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COARSE COHOMOLOGY FOR FOLIATIONS: THE
GENERAL CASE

JAMES L. HEITSCH

Abstract. We show how to extend coarse cohomology for foliations to
non-Hausdorff foliations and compute several examples of Reeb type.

1. Introduction

Coarse cohomology for metric spaces was introduced by Roe [R1], [R2],
[R3]. It evolved from the study of the index theory of geometric (Dirac-
type) operators on complete open manifolds, and it has yielded new invariants
beyond the usual index. In [HH], we extended this theory to parametrized
families of metric spaces, the most important examples being foliations of
compact manifolds. Unfortunately, in order to apply our general theory to
foliations, we had to assume that the graph of the foliation was Hausdorff, a
very strong assumption. In this paper we show how to remove this assumption
and so extend the notion of coarse cohomology to all foliated manifolds. We
also compute several important examples. In a subsequent paper, we will show
how this cohomology theory naturally pairs with leafwise elliptic differential
operators to yield new invariants for foliated manifolds. This gives a new
and potentially important tool for understanding leafwise elliptic operators
on foliated manifolds in general, not just those with Hausdorff graph.

Coarse cohomology for foliations combines the usual cohomology of the
ambient manifold with the coarse cohomology of the holonomy covers of the
leaves of the foliation. In particular, it is the cohomology of the differential
forms on M with coefficients in the coarse de Rham cochains of the holo-
nomy coverings of the leaves of F . When interpreted as a sheaf cohomology
it yields a theory which is eminently computable. The results presented here
essentially reduce the computation of this cohomology for any foliation to a
good understanding of the local structure of the graph. Our main technical
tool, the Controlled Poincaré Lemma, should have numerous and wide appli-
cations in the computation of particular examples. As one such application,
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we compute the coarse cohomology for several foliations (all of Reeb type)
which have non-Hausdorff graphs.

It is a pleasure to thank A. K. Bousfield for helpful conversations, and the
referee for pointing out a hiatus in the construction of the examples.

2. Coarse de Rham cohomology for foliations

Let F be a codimension q foliation of a compact n dimensional manifold
M without boundary. The holonomy groupoid GF of F consists of equivalence
classes y = [γ] of leafwise paths γ : [0, 1] → M . Two such leafwise paths
γ1 and γ2 are equivalent provided γ1(0) = γ2(0), γ1(1) = γ2(1), and the
holonomy germ along the two paths is the same at γ1(0). There are natural
maps s, r : GF → M defined by s(y) = γ(0), r(y) = γ(1). GF is a (generally
non-Hausdorff) 2n − q dimensional manifold with the local charts given as
follows. Let U and V be foliation charts of s(y) and r(y), respectively, and
choose γ ∈ y. Then the local chart (U, γ, V ) consists of all equivalence classes
of leafwise paths which start in U , end in V , and which are homotopic to γ
through a homotopy of leafwise paths whose end points remain in U and V ,
respectively. It is easy to see that if U, V ' Rn−q × Rq, then (U, γ, V ) '
Rn−q ×Rn−q ×Rq.

When we defined coarse cohomology for metric families in [HH], we assumed
that the family of metrics satisfied a semi-continuity property, which holds for
a foliation only if its graph is Hausdorff. We now give an alternate definition
of the coarse de Rham cohomology for F , which for a foliation with Hausdorff
graph agrees with that given in [HH], and which is natural for all foliations,
whether or not their graphs are Hausdorff.

For each x ∈ M , s−1(x) ' L̃x, the holonomy cover of the leaf Lx con-
taining x. Denote by G` the submanifold of ×`GF consisting of those points
(y1, . . . , y`) with s(y1) = s(yj) for j = 2, . . . , `. We also denote by s the map
s : G` → M given by s(y1, . . . , y`) = s(y1). Note that here s−1(x) ' ×`L̃x.
Choose a metric on M . This induces a metric on each leaf L and so also
on L̃ and ×`L̃, which makes them complete Riemannian manifolds. Their
quasi-isometry types are independent of the choice of metric on M since M
is compact. Denote the metric on s−1(x) by dx, and note that for foliations
with non-Hausdorff graph, this metric is not continuous in x. Given A ⊆ G`
and r > 0, define

Pen(A, r) =
{

(ŷ1, . . . , ŷ`) ∈ G` | ∃ (y1, . . . , y`) ∈ A with

s(y1) = s(ŷ1) and ds(y1)(yi, ŷi) < r for i = 1, . . . , `
}
.
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For each x ∈ M let ∗x be the equivalence class of the constant path at x,
and ∗M` the subset of G` given by

∗M` =
⋃
x∈M

(∗x, . . . , ∗x).

Denote by Ak,`c (F ) the space of smooth (that is, smooth in each coordinate
chart) k forms ω on G`+1 such that for all r > 0 there exists R > 0 so that

sup(ω) ∩ Pen(∆`+1, r) ⊆ Pen(∗M`+1, R),

where ∆`+1 ' GF is the thin diagonal of G`+1.
When we defined the de Rham coarse cohomology of a foliation in [HH], we

defined Ak,`c (F ) by requiring that sup(ω)∩Pen(∆`+1, r) be relatively compact.
Note that when GF is Hausdorff, these two notions agree. For Hausdorff
spaces, relative compactness is reasonably easy to check, but it is not so easy
for non-Hausdorff spaces. For the application we have in mind (namely pairing
coarse cohomology with leafwise elliptic operators), the crucial property is not
the relative compactness of sup(ω) ∩ Pen(∆`+1, r), but rather the fact that
it has finite volume so that integration over this intersection of a bounded
differential form produces a finite quantity.

We define two differentials on Ak,`c (F ) as follows. The usual exterior de-
rivative d does not increase supports, so it is clear that it maps Ak,`c (F ) to
Ak+1,`
c (F ). Define δ : Ak,`c (F )→ Ak,`+1

c (F ) by

δω =
`+2∑
j=1

(−1)j+1π∗jω,

where πj : G`+2 → G`+1 deletes the jth entry. To see that δ actually does
map Ak,`c (F ) to Ak,`+1

c (F ) we have the following proposition whose proof is
immediate.

Proposition 2.1. If sup(ω) ∩ Pen(∆`+1, r) ⊆ Pen(∗M`+1, R), then
sup(π∗jω) ∩ Pen(∆`+2, r) ⊆ Pen(∗M`+2, 2R+ 2r).

Definition 2.2. The coarse de Rham cohomology HX∗(F ) of F is the
cohomology of the bicomplex {A∗,∗c (F ), δ, d}.

As in [H], this cohomology theory is a sheaf cohomology theory given as fol-
lows. The coarse presheaf L∗ of F is the differential presheaf which associates
to each open set U ⊂M and each non-negative integer q the space

Lq(U) =
∑
k+`=q

Ak,`c (U), where Ak,`c (U) = {ω |s−1(U) | ω ∈ Ak,`c (F )}.

The differential D : Lq(U)→ Lq+1(U) is given by D |Ak,`c (U) = d+ (−1)kδ.
The coarse sheaf L∗ of F is the differential sheaf associated to the differ-

ential presheaf L∗.
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For each q, Lq is a fine sheaf, so the Čech bicomplex associated to L∗
computes the coarse de Rham cohomology of F . Theorem 2.1 on p. 132 of
[B] gives a spectral sequence which converges to HX∗(F ). Its E2 term is

Ep,q2 = Hp(M ;Hq(L∗)),

where Hq(L∗) is the homology sheaf of the differential sheaf L∗. In particular,

Hq(L∗) = Ker(D : Lq → Lq+1)/ Im(D : Lq−1 → Lq).

This reduces the computation of the coarse cohomology of a foliation to un-
derstanding the local structure of the map s : G →M and the analysis of the
spectral sequence given above.

3. Some Reeb type examples

In this section, we compute the coarse cohomology of several foliations of
S3 of Reeb type.

3.1. The Reeb foliation. The Reeb foliation is the foliation F of S3 =
S1 × D2 ∪ S1 × D2, where each copy of S1 × D2 is a Reeb component; see
[MS, p. 41]. This foliation has a single compact leaf which is diffeomorphic
to T 2, and all the other leaves are diffeomorphic to R2. For each x ∈ T 2,
the holonomy cover L̃x is quasi isometric to R2 with the usual metric. For
x ∈M−T 2, L̃x is isometric to R2 with a metric making it coarsely equivalent
to [0,∞) with the usual metric.

Theorem 3.1. The coarse cohomology of the Reeb foliation is trivial, that
is, HX∗(F ) = 0.

Here and in the succeeding examples, we will be computing the stalks of
certain sheaves. In all the cases we consider the stalks will be either 0 or
R, and it will be easy to see that there is no twisting in any of the sheaves.
Thus all of the sheaves we consider will be trivial R sheaves over subsets of
S3 extended by zero to all of S3.

Recall (see [HH]) that a metric family F = {G, d, π, U} consists of a para-
compact Hausdorff space G, a metric space U , a continuous map π : G→ U ,
and a family of fiberwise metrics {dx | x ∈ U} satisfying certain continuity and
properness conditions. In [HH], we also defined the notion of coarsely equiva-
lent metric families. Roughly speaking, two such families {G1, d1, π1, U } and
{G2, d2, π2, U} with the same base space U are coarsely equivalent if there is
a map φ : G1 → G2 covering the identity which induces a coarse equivalence
on each of the fibers of the maps πj : Gj → U . Coarse cohomology is de-
fined for metric families and coarsely equivalent families have the same coarse
cohomology. These notions and results extend (using our new definition of
coarse cohomology) to the metric families defined by taking U to be an open
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subset in any foliated manifold M (whether or not GF is Hausdorff), G to be
s−1(U) ⊂ GF , π = s, and dx the metric on L̃x induced from a metric on M .

To prove Theorem 3.1 we need only show that for all x and q, Hq(L∗)x = 0.
There are two separate cases to consider, namely x ∈ S3 − T 2, and x ∈ T 2.

Proposition 3.2. For all x ∈ S3 − T 2, and for all q, Hq(L∗)x = 0.

Proof. Each x ∈ S3−T 2 has a neighborhood U ⊂ S3−T 2, U ' D3, so that
the metric family {s−1(U), d, s, U} is coarsely equivalent to the product metric
family {U × [0,∞), dU , π, U}, where for each u ∈ U , dUu is the usual metric
on {u} × [0,∞). The coarse cohomology of [0,∞) is trivial, so the spectral
sequence of [HH] gives that the coarse cohomology of {U × [0,∞), dU , π, U}
is also trivial. Thus the coarse cohomology of {s−1(U), d, s, U} is trivial, so
for all x ∈ S3 − T 2 and all q, Hq(L∗)x = 0. �

We now compute Hq(L∗)x for x ∈ T 2. Each neighborhood of x ∈ T 2

contains a neighborhood U ' D3 so that the metric family {s−1(U), d, s, U} is
coarsely equivalent to the metric family Fx = {G, dU , π, U}, where G = Ĝ/Z,
and Ĝ ⊂ D3 ×R2 is the set

Ĝ = {(u1, u2, u3, t1, t2) | if u3 ≥ 0, t1 > −u−2
3 , and if u3 ≤ 0, t2 > −u−2

3 }.

We use the convention that if u3 = 0, then −u−2
3 = −∞. The action of Z is

generated by:

if u3 > 0, then (u1, u2, u3, t1, t2)→ (u1, u2, u3, t1, t2 + 1);

if u3 < 0, then (u1, u2, u3, t1, t2)→ (u1, u2, u3, t1 + 1, t2).

The map π : G→ U is the natural projection and for each u ∈ U the metric
dUu on π−1(u) is induced from the restriction of the natural metric on {u}×R2.
If u has u3 6= 0, then π−1(u) ' S1× (−u−2

3 ,∞) with the usual metric, while if
u3 = 0, π−1(u) ' R2 with the usual metric. Note that the set U ∩ T 2 equals
{u |u3 = 0}.

Denote by Ĝ` ⊂ U ×R2` the set

Ĝ` = {(u, t1, . . . , t2`) | if u3 ≥ 0, t2j+1 > −u−2
3 ; if u3 ≤ 0, t2j > −u−2

3 },

and set
G` = Ĝ`/Z

`,

where the action of Z` is the natural extension of the action of Z above. As
above, we have the natural projection π : G` → U . For each u ∈ U with
u3 6= 0, π−1(u) ' ×`(S1 × (u−2

3 ,∞)) with the usual metric, and for each
u ∈ U with u3 = 0, π−1(u) ' (R2)` with the usual metric.

Denote by ∆` ' G the thin diagonal of G`, and by ∗U` ⊂ G` the subset
given by the image in G` of the set U×{(0. . . . , 0)} ⊂ U×R2`. Then the coarse
cohomology of the metric family Fx may be computed just as the de Rham
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coarse cohomology for a foliation is computed, with G` substituted for G`. In
particular, we have the spaces Ak,`c (Fx) of k forms ω on the space G`+1 such
that for all r > 0, there exists R > 0 so that

sup(ω) ∩ Pen(∆`+1, r) ⊆ Pen(∗U`+1, R).

The differentials d and δ are as above, and the coarse cohomology of Fx is the
cohomology of the bicomplex {A∗,∗c (Fx), δ, d}.

Proposition 3.3. For all x ∈ T 2, and for all q, Hq(L∗)x = 0.

Proof. HX0(Fx) consists of constant functions on G1 with compact sup-
port. As G1 is not compact, HX0(Fx) = 0, which implies H0(L∗)x = 0.

To compute the higher coarse cohomology of the metric family Fx, we need
the following lemmas.

Lemma 3.4. For all ω ∈ Ak,`c (Fx), sup(ω) ∩ π−1(U ∩ T 2) = ∅.

Proof. The Z`+1 action on Ĝ`+1 induces two different actions of Z`+1 on
π−1(T 2) ' T 2 ×R2`+2, one being the natural action on the odd coordinates
of R2`+2, called the odd action, and the other being the natural action on
the even coordinates. Suppose there is z ∈ sup(ω) ∩ π−1(T 2). Then there is
a sequence, {zn}, in G`+1, which converges to z with ω(zn) 6= 0, and we may
assume without loss of generality that u3(zn) < 0 for all n. Then the sequence
{zn} also converges to all the points in the orbit of z under the odd action
of Z`+1. Let the coordinates of z be z = (y, (t1, t2), . . . , (t2`+1, t2`+2)). Now
z is in some bounded neighborhood of the diagonal in y × (R2)`+1, so there
is r > 0 so that for all a, b ∈ {1, 2, . . . , `+ 1}, dUy ((t2a−1, t2a), (t2b−1, t2b)) < r.
But then the sequence of points (y, (t1 + n, t2), . . . , (t2`+1 + n, t2`+2)) also
satisfies dUy ((t2a−1 + n, t2a), (t2b−1 + n, t2b)) < r, so it is also in the same
bounded neighborhood of the diagonal. This sequence is in the orbit of z
under the odd action, so it is also in sup(ω) ∩ π−1(T 2). As this sequence
increases without bound as n→∞, the support condition is violated. �

Denote by d̂ : Ak,`c (Fx) → Ak+1,`
c (Fx) the exterior derivative with respect

to the u coordinates only. Strictly speaking this does not make sense. How-
ever, we may pull back any form ω on G`+1 to Ĝ`+1 by the natural projection
ρ : Ĝ`+1 → G`+1, and d̂(ρ∗(ω)) does make sense. As d̂(ρ∗(ω)) is invariant
under the action of Z`+1, it induces a well defined form on G`+1. Define this
to be d̂(ω).

Lemma 3.5 (Controlled Poincaré Lemma). Suppose x ∈ T 2, k > 0, and
ωk,` ∈ Ak,`c (Fx). Assume that each term of ρ∗(ωk,`) contains at least one dui
and that d̂(ωk,`) = 0. Then there is ωk−1,` ∈ Ak−1,`

c (Fx) such that d̂(ωk−1,`) =
ωk,`.
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Proof. We will work on the space Ĝ`+1 using objects which are invariant
under the action of Z`+1. Let ω ∈ Ak−1,`

c (Fx) and suppose that ρ∗(ω) on
Ĝ`+1 is a monomial

ρ∗(ω) = f(u, t)dui1 ∧ . . . ∧ duir ∧ dtj1 ∧ . . . ∧ dtjk−(r+1) .

Set

φ(ρ∗(ω))(u, t) =
(∫ 1

0

sr−1f(su, t)ds
)
dui1 ∧ . . .∧ duir ∧ dtj1 ∧ . . .∧ dtjk−(r+1) .

Let iX be interior multiplication by the vector field u1∂/∂u1 + u2∂/∂u2 +
u3∂/∂u3 on Ĝ`+1. Then the proof of the usual Poincaré lemma (see [W,
p. 155]) shows that the form ω̂k−1,` = φ(iXρ∗(ωk,`)) satisfies d̂(ω̂k−1,`) =
ρ∗(ωk,`). In addition, ω̂k−1,` is invariant by the action of Z`+1, so it induces
a well defined form ωk−1,` on G`+1 and d̂(ωk−1,`) = ωk,`.

It remains to check that ωk−1,` satisfies the support condition required of
an element of Ak−1,`

c (Fx). First, note that for all 0 < s ≤ 1,

(u, t) ∈ ρ−1(Pen(∆`+1, r))⇔ (su, t) ∈ ρ−1(Pen(∆`+1, r))

and

(u, t) ∈ ρ−1(Pen(∗M`+1, R))⇔ (su, t) ∈ ρ−1(Pen(∗M`+1, R)).

Now suppose that ρ(u, t) ∈ sup(ωk−1,`) ∩ Pen(∆`+1, r). It follows immedi-
ately that (u, t) ∈ sup(ω̂k−1,`) ∩ ρ−1(Pen(∆`+1, r)). This implies that there
is 0 < s ≤ 1 so that (su, t) ∈ sup(ρ∗ωk,`) ∩ ρ−1(Pen(∆`+1, r)), for if not
ω̂k−1,` would be zero on a neighborhood of (u, t). Because sup(ρ∗ωk,`) ∩
ρ−1(Pen(∆`+1, r)) = ρ−1(sup(ωk,`)∩Pen(∆`+1, r)) and ωk,` satisfies the sup-
port condition, we may choose R > 0, so that (su, t) ∈ ρ−1(Pen(∗M`+1, R)).
Thus we have that (u, t) ∈ ρ−1(Pen(∗M`+1, R)), so ρ(u, t) ∈ Pen(∗M`+1, R)
and the support condition is satisfied.

Finally, extend this construction to general ωk,` by linearity. �

Let α = [
∑
i+j=k ωi,j ] be a k > 0 dimensional coarse class for Fx, where

ωi,j ∈ Ai,jc (Fx). We first show that we may assume the ωi,j are independent
of u. Since D(

∑
i+j=k ωi,j) = 0, dωk,0 = 0. Write ωk,0 = ωu + ωt, where

ωu is the part of ωk,0 of highest u form degree. (Strictly speaking, we should
say this about their pullbacks by ρ. We will no longer make this distinction.)
The fact that d(ωk,0) = 0 implies that d̂(ωu) = 0. The Controlled Poincaré
Lemma gives a k − 1 form ωk−1,0 ∈ Ak−1,0

c (Fx) so that d̂(ωk−1,0) = ωu. As
α = [

∑
i+j=k ωi,j −D(ωk−1,0)], we may replace

∑
i+j=k ωi,j by

∑
i+j=k ωi,j −

D(ωk−1,0). This has the effect of reducing the highest u form degree of ωk,0
by 1. By induction, we may assume that the u form degree of ωk,0 is 0. The
fact that dωk,0 = 0 combined with the fact that ωk,0 contains no dui’s means
that ωk,0 is completely independent of u.
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By induction, we have a representative
∑
i+j=k ωi,j of α which has ωi,j

completely independent of u for i > r. The fact that D(
∑
i+j=k ωi,j) = 0

implies that dωr,s = ±δωr+1,s−1, which is entirely independent of u. This
implies that d̂ωr,s = 0. Proceed exactly as above to replace

∑
i+j=k ωi,j by

a new representative of α with ωi,j completely independent of u for i ≥ r.
Thus we may assume that

∑
i+j=k ωi,j is completely independent of u. But

on π−1(U ∩ T 2),
∑
i+j=k ωi,j = 0, so

∑
i+j=k ωi,j = 0, and α = 0.

This completes the proof of Theorem 3.1. �

We now compute the coarse cohomology for three other foliations derived
from the Reeb foliation. We do this by replacing the compact leaf T 2 by T 2×I
foliated in three different ways: first by a foliation with all leaves diffeomorphic
to T 2; second by foliations with all leaves diffeomorphic to S1 ×R; and third
by foliations with all leaves diffeomorphic to R2. These will be called the
T 2 Reeb foliation, the S1 × R Reeb foliations, and the R2 Reeb foliations,
respectively.

3.2. The T 2 Reeb foliation. To obtain this foliation, replace the T 2

leaf of the Reeb foliation by a family of such leaves, i.e., by the manifold
T 2× [0, 1] foliated by the fibers of the fibration T 2× [0, 1]→ [0, 1]. Any point
in the interior of T 2 × [0, 1] has a neighborhood U ' D3 so that the metric
family {s−1(U), d, s, U} is coarsely equivalent to the product metric family
{U × T 2, dU , π, U}, where the metric on each {u} × T 2 is the usual metric.
As the fibers of the projection are compact, this family is coarsely equivalent
to the trivial metric family {U, d, π, U}, with points as fibers. The coarse
cohomology of a point is just its usual cohomology, so the spectral sequence
of [HH] gives:

Proposition 3.6. For all x ∈ T 2 × (0, 1), H0(L∗)x = R; otherwise
Hq(L∗)x = 0.

The computation of Hq(L∗)x for x ∈ S3 − (T 2 × [0, 1]) is the same as in
the Reeb case so we have:

Proposition 3.7. For all x ∈ S3 − (T 2 × [0, 1]), Hq(L∗)x = 0 for all q.

For x in the boundary of T 2 × [0, 1], we have:

Proposition 3.8. For all x ∈ ∂(T 2 × [0, 1]), and for all q, Hq(L∗)x = 0.

Proof. Any such x has a neighborhood U ' D3 with the metric family
{s−1(U), d, s, U} coarsely equivalent to the metric family Fx = {G, dU , π, U},
where G = Ĝ/Z2, and Ĝ ⊂ D3 ×R2 is the set

Ĝ = {(u1, u2, u3, t1, t2) | if u3 ≥ 0, t1 > −u−2
3 }.
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We continue to use the convention that if u3 = 0, then −u−2
3 = −∞. The

action of Z2 is given by:

if u3 ≥ 0, then (a, b)((u1, u2, u3, t1, t2)) = (u1, u2, u3, t1, t2 + b);

if u3 < 0, then (a, b)((u1, u2, u3, t1, t2)) = (u1, u2, u3, t1 + a, t2 + b).

The map π : G → U is the natural projection. For each u ∈ U with u3 ≥ 0,
π−1(u) ' S1 × (−u−2

3 ,∞) with the usual metric, and for each u ∈ U with
u3 < 0, π−1(u) ' T 2 with the usual metric. Finally note that U ∩ ∂(T 2 ×
[0, 1]) = {u |u3 = 0}.

Since G1 is not compact, we have as above that H0(L∗)x = 0.

Lemma 3.9. Any ω ∈ Ak,`c (Fx) has C∞ contact with 0 on the set π−1(U ∩
∂(T 2 × [0, 1])).

Proof. If not, there is a sequence {zn} with u3(zn) < 0 and ω(zn) 6= 0.
Proceeding as in the proof of Lemma 3.4, we have that the support condition
is violated. �

Thus any coarse class α may be written as α = α1 + α2 , where α1 has a
representative which is zero for u3 ≤ 0 and α2 has a representative which is
zero for u3 ≥ 0.

Suppose
∑
i+j=k ωi,j is a representative of α1 which is zero for u3 ≤ 0.

The argument for the Reeb foliation that
∑
i+j=k ωi,j may be assumed to be

entirely independent of u works equally well here, and so
∑
i+j=k ωi,j = 0 and

α1 = 0.
Now suppose

∑
i+j=k ωi,j represents α2 and is zero for u3 ≥ 0. If the

support of
∑
i+j=k ωi,j intersects π−1(U ∩ ∂(T 2 × [0, 1])) non-trivially, then

the support condition will be violated by the same argument as in the Reeb
case. If the support of

∑
i+j=k ωi,j does not intersect π−1(U ∩ ∂(T 2 × [0, 1]))

non-trivially, then because of the compactness of T 2 there is ε < 0 so that
for all z with u3 > ε,

∑
i+j=k ωi,j(z) = 0. As we are computing the sheaf

cohomology at x, the coarse class determined by
∑
i+j=k ωi,j is the same as

that determined by its restriction to u3 > ε. Thus we may suppose that∑
i+j=k ωi,j = 0 so α2 = 0 also and α = 0. �

Given any subset A ⊂ S3, denote byRA the trivialR sheaf over A extended
by 0 to all of S3. Combining Propositions 3.6, 3.7, and 3.8 we have:

Proposition 3.10. For the T 2 Reeb foliation, H0(L) = RT 2×(0,1); oth-
erwise Hq(L) = 0.



1070 JAMES L. HEITSCH

Now the spectral sequence of [B, Theorem 2.1, p. 132], applied to this
foliation, has E2 term

Ep,q2 = Hp(S3;Hq(L∗)) = 0 for all q > 0;

Ep,02 = Hp(S3;H0(L∗)) = Hp(S3;RT 2×(0,1)).

Thus the coarse cohomology of the T 2 Reeb foliation is

HX∗(F ) = H∗(S3;RT 2×(0,1)).

Now consider the short exact sequence RT 2×(0,1) → RS3 → RB , where B is
the complement of the open subset T 2 × (0, 1). Since B is closed, the map
H∗(S3;RS3)→ H∗(S3;RB) in the associated long exact sequence is the usual
restriction homomorphism H∗(S3;R) → H∗(B;R). Thus H∗(S3;RT 2×(0,1))
is the same as the third term of the long exact sequence for the inclusion
B → S3, namely the relative cohomology H∗(S3, B;R) ' H∗−1(T 2;R), and
we have:

Theorem 3.11. For the T 2 Reeb foliation of S3, HX∗+1(F ) ' H∗(T 2;R).

An isomorphism is given as follows. Choose a smooth non-negative function
φ(x) on (0, 1) which is positive on some subset of the interior and zero on a
neighborhood of the boundary. On T 2× (0, 1) we have coordinates (θ1, θ2, x).
Over T 2 × (0, 1), G1 ' T 2 × (0, 1) × T 2, with coordinates (θ1, θ2, x, t1, t2).
Let ξ be a differential form on T 2 representing a class in Hk(T 2;R) and
consider the form s∗(φ ξ dx) ∈ Ak+1,0(F ), which we extend to all of G1 by
defining it to be zero off s−1(T 2 × (0, 1)). Then d(s∗(φ ξ dx)) = 0, and since
s∗(φ ξ dx) is independent of (t1, t2), δ(s∗(φ ξ dx)) = 0 also, so D(s∗(φ ξ dx)) =
0. The isomorphism we seek is A([ξ]) = [s∗(φ ξ dx)], where [ ] indicates
taking cohomology classes.

Note that if [ξ] ∈ Hk(T 2;R), where k = 0, 1, there is a k-form β on S3 so
that d(β) = φ ξ dx. Consider the form s∗(β) on G1. It satisfies d(s∗(β)) =
s∗(φ ξ dx). In addition, as s∗(β) is independent of (t1, t2), it follows that
δ(s∗(β)) = 0. Thus D(s∗(β)) = s∗(φ ξ dx). This does not contradict the fact
that A is an isomorphism, since the form s∗(β) in not in Ak,0c (F ) as it will
not satisfy the support condition off T 2× (0, 1), where the leaves of F are not
compact.

3.3. The S1 × R Reeb foliations. To obtain these foliations, replace
the T 2 leaf of the Reeb foliation by T 2 × [0, 1] with a foliation which has
the two boundary components as leaves and the interior foliated by leaves
diffeomorphic to S1 × R. There are two distinct ways to foliate S1 × R in
this way. The first is obtained by foliating the strip {(x, y) ∈ R2 | 0 ≤ y ≤ 1}
by horizontal lines, taking the product of this with S1, and then identifying
(x, y, θ) with (x+1, ϕ(y), θ). The map ϕ : [0, 1]→ [0, 1] is a diffeomorphism so
that on (0, 1), ϕ(y) > y. The second way is to foliate {(x, y) ∈ R2 | 0 ≤ y ≤ 1}
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by copies of R so that the boundary components are leaves, and the leaves
in the interior have both their ends at x = +∞; see the picture at the top of
p. 41 of [MS]. We assume that the foliation is invariant under translations in
the x variable. Take the product of this foliation with S1 and identify (x, y, θ)
with (x + 1, y, θ) to obtain a foliation of T 2 × [0, 1]. The coarse cohomology
of the foliations we construct below does not depend on which of these two
foliations we use.

For x 6∈ ∂(T 2 × [0, 1]), we have:

Proposition 3.12. If x ∈ S3 − (T 2 × [0, 1]), then for all q, Hq(L)x = 0.
If x ∈ T 2 × (0, 1), then H1(L)x = R; otherwise Hq(L)x = 0.

Proof. The first statement follows from the proof in the Reeb case. For the
second, note that any point x ∈ T 2 × (0, 1) has a neighborhood U ' D3 so
that the metric family {s−1(U), d, s, U} is coarsely equivalent to the product
metric family Fx = {U×R, dU , π, U}, where the metric on each {u}×R is the
usual metric. This is because s−1(U) ' U × (R×S1) and each {u}×R×S1

has a metric coarsely equivalent to the usual metric, which makes it coarsely
equivalent to R with the usual metric. HX1(R) = R and is 0 otherwise, so
the spectral sequence of [HH] gives that HX1(Fx) = R and is 0 otherwise.
Thus for x ∈ T 2 × (0, 1), H1(L)x = R and is 0 otherwise. �

We now compute Hq(L)x for x ∈ ∂(T 2 × [0, 1]). There are infinitely many
ways we can glue T 2× [0, 1] to the two copies of S1×D2 to obtain S3. In fact,
by using all possible gluings, we obtain foliations of all three manifolds which
can be obtained from S3 by Dehn surgery on the unknot. The computations
here can be adapted to give the coarse cohomologies for all these foliations.
We leave the details to the reader.

Let φ be the generator of π1(T 2) which has trivial holonomy for the S1×R
foliation of T 2 × [0, 1]. Let α and β be generators of π1(T 2) so that β has
trivial holonomy for the Reeb foliation of S1 ×D2. Suppose the gluing map
takes φ to aα + bβ. If a = 0, there is no one-sided holonomy, so the graph
of the foliation is Hausdorff at all points in this component of ∂(T 2 × [0, 1]).
On the other hand, if a 6= 0, the graph of the foliation is non-Hausdorff at all
points in this component of ∂(T 2 × [0, 1]).

3.3.1. The Hausdorff case: a = 0. Any such x has a neighborhood U '
D3, with the associated metric family {s−1(U), d, s, U} coarsely equivalent to
the metric family {G, dU , π, U}, G = Ĝ/Z, and Ĝ ⊂ D3 ×R2 is the set

Ĝ = {(u1, u2, u3, t1, t2) | if u3 > 0, t1 > −u−2
3 }.

The action of Z is generated by:

(u1, u2, u3, t1, t2)→ (u1, u2, u3, t1, t2 + 1).
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The map π : G → U is the natural projection. For each u ∈ U with u3 > 0,
π−1(u) ' S1 × (−u−2

3 ,∞) with the usual metric, and for each u ∈ U with
u3 ≤ 0, π−1(u) ' S1 × R with the usual metric. This in turn is coarsely
equivalent to the metric family {G1, d

U , π, U}, where G1 ⊂ U ×R,

G1 = {(u1, u2, u3, t) | if u3 > 0, t > −u−2
3 },

the projection is the natural one, and the fibers have the metric induced
from U ×R. In [H], we computed the coarse cohomology of the Double Reeb
foliation of S1×S2 and in so doing showed that for all x in the single compact
leaf (= T 2), H1(L)x = R, and for all other q, Hq(L)x = 0. The proof there
works here also, so we have:

Proposition 3.13. If x is in a component of ∂(T 2 × [0, 1]) where the
graph is Hausdorff, H1(L)x = R; otherwise Hq(L)x = 0.

Note that if one of the gluing maps satisfies a = 0, the other cannot satisfy
this condition and still have the resulting manifold be S3. This is because
the composition of the two gluing maps must send β in the first ∂(S1 ×D2)
to ±(α + nβ) in the second ∂(S1 ×D2), where α + nβ is contractible in the
second S1 ×D2 if the resulting manifold is S3. Thus the second map must
sent φ to ±(α+nβ). So for S1×R foliations of S3 it is only possible to have
one component of ∂(T 2 × [0, 1]) over which the graph is Hausdorff. We call
such foliations half-Hausdorff S1 × R foliations of S3. Foliations where the
graph is non-Hausdorff on both components of ∂(T 2 × [0, 1]) will be called
non-Hausdorff S1 ×R foliations of S3.

3.3.2. The non-Hausdorff case: a 6= 0. Here x has a neighborhood U ' D3

so that the metric family {s−1(U), d, s, U} is coarsely equivalent to the metric
family Fx = {G, dU , π, U}, where G = Ĝ/Z, and Ĝ ⊂ D3 ×R2 is the set

Ĝ = {(u1, u2, u3, t1, t2) | if u3 > 0, t1 > −u−2
3 }.

The action of Z is generated by:

if u3 > 0, then (u1, u2, u3, t1, t2)→ (u1, u2, u3, t1, t2 + 1);

if u3 < 0, then (u1, u2, u3, t1, t2)→ (u1, u2, u3, t1 + a, t2 + b).

The map π : G → U is the natural projection. For each u ∈ U with u3 > 0,
π−1(u) ' S1 × (−u−2

3 ,∞) with the usual metric; for each u with u3 < 0,
π−1(u) ' S1 × R with the usual metric; and for each u ∈ U with u3 = 0,
π−1(u) ' R2 with the usual metric. This is essentially the same situation we
encountered in computing Hq(L)x for x ∈ T 2 for the Reeb foliation, and the
result is the same.

Proposition 3.14. If x is in a component of ∂(T 2 × [0, 1]), where the
graph is non-Hausdorff, Hq(L)x = 0 for all q.
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Combining Propositions 3.12, 3.13, and 3.14 we have:

Proposition 3.15. For any half-Hausdorff S1 ×R Reeb foliation of S3,
H1(L) = RT 2×[0,1); otherwise Hq(L) = 0.

For any non-Hausdorff S1 ×R Reeb foliation of S3, H1(L) = RT 2×(0,1);
otherwise Hq(L) = 0.

Applying the spectral sequence as above, we get that the coarse cohomology
of any half-Hausdorff S1 ×R Reeb foliation of S3 is

HX∗(F ) = H∗−1(S3;RT 2×[0,1)),

and for any non-Hausdorff S1 ×R Reeb foliation of S3 it is

HX∗(F ) = H∗−1(S3;RT 2×(0,1)).

To compute H∗(S3;RT 2×[0,1)), write S3 as the disjoint union S3 = B0∪T 2×
[0, 1)∪B1, where B1 ' D2 × S1, B0 ' D2

0 × S1, and D2
0 is the interior of the

closed two disc D2. Denote the complement of B0 by CB0 and consider the
short exact sequence RT 2×[0,1) → RCB0 → RB1 . As both B1 and CB0 are
closed, H∗(S3;RCB0) → H∗(S3;RB1) in the associated long exact sequence
is just the restriction homomorphism H∗(CB0;R) → H∗(B1;R), which is
an isomorphism. Thus, H∗(S3;RT 2×[0,1)) = 0. Combining this with the
computation for H∗(S3;RT 2×(0,1)) above we have:

Theorem 3.16. If F is a half-Hausdorff S1×R Reeb foliation of S3, then
HX∗(F ) = 0.

If F is a non-Hausdorff S1 ×R Reeb foliation of S3, then HX∗+2(F ) '
H∗(T 2;R).

Representatives of the classes determined by the elements of H∗(T 2;R) are
given as follows. The coarse cohomology of R is non-zero only in dimension 1,
where it is isomorphic to R. A generator (in the extended coarse cohomology
of R) is given by [ω1,0 + ω0,1], where ωi,j ∈ Ai,jc (R), and

ω1,0(t) = ψ(t)dt, ω0,1(t1, t2) =
∫ t2

t1

ψ(z)dz,

where ψ(t) is any non-negative smooth function on R with compact support
and positive total integral. Let ξ represent a class in Hk(T 2;R), and let φ
and dx be as in the T 2 Reeb foliation. Then s∗(φξdx)ω1,0 defines an element
of Ak+2,0

c over T 2 × (0, 1) which is zero in a neighborhood of the boundary,
so extending it by zero defines a class in Ak+2,0

c over all of S3. Similarly,
s∗(φξdx)ω0,1 defines an element of Ak+1,1

c over T 2 × (0, 1) which may be
extended by zero to all of S3. The coarse class corresponding to the class of
ξ is then the class of s∗(φξdx)ω1,0 + s∗(φξdx)ω0,1.
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3.4. The R2 Reeb foliations. To obtain these foliations, replace the
T 2 leaf of the Reeb foliation by T 2 × [0, 1] with a foliation which has the
two boundary components as leaves and the interior foliated by leaves all
diffeomorphic to R2. There are essentially two distinct ways to do this also.
The first is obtained by foliating the set {(x, y, z) ∈ R3 | 0 ≤ y ≤ 1} by planes
parallel to the y = 0 plane and then identifying (x, y, z) with (x+ 1, ϕ(y), z)
and with (x, ψ(y), z + 1). The maps ϕ,ψ : [0, 1] → [0, 1] are commuting
diffeomorphisms so that on (0, 1), ϕ(y) > y, ψ(y) > y, and if 0 < y < 1,
ϕk(y) = ψ`(y) ⇐⇒ k = ` = 0. The second way is to foliate {(x, y) ∈
R2 | 0 ≤ y ≤ 1} as above by copies of R so that the boundary components
are leaves, the leaves in the interior have both their ends at x = +∞, and the
foliation is invariant by translation in the x coordinate. Take the product of
this foliation with R to obtain a foliation of {(x, y, z) ∈ R3 | 0 ≤ y ≤ 1}. Now
identify (x, y, z) with (x+ 1, y, z) and with (x+ α, y, z + 1), where α ∈ (0, 1)
and is irrational. As above, both types of foliations of S3 have the same coarse
cohomology.

For x 6∈ ∂(T 2 × [0, 1]), we have:

Proposition 3.17. If x ∈ S3 − (T 2 × [0, 1]), then for all q, Hq(L)x = 0.
If x ∈ T 2 × (0, 1), then H2(L)x = R; otherwise Hq(L)x = 0.

Proof. As above, the first statement follows from the proof in the Reeb case.
For the second, note that any point x ∈ T 2×(0, 1) has a neighborhood U ' D3

so that the metric family {s−1(U), d, s, U} is coarsely equivalent to the product
metric family Fx = {U ×R2, dU , π, U}, where the metric on each {u} ×R2

is the usual metric. The spectral sequence of [HH] gives that the coarse
cohomology of the metric family Fx is the same as the coarse cohomology
of R2, namely R in dimension 2 and 0 otherwise, so for x ∈ T 2 × (0, 1),
H2(L)x = R and H2(L)x = 0 otherwise. �

We now compute Hq(L)x for x ∈ T 2 × {0, 1}. The result here does not
depend on which gluing maps we use. Each such x has a neighborhood U ' D3

so that the metric family {s−1(U), d, s, U} is coarsely equivalent to the metric
family Fx = {G, dU , π, U}, G = Ĝ/Z, and Ĝ ⊂ D3 ×R2 is the set

Ĝ =
{

(u1, u2, u3, t1, t2) | if u3 > 0, t1 > −u−2
3

}
.

The action of Z is generated by:

if u3 > 0, then (u1, u2, u3, t1, t2)→ (u1, u2, u3, t1, t2 + 1).

The map π : G → U is the natural projection. For each u ∈ U with u3 > 0,
π−1(u) ' S1 × (−u−2

3 ,∞) with the usual metric, and for each u ∈ U with
u3 ≤ 0, π−1(u) ' R2 with the usual metric.

As G1 is not compact, HX0(Fx) = 0 as usual, which implies H0(L∗)x = 0.
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To compute the higher coarse cohomology of the metric family Fx, first
note that G`+1 ⊂ U × (R2)`+1 is the set

G`+1 = {(u1, u2, u3, t1, . . . , t2`+2) | if u3 > 0, t2m+1 > −u−2
3 }/Z

`+1,

where the Z`+1 action is given by:

if u3 > 0, then (a1, . . . , a`+1)((u1, u2, u3, t1, t2, t3, . . . , t2`, t2`+1, t2`+2))

= (u1, u2, u3, t1, t2 + a1, t3, . . . , t2` + a`, t2`+1, t2`+2 + a`+1).

We will view an element ωi,j ∈ Ai,jc (Fx) as a differential i form on

Ĝ`+1 =
{

(u1, u2, u3, t1, . . . , t2`+2) ∈ U × (R2)`+1 | if u3 > 0, t2m+1 > −u−2
3

}
,

which is invariant under the action of Z`+1, that is, which is periodic in the
even t variables of period 1 for all u with u3 > 0. Note that this condition is
preserved by the construction given in the Controlled Poincaré Lemma.

Now let α = [
∑
i+j=k ωi,j ] be a k > 0 dimensional coarse class for Fx,

where ωi,j ∈ Ai,jc (Fx). Proceeding just as we did for the Reeb foliation, we
may assume that

∑
i+j=k ωi,j is completely independent of u. Thus we may

view ωi,j as being an element of Ai,jc (R2) (i.e., an extended coarse cochain
for R2; see [HH]) because this is what it is for u3 = 0. It must also be
invariant under the action of Zj+1, because it is invariant under this action
when u3 > 0. An argument similar to that given in the proof of Lemma 3.4
shows that the only form satisfying these conditions is the zero form. Thus
α = 0 and we have:

Proposition 3.18. For x ∈ T 2 × {0, 1}, Hq(L)x = 0 for all q.

And so we also have:

Proposition 3.19. For any R2 Reeb foliation, H2(L) = RT 2×(0,1); oth-
erwise Hq(L) = 0.

The spectral sequence applied to this example has Ep,22 = Hp(S3; RT 2×(0,1))
' Hp−1(T 2;R), and all other E2 terms are zero. Thus we have:

Theorem 3.20. For any R2 Reeb foliation of S3, HX∗+3(F )'H∗(T 2;R).

Representatives of the coarse classes are given as follows. The coarse coho-
mology of R2 is non-zero only in dimension 2, where it is isomorphic to R. A
generator (in the extended coarse cohomology of R2) is given by [ω2,0 +ω1,1],
where ωi,j ∈ Ai,jc (R2), and

ω2,0(t1, t2) = ψ(t1, t2)dt1 ∧ dt2,

ω1,1(t1, t2, t3, t4) =
[∫ ∞

t1

ψ(z, t2)dz
]
dt2 −

[∫ ∞
t3

ψ(z, t4)dz
]
dt4,
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where ψ(t1, t2) is any non-negative smooth function on R2 with compact
support and positive total integral. Let ξ represent a class in Hk(T 2;R), and
let φ and dx be as in the T 2 Reeb foliation. Then, just as in the non-Hausdorff
S1 × R case, s∗(φξdx)ω2,0 defines an element of Ak+3,0

c and s∗(φξdx)ω1,1

defines an element of Ak+2,1
c . The coarse class corresponding to the class of ξ

is then the class of s∗(φξdx)ω2,0 + s∗(φξdx)ω1,1.
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