L→ R

n−k is ε-Lipschitz. Thus for x0 = (x′, γ(x′)), Γ (the graph
of γ) is contained in the affine cone Cεx0

, i.e.,

Γ ⊂ Cεx0
= {(y′, y′′) ∈ Rk × Rn−k : |y′′ − γ(x′)| ≤ ε|y′ − x′|}.

We will often use this fact without referring to it explicitly. Let x = (x′, x′′) ∈
L×Rn−k, x′′ 6= γ(x′). Put v = x− (x′, γ(x′)) and r = |v|. We can take ε > 0
so small that

(2.5) 〈x− (ξ, γ(ξ)), |v|−1v〉 ≥ 2−1r, |x− (ξ, γ(ξ))| ≤ 2r,

for any ξ ∈ B(x′, r), where B(x′, r) is any ball contained in L. Once again,
〈 · , · 〉 stands for the standard scalar product in Rn.

For brevity, let

ψ(ξ) =
x− (ξ, γ(ξ))

|x− (ξ, γ(ξ))|k+2
.

We can write ϑΓ(x) = ∇fΓ(x) as a sum of the following three vectors:

v1 =
∫
B(x′,r)

ψ(ξ) dξ,

v2 =
∫
L∩(B(x′,pr)\B(x′,r))

ψ(ξ) dξ,

v3 =
∫
L\B(x′,pr)

ψ(ξ) dξ,

where p > 1 will be determined below.
It is obvious, by (2.5), that

〈v1, |v|−1v〉 ≥ 2−(k+3)χkr
−1.

Note that
|v3| ≤M(ε)(pr)−1,
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where M(ε) is an increasing function of ε. Clearly, we may assume that
ε < 1. Now we take p > 1 large enough so that M(1) ≤ pχk2−(k+4). Fi-
nally, we take ε > 0 small enough so that 〈x − (ξ, γ(ξ)), v〉 > 0 for any
ξ ∈ L ∩ (B(x′, pr) \B(x′, r)). Put c = χk2−(k+4). Thus we obtain

|∇fΓ(x)| ≥ 〈v1 + v2 + v3, |v|−1v〉 ≥ cr−1 ≥ c(DΓ(x))−1,

for any x = (x′, x′′) ∈ L×Rn−k such that d∂L(x) < DΓ(x′). This proves Fact
2 and hence Lemma 2.2. �

2.3. Exhaustive John functions. We state now the main result of this
section.

Theorem 2.3. Let Ω be a proper subdomain of Rn. If Ω is definable in
some o-minimal structure M on (R,+, ·), then there exist finitely many C∞

functions fi ∈ K(Ω), i = 1, . . . , N , such that

(2.6) inf
x∈Ω

δΩ(x)
N∑
i=1

|∇fi(x)| > 0.

Proof. We apply Lemma 2.2 to get that each Γi, i = 1, . . . , N , is associated
with a function fi : Rn \ Γi → R such that fi ∈ K(Ω) and dΓi(x)|∇fi(x)| ≥ 1
holds in {x ∈ Rn : 0 < dΓi(x) < cid∂Γi(x)}, where ci > 0 is a constant. If
∂Γi = ∅, then, by convention, we put d∂Γi = +∞.

We now prove (2.6) by induction on N . From the partition constructed in
Lemma 2.2 it follows that at least one of the sets Γi is a point. Hence the
case N = 1 is trivial, since ∂Ω = {a} for some a ∈ Rn and (2.6) holds for
Ω = R

n \ {a}.
Suppose that N > 1 and that ΓN has a maximal dimension. Then ΓN

must be open in ∂Ω and consequently ∂Ω′ =
⋃N−1
i=1 Γi is closed in ∂Ω. Hence

Ω′ = R
n \ ∂Ω′ is open in Rn.

Let x ∈ Rn, δΩ(x) > 0. To prove (2.6) we will consider three cases.

Case 1. If δΩ(x) = dΓN (x) and dΓN (x) < cNd∂ΓN (x), then, by (2.2), we
have

dΓN (x)|∇fN (x)| ≥ 1.

Case 2. If δΩ(x) = dΓN (x) and dΓN (x) ≥ cNd∂ΓN (x), then δΩ(x) ≥
cNδΩ′(x) since d∂ΓN (x) ≥ d∂Ω′(x) = δΩ′(x). So, by induction, we have

δΩ(x)
N∑
i=0

|∇fi(x)| ≥ cNδΩ′(x)
N−1∑
i=0

|∇fi(x)| ≥ cNλN−1,

where λN−1 > 0 is the infimum of (2.6) corresponding to Ω′.
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Case 3. If δΩ(x) = dΓi(x) for some i ≤ N − 1, then δΩ(x) = δΩ′(x), and
hence by induction

δΩ(x)
N∑
i=0

|∇fi(x)| ≥ λN−1.

This completes the proof of Theorem 2.3. �

Remark 2.4. Theorem 2.3 is an o-minimal generalization of the key re-
sult, Proposition 5.4, in [RU] (which is established by using complex analysis
on the unit disc of R2). It is clear that there exists an essential difference
between two situations (differentiable versus holomorphic).

3. Quadratic forms via Green potentials

3.1. The general cases. In general, the Green function of a proper sub-
domain Ω of Rn for the Laplacian ∆ is defined by gΩ(x, y) = −p(x−y)−qy(x),
where

(3.1) p(x) =

{
log |x|, n = 2,
−|x|2−n, n ≥ 3,

and qy(x) is a function (differentiable on Ω and continuous on Ω) solving the
boundary value problem{

∆u(x) = 0, x ∈ Ω,
u(x) = −p(x− y), x ∈ ∂Ω.

It is very difficult to give an explicit formula for gΩ(·, ·). However, if Ω is
either a ball or the upper half space of Rn, then gΩ(·, ·) can be computed
explicitly; see [AiEs, p. 65], for example. Clearly, not all domains definable
in an o-minimal structure have the Green functions, but there are still many
o-minimal domains (explained below) which have their Green functions.

Recall that L is an open cell in Rn if L is of the form

L = {(x̃, xn) ∈ Rn−1 × R : ϕn(x̃) < xn < ψn(x̃), x̃ ∈ Ln−1},

where Ln−1 is an L-regular cell in Rn−1, ϕn, ψn : Ln−1 → R are C1 functions
such that ϕn < ψn in Ln−1. One or both functions ϕn and ψn may be equal
to −∞ or to +∞. In R the open cells are open intervals. If M is an o-
minimal structure on (R,+, ·) we say that L is definable in M if L ∈ M.
This is equivalent to the condition that Ln−1 and ϕn, ψn are definable inM.
Furthermore, it is known that every open subset of Rn definable in M is a
finite union of open cells which are definable in M. For these facts see [Dr].

Let Ω be an open set in Rn. The classical sufficient condition for Ω to
be regular (with respect to the Dirichlet Problem) is the following: For any
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x ∈ ∂Ω there exists an open cone Λ with the vertex at x and a neighborhood
U of x such that

(∗) Λ ∩ U ∩ Ω = {x}.

Every open cell L ⊂ R
n is regular, so, in particular, it has the Green

function. This can be verified by showing by induction that ∂L has the above
cone property (∗). In fact, if n = 1, then (∗) is trivial since L is an open
interval. Let x ∈ ∂L. Then x ∈ ∂Ln−1×R or x belongs to the graph of ϕn or
ψn. In the first case, x = (x̃, xn), where x̃ ∈ ∂Ln−1, so we find (by induction)
a cone Λ′ ⊂ R

n−1 which satisfies (∗). Take B = {(ỹ, yn) ∈ Rn−1 × R :
|yn − xn| ≤ |ỹ − x̃|}. Then Λ = (Λ′ × R) ∩ B is a cone with vertex at x,
which implies condition (∗). The second case is obvious since ϕn and ψn are
C1 functions.

To see when K(Ω) is of the quadratic integral form mentioned in the in-
troduction, we recall the definition of KG(Ω). Given a proper subdomain Ω
of Rn with the Green function gΩ(·, ·), a C1 function f : Ω → R belongs to
KG(Ω) if and only if

‖f‖KG(Ω) = sup
y∈Ω

(∫
Ω

|∇f(x)|2gΩ(x, y)dx
)1/2

< +∞.

Theorem 3.1. Let Ω be a proper subdomain of Rn with the Green func-
tion gΩ(·, ·). Suppose that Ω is definable in some o-minimal structure M on
(R,+, ·). Then there exists a constant C > 0 depending only on Ω such that
‖f‖KG(Ω) ≤ C‖f‖K(Ω) for all f ∈ K(Ω) if and only if

(3.2) Cg(Ω) = sup
y∈Ω

∫
Ω

(δΩ(x))−2gΩ(x, y)dx < +∞.

Proof. The sufficiency is simple. To prove the necessity, we apply Theorem
2.3 to obtain N functions f1, f2, . . . , fN ∈ K(Ω) such that

(3.3) m = inf
x∈Ω

δΩ(x)
(
|∇f1(x)|+ |∇f2(x)|+ · · ·+ |∇fN (x)|

)
> 0.

If ‖f‖KG(Ω) ≤ C‖f‖K(Ω) holds for all f ∈ K(Ω) and some constant C > 0
depending only on Ω, then ‖fj‖KG(Ω) ≤ C‖fj‖K(Ω), j = 1, 2, . . . , N . From
(3.3) it follows that

m2

∫
Ω

(δΩ(x))−2gΩ(x, y)dx ≤ 2N
∫

Ω

N∑
j=1

|∇fj(x)|2gΩ(x, y)dx

≤ C22N
N∑
j=1

‖fj‖2K(Ω),

which implies (3.2). The proof is complete. �
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Remark 3.2. It is clear that the sufficiency part of Theorem 3.1 holds for
general domains with the Green functions. More importantly, the condition
Cg(Ω) < +∞ defines a class of proper subdomains of Rn. Those domains
with the property (3.2) are called GP -domains (Green potential domains).

Corollary 3.3. Let Ω be a proper subdomain of Rn with the Green func-
tion gΩ(·, ·). Then K(Ω)∩H(Ω) ⊃ KG(Ω)∩H(Ω). Moreover, K(Ω)∩H(Ω) =
KG(Ω) ∩H(Ω) whenever Ω is also a GP -domain.

Proof. Fix a point y ∈ Ω and its Euclidean ball B = B(y, r) with radius
r = δΩ(y). The Green function of B obeys

(3.4) gB(x, y) =


log

r

|x− y|
, n = 2,

1
|x− y|n−2

− 1
rn−2

, n ≥ 3.

Let f ∈ KG(Ω)∩H(Ω). Then an elementary estimation and the subharmonic-
ity of |∇f |2 show that there exists a constant C1 > 0 depending only on n
such that

‖f‖2KG(Ω) ≥
∫
B(y,r/2)

|∇f(x)|2gB(x, y)dx ≥ C1

(
r|∇f(y)|

)2
.

This means f ∈ K(Ω) ∩ H(Ω) and thus K(Ω) ∩ H(Ω) ⊃ KG(Ω) ∩ H(Ω).
Further, if Ω is a GP -domain, with the help of Theorem 3.1, we then have
K(Ω) ∩H(Ω) ⊂ KG(Ω) ∩H(Ω), and hence K(Ω) ∩H(Ω) = KG(Ω) ∩H(Ω).
This completes the proof. �

3.2. The upper half space. In the sequel, we consider Rn+, a typical
M-definable domain. For this purpose, we introduce a generalized Carleson
measure on Rn+. For p ∈ (0,+∞), a positive Borel measure dµ on Rn+ is said
to be a p-Carleson measure provided

(3.5) sup
µ(S(I))(
`(I)

)p(n−1)
< +∞,

where the supremum is taken over all Carleson boxes S(I) = I × (0, `(I)] ⊂
R
n
+ based on cubes I ⊂ Rn−1 with edges parallel to the coordinate axes of
R
n−1, where `(I) stands for the edge length of I. The case p = 1 is the

so-called Carleson measure. Moreover, if the supremum in (3.5) is taken over
all a(≥ 0)-Carleson boxes Sa(I) = I × (a, a+ `(I)], then dµ is called a strong
p-Carleson measure. Obviously, a strong p-Carleson measure must be a p-
Carleson measure, but not conversely. For the case of the unit disc, see [Zhu,
Ex.6, p. 188].

In the rest of this section, the notations g(x, y) and δ(x) will stand for the
Green function of Rn+ and the distance of the point x ∈ Rn+ to the boundary
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∂Rn+ = R
n−1, respectively. Also, ỹ stands for the symmetric point of y ∈ Rn+

with respect to Rn−1, that is to say, if y = (y1, . . . , yn), then ỹ = (y1, . . . ,−yn).

Lemma 3.4. Let dµ be a positive Borel measure on R
n
+ and let p ∈

(0,+∞). Then dµ is a p-Carleson measure if and only if

(3.6) ‖µ‖p = sup
y∈Rn+

(∫
R
n
+

(
δ(y)
|x− ỹ|n

)p
dµ(x)

)1/2

< +∞.

Proof. See Lemma 4.1 in [EJPX]. �

Theorem 3.5. Let f be a C1 function on R
n
+ and let dµf (x) =

|∇f(x)|2δ(x)dx. If f ∈ KG(Rn+), then dµf is a 1-Carleson measure. Con-
versely, if dµf is a strong 1-Carleson measure, then f ∈ KG(Rn+).

Proof. Note that

(3.7) g(x, y) =


log
|x− ỹ|
|x− y|

, n = 2,

1
|x− y|n−2

− 1
|x− ỹ|n−2

, n ≥ 3,

and that there is a constant C2 > 0 depending only on n such that

(3.8)



(1) g(x, y) ≥ 2δ(x)δ(y)
|x− ỹ|n

, n ≥ 2,

(2) g(x, y) ≤ C2δ(x)δ(y)
|x− ỹ|2|x− y|n−2

, n ≥ 3,

(3) g(x, y) ≤
(
−2 log c
1− c2

)
δ(x)δ(y)
|x− ỹ|2

, 0 < c < 1, c2 < |x−y|
|x−ỹ| , n = 2;

see [AiEs, p. 68] and [Ga, p. 289].
If f ∈ KG(Rn+), then (1) of (3.8), together with Lemma 3.4, gives immedi-

ately the desired assertion. Conversely, if dµf is a strong 1-Carleson measure,
then

‖|µf‖|1 := sup
Sa(I)⊂Rn+

(
µf (Sa(I))(
`(I)

)n−1

)1/2

< +∞.

Since the case n = 2 is similar, it is enough to consider the cases n ≥ 3. By
(3.6) and (2) of (3.8), we have
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n
+

|∇f(x)|2g(x, y)dx

≤ C2

+∞∑
k=0

∫
2−(k+1)≤|x−y|/|x−ỹ|<2−k

|∇f(x)|2
(

δ(x)δ(y)
|x− ỹ|2|x− y|n−2

)
dx

≤ C2

+∞∑
k=0

2(n−2)(k+1)

∫
2−(k+1)≤|x−y|/|x−ỹ|<2−k

|∇f(x)|2
(
δ(x)δ(y)
|x− ỹ|n

)
dx

≤ C2

+∞∑
k=2

2(n−2)(k+1)

∫
|x−y|≤2−k+1δ(y)/(1−2−k)

|∇f(x)|2
(
δ(x)δ(y)
(δ(y))n

)
dx

+ C22n−2

∫
2−2≤|x−y|/|x−ỹ|<1

|∇f(x)|2
(
δ(x)δ(y)
|x− ỹ|n

)
dx

≤ C3(δ(y))1−n
+∞∑
k=2

2(n−2)(k+1)

∫
|x−y|≤2−k+2δ(y)

|∇f(x)|2δ(x)dx+ C3‖µf‖21

= C3(δ(y))1−n
+∞∑
k=2

2(n−2)(k+1)µf (B(y, 22−kδ(y))) + C3‖µf‖21

≤ C4

+∞∑
k=0

2−k‖|µf‖|21 + C3‖µf‖21.

Here C3 and C4 are positive constants independent of y. As a result, f ∈
KG(Rn+). �

Corollary 3.6. Let f ∈ H(Rn+) and dνf (x) = |∇f(x)|2(δ(x))2dx. Then
the following statements are equivalent:

(i) f ∈ K(Rn+).
(ii) dνf is an n/(n− 1)-Carleson measure.
(iii) f satisfies

sup
y∈Rn+

∫
R
n
+

|∇f(x)|2
(
g(x, y)

) n
n−1 (δ(x))

n−2
n−1 dx < +∞.

Proof. (i)⇔(ii). If f ∈ K(Rn+), then for any Carleson box S(I) ⊂ Rn+,∫
S(I)

|∇f(x)|2(δ(x))2dx ≤ ‖f‖2K(Rn+)(`(I))n,

which implies that dνf is an n/(n− 1)-Carleson measure.
Conversely, if dνf is an n/(n− 1)-Carleson measure, then

‖|νf‖|n/(n−1) := sup
S(I)⊂Rn+

(
µf (S(I))(
`(I)

)n
)1/2

< +∞.
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The Submean Value Property of |∇f |2 shows that there exists a constant
C5 > 0 depending on the dimension n so that for the Carleson box S(I) with
center y ∈ Rn+ and edge length 2δ(y),

(`(I))n‖|νf‖|2n/(n−1) ≥
∫
S(I)

|∇f(x)|2(δ(x))2dx ≥ C5|∇f(y)|2
∫ δ(y)

0

tn+1dt.

Hence f lies in K(Rn+).
(i)⇔(iii). If (iii) holds, then (3.8) and Lemma 3.4 imply that (ii) holds.

Hence (i) follows. On the other hand, if f ∈ K(Rn+), then an elementary
calculation shows that dνf is a strong n/(n− 1)-Carleson measure. Moreover,
the argument of Theorem 3.5 yields (iii) at once. �

Remark 3.7. We have actually proved that the results onK(Rn+)∩H(Rn+)
in Corollary 3.6 correspond nicely to the analogous results on BMOH(Rn+),
the class of the Poisson harmonic extensions to Rn+ of functions inBMO(Rn−1);
see Carleson [Car] and Leutwiler [Le2].

4. Harnack metric and uniformly perfect domains

4.1. The Harnack metric. For a proper subdomain Ω of Rn, write
H+(Ω) for the set of all positive harmonic functions on Ω. The Harnack
density on Ω is given by

(4.1) ηΩ(x) = sup
f∈H+(Ω)

|∇ log f(x)|.

Since the Harnack and quasi-hyperbolic densities are comparable on balls of
R
n (cf. [Ko] or [Le1]), it follows that

(4.2) ηΩ(x) ≤ n(δΩ(x))−1.

We now use the Harnack density to define Kη(Ω) as the space of all C1

functions f on Ω satisfying

‖f‖Kη(Ω) = sup
x∈Ω

(ηΩ(x))−1|∇f(x)| < +∞.

From (4.2) it follows that if f ∈ H+(Ω) then log f is in K(Ω), and that
Kη(Ω) ⊂ K(Ω) with ‖ · ‖K(Ω) ≤ n‖ · ‖Kη(Ω). However, we will see that not all
John functions have the Kη(Ω)-property.

Theorem 4.1. Let Ω be a proper subdomain of Rn. Then there exists a
constant C > 0 depending only on Ω such that ‖f‖Kη(Ω) ≤ C‖f‖K(Ω) for all
f ∈ K(Ω) if and only if

(4.3) Cη(Ω) = inf
x∈Ω

ηΩ(x)δΩ(x) > 0.
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Proof. The sufficiency is obvious. As to the necessity, assume that there is
a constant C > 0 depending only on Ω such that for all f ∈ K(Ω),

(4.4) ‖f‖Kη(Ω) ≤ C‖f‖K(Ω).

Now, fix x0 ∈ Ω and pick a point y0 ∈ ∂Ω such that δΩ(x0) = |x0− y0|. Then
the function f0(x) = log |x− y0| belongs to K(Ω) and ‖f0‖K(Ω) ≤ 1. By (4.4)
we get ‖f0‖Kη(Ω) ≤ C and ηΩ(x)|x− y0| ≥ C−1, which, in particular, implies
(4.3) (by choosing x = x0). �

Remark 4.2. (4.3) actually defines a class of proper subdomains of Rn.
We call a domain satisfying (4.3) an HM-domain (Harnack metric domain).
Obviously, the unit ball and the upper half space of Rn are HM-domains.
In the case n ≥ 3, many Hölder domains are HM-domains (cf. [SmSt]). In
fact, more is true: If n ≥ 3, then every proper subdomain of Rn is an HM -
domain. To see this, let x0 ∈ Ω, and choose y0 ∈ ∂Ω with δΩ(x0) = |x0 − y0|.
If f(x) = |x − y0|2−n for x ∈ Ω, then f ∈ H+(Ω) and hence |∇ log f(x0)| =
(n−2)/|x0−y0|. As a consequence, ηΩ(x0)δΩ(x0) ≥ n−2 and so Cη(Ω) ≥ n−2.
The authors thank the referee for pointing out this argument.

4.2. The Poincare metric. We next consider planar domains. In partic-
ular, we find that the quasi-hyperbolic metric and the Poincaré metric enable
us to distinguish the John functions.

From now on, R2 is identified with the finite complex plane C and x and
y are viewed as complex numbers. A proper subdomain Ω of R2 is called
hyperbolic if its universal covering surface is the unit disk D. Suppose that
λΩ(x) is the Poincaré density on Ω, determined by

(4.5) λΩ(p(y))|p′(y)| = λD(y) = (1− |y|2)−1, y ∈ D.
Note that x = p(y) is a universal covering map from D onto Ω and (4.5)
is independent of the choice of y. The Schwarz Lemma easily yields that
this density is decreasing; i.e., if two hyperbolic domains Ω1 and Ω2 satisfy
Ω1 ⊂ Ω2, then λΩ2(x) ≤ λΩ1(x) for x ∈ Ω1 (cf. [BePo]). The following
inequalities on δΩ(x), ηΩ(x) and λΩ(x) are well known:

(4.6) δΩ(x) ≤ (λΩ(x))−1 ≤ 2(ηΩ(x))−1;

see, for instance, [GeOs] and [Ko]. Nevertheless, when Ω is simply connected,
δΩ(x), (λΩ(x))−1 and (ηΩ(x))−1 are comparable.

As before, we use the Poincaré density to define the space Kλ(Ω) consisting
of all C1 functions on the hyperbolic domain Ω in R2 with

‖f‖Kλ(Ω) = sup
x∈Ω

(λΩ(x))−1|∇f(x)| < +∞.

Theorem 4 of [Os] shows that log λΩ ∈ K(Ω). It is clear that Kλ(Ω) ⊂ K(Ω)
with ‖ · ‖K(Ω) ≤ ‖ · ‖Kλ(Ω). Therefore it is natural to compare K(Ω) with
Kλ(Ω).
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Theorem 4.3. Let Ω be a hyperbolic domain in R
2. Then there is a

constant C > 0 depending only on Ω such that ‖f‖Kλ(Ω) ≤ C‖f‖K(Ω) for all
f ∈ K(Ω) if and only if

(4.7) Cλ(Ω) = inf
x∈Ω

λΩ(x)δΩ(x) > 0.

Proof. The sufficiency is trivial, so it remains to show the necessity. Assume
that there exists a constant C > 0 depending only on Ω such that ‖f‖Kλ(Ω) ≤
C‖f‖K(Ω) for all f ∈ K(Ω). Fix a point x0 ∈ Ω and pick a point y0 ∈ ∂Ω such
that δΩ(x0) = |x0− y0|. It is known that the function f0(x) = log |x− y0| is a
member of K(Ω). Thus, the above hypothesis implies that f0 ∈ Kλ(Ω) with
‖f0‖Kλ(Ω) ≤ C‖f0‖K(Ω), and (4.7) follows. �

Remark 4.4. A hyperbolic domain in R2 is called uniformly perfect (UP)
if (4.7) holds. Obviously, an HM-domain is a UP-domain. Also, the proof of
Theorem 4.3 actually reveals that Kλ(Ω)∩H(Ω) = K(Ω)∩H(Ω) if and only
if Ω is a UP-domain. In other words, even harmonic functions can distinguish
between the quasi-hyperbolic metric and the Poincaré metric.

The concept of UP-domains comes originally from [BePo]. Several char-
acterizations of such domains can be found in [Po]. However, the following
result gives a special geometric description of these domains.

Theorem 4.5. Let Ω be a finitely connected hyperbolic domain in R
2.

Then Ω is a UP-domain if and only if every component of ∂Ω contains at
least two points.

Proof. The sufficiency is essentially known (cf. [Mas1] and [Mas2]), so
it remains to prove the necessity, which is quite complicated. To this end,
suppose that Cλ(Ω) is positive. Thus, λΩ and δ−1

Ω are comparable. Further,
such a domain cannot have any isolated boundary point; otherwise, if y were
an isolated boundary point, by taking a punctured Euclidean ball B(y, r) \
{y} ⊂ Ω we would get that

λΩ(x)δΩ(x) ≤ r(log r − log |x− y|)−1 → 0

as x→ y, and hence Cλ(Ω) = 0, a contradiction.
In what follows, we will prove

(4.8) Cλ,g(Ω) = sup
y∈Ω

∫
Ω

(
λΩ(x)gΩ(x, y)

)2
dx < +∞,

where, here and afterwards, gΩ(x, y) denotes still the Green function of Ω for
the Laplacian ∆.

Observe that Cλ(Ω) and Cλ,g(Ω) are conformally equivalent. Thus, without
loss of generality, we may suppose that Ω is a regular domain, i.e., a hyperbolic
domain bounded by finitely many simple closed analytic curves. Furthermore,
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we put R2 = R
2 ∪ {∞} and R2 \ Ω =

⋃m
j=1Gj , where {Gj}mj=1 are all the

components of R2 \ Ω. Hence each Gj is simply connected, but also has at
least three boundary points.

Now, choose compact subsets {Ej}mj=1 and {Fj}mj=1 of Ω such that
Ej ∩ Ω ⊂ IntFj (interior of Fj), j = 1, 2, . . . ,m,
Fj ∩Gk = ∅, j 6= k,⋃m
j=1Ej = Ω.

We will show that for each j = 1, 2, . . . ,m,

(4.9) Mj = sup {λΩ(x)gΩ(x, y) : (x, y) ∈ (Ω \ Fj)× (Ej ∩ Ω)} < +∞.

Assume that φk is a conformal map from D onto Ωk = R
2 \ Gk, k =

1, 2, . . . ,m. For y ∈ ∂Ej ∩ Ω and x ∈ Ω sufficiently close to Gk, we have
δΩ(x) = δΩk(x) and

λΩ(x)gΩ(x, y) ≤ 4λD(u)gD(u, v)|φ′k(u)|−1,

where x = φk(u) and y = φk(v). Since φk can be extended continuously and
conformally beyond ∂D (the unit circle) and

lim
u→eiθ

λD(u)gD(u, v) = (1− |v|2)/(2|eiθ − v|2),

(4.9) follows. Here we have used the fact that gΩ(x, y) = 0 whenever y ∈ ∂Gj
(owing to the regularity of Ω).

Since y ∈ Ω, we can pick j so that y ∈ Ej and

(4.10)
∫

Ω\Fj

(
λΩ(x)gΩ(x, y)

)2
dx ≤ |Ω| sup

1≤k≤m
M2
k .

We also have∫
Fj

(
λΩ(x)gΩ(x, y)

)2
dx ≤

(
sup
x∈Fj

λΩ(x)
λΩj (x)

)2 ∫
Fj

(
λΩj (x)gΩj (x, y)

)2
dx.(4.11)

Noting that

λΩ(x)
λΩj (x)

≤
δΩj (x)
δΩ(x)

, x ∈ Ω,

and δΩ(x) = δΩj (x) as x→ ∂Ω ∩ Fj , we get

(4.12) Nj = sup
x∈Fj

λΩ(x)
λΩj (x)

< +∞.
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However, it follows from the conformal invariance of λΩj and gΩj that∫
Fj

(
λΩj (x)gΩj (x, y)

)2
dx ≤

∫
D\{v}

(
λD(u)gD(u, v)

)2
du(4.13)

≤ 2π
∫ 1

0

(
log t

1− t2

)2

dt.

Using (4.10)–(4.13), we get (4.8).
Let us return to the proof that every component of ∂Ω contains at least

two points. If not, then there would be a component of ∂Ω consisting of a
single point, say {y0}. By taking a small Euclidean ball B(y0, r) for which
B(y0, r) \ {y0} ⊂ Ω, and using a remark in [Mas1], we obtain

C(Ω) = inf
x∈B(y0,r)\{y0}

λΩ(x)δΩ(x) log δΩ(x) > 0.

For y ∈ B(y0, r) \ {y0} and a suitable small r, we get∫
Ω

(
λΩ(x)gΩ(x, y)

)2
dx ≥ (C(Ω))2

∫
B(y0,r)\{y0}

(
gB(y0,r)\{y0}(x, y)
|x− y0| log |x− y0|

)2

dx.

The last integral tends to +∞ as y approaches y0. This contradicts (4.8).
Therefore the proof is complete. �
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ematicians (Aarhus, 1980), Birkhäuser, Boston, Mass., 1980, pp. 3–21.

[CDS] D. Chang, G. Dafni, and E.M. Stein, Hardy spaces, BMO, and boundary value

problems for the Laplacian on a smooth domain in RN , Trans. Amer. Math. Soc.
351 (1999), 1605–1661.

[Dr] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc.
Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.

[DMM] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted

analytic fields with exponentiation, Ann. of Math. 140 (1994), 183–205.
[DrMi] L. van den Dries and C. Miller, Geometric categories and o-minimal structures,

Duke Math. J. 84 (1996), 497–540.
[EJPX] M. Essén, S. Janson, L. Peng, and J. Xiao, Q spaces of several real variables,

Indiana Univ. Math. J. 49 (2000), 575–615.

[Ga] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[GeOs] F. Gehring and B. Osgood, Uniform domain and the quasihyperbolic metric, J.

Analyse Math. 36 (1979), 50–74.
[Go] Y. Gotoh, On uniform and relative uniform domains, preprint, 1999.



1108 K. KURDYKA AND J. XIAO

[Jo] F. John, Functions whose gradients are bounded by the reciprocal distance from
the boundary of their domain, Russian Math. Surveys 29 (1974), 170–175.

[JoNi] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math. 14 (1961), 415–426.
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