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INSTABILITY AND NONEXISTENCE THEOREMS FOR
F-HARMONIC MAPS

MITSUNORI ARA

ABSTRACT. In this paper we study the unstability and nonexistence
of F-harmonic maps. We introduce the notion of F-strongly unstable
and F-unstable manifolds and discuss properties of such manifolds. We
classify all compact irreducible F-unstable symmetric spaces.

1. Introduction

The theory of harmonic maps, p-harmonic maps, and exponentially har-
monic maps, is a powerful area of differential geometry that has applications
to various fields, including topology and physics. Recently, Wei [17] stud-
ied the second variational formula for p-harmonic maps and, extending the
work of Howard-Wei [6] and Ohnita [10], classified compact irreducible p-
superstrongly unstable symmetric spaces.

The author [1] introduced the notions of F-energy and F-harmonic maps
which generalize harmonic, p-harmonic and exponentially harmonic maps. In
this paper, we first establish the second variational formula of the F-energy
and then introduce the notions of F-unstability and F-strong unstability.
We consider a nonnegative valued strictly increasing C? function F on the
interval [0,00). We define the F-energy Er(¢) for a smooth map ¢ between
Riemannian manifolds (M, g) and (N, h) by

£ro) = [ # (45,

where v, is the volume element of g. Critical mappings of Er are called
F-harmonic maps (see [1]). Notice that F-harmonic maps are harmonic, p-
harmonic, and exponentially harmonic if F(t) is equal to t, (2t)?/?/p and
e!, respectively. Roughly speaking, our F-harmonic map is F-stable if the
second variation of the F-energy is nonnegative, and F-unstable otherwise.
In particular, a compact Riemannian manifold M is F-unstable if the identity

map is F-unstable, and F-strongly unstable if M is neither a domain nor a
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target of any nonconstant stable F-harmonic map. In the case F(t) = ¢, we
use the terms unstable and strongly unstable.

By the definition, F-strong unstability implies F-unstability. In the case
when F(t) =t and M is a compact irreducible symmetric space, the converse
is true, by a theorem of Howard-Wei [6] and Ohnita [10].

In this paper we first prove a striking F-stability theorem, which says the
following: Let F be a strictly increasing C? function satisfying mF"” (m/2) +
(2—m)F’(m/2) > 0. Then every m-dimensional compact Riemannian mani-
fold M is F-stable (see Theorem 3.1).

We then prove an F-stability theorem, which generalizes results of Urakawa
(see [13]) for harmonic maps and of Wei (see [17, Theorem 5.8]) for p-harmonic
maps, and which says the following: Assume F is C? and strictly increasing
and convex. Then every compact Riemannian manifold of constant curvature,
except the standard sphere (S™,can) (m > 3), is F-stable (see Theorem 3.7).

The following result clarifies the relation between the notions of F-unsta-
bility and F-strong unstability.

THEOREM A (see Corollary 4.11). Let M be a compact irreducible sym-
metric space. Then there exists a strictly increasing and strictly convexr C?
function F : [0,00) — [0,00), such that M is F-strongly unstable if and only
if it is F-unstable.

We remark that in the case F'(t) = t this was proved by Howard-Wei
and Ohnita. Theorem A says that the same result holds for other function
F. Moreover, if F : [0,00) — [0,00) is an arbitrary strictly increasing C?
function satisfying F” > 0 everywhere, we can classify all compact irreducible
symmetric spaces which are F-unstable (see Theorem 4.12). As a corollary,
we can classify all compact irreducible symmetric spaces for which the identity
map is unstable as a p-harmonic map (see Corollary 4.13).

Comparing our classifications with that of Wei (see [17]), we find that the
notions of superstrong unstability and unstability are different in the case of
p-harmonic maps. This is in sharp contrast to the result obtained by Howard-
Wei and Ohnita for the case of harmonic maps.

This paper is organized as follow. In Section 2, we recall some facts on
F-harmonic maps and the second variational formula of the F-energy. In
Section 3, we study unstability as an F-harmonic map for identity maps. In
Section 4, we deal with F-strongly unstable and F-unstable manifolds. In
Section 5, we give the Bochner formula and prove nonexistence theorems for
F-harmonic maps.

Acknowledgements. The author wishes to express his gratitude to Pro-
fessor Hajime Urakawa for his constant encouragement and valuable advice,
and also to Professor Makoto Sakaki for his suggestions to improve this work.
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2. F-harmonic maps

Let F: [0,00) — [0,00) be a strictly increasing C? function. Let ¢ : M —
N be a smooth map from an m-dimensional Riemannian manifolds (M, g) to
a Riemannian manifold (N, h). We call ¢ an F-harmonic map if it is a critical
point of the F-energy functional. That is, ¢ is an F-harmonic map if and
only if

— Ep(¢1) =0
t=0

for any compactly supported variation ¢, : M — N (—e < t < €) with ¢g = ¢.

Let V and MV denote the Levi-Civita connections of M and N, respec-
tively. Let V be the induced connection on ¢~ 'TN defined by VxW
=N V4. xW, where X is a tangent vector of M and W is a section of ¢~ !TN.
We choose a local orthonormal frame field {e;}!; on M. We define the F-
tension field 77 (¢) of ¢ by

r(¢) = Emj [ﬁei {F (@) m} —F (@) ¢*veiez—]

i=1

_ ('dfz) (8) + 6. grad{ F (@) } :

where 7(¢) = 1" | (Ve,buei — 64V e;) is the tension field of ¢.
With this notation we have the following result:

THEOREM 2.1 (First variation formula; see [1]).

dt

Er(de) = — /M WV, 7(6))vs,

t=0

where V- = d¢/dt|i—o.

Therefore a smooth map ¢ : M — N is an F-harmonic map if and only if
the F-tension field 7r(¢) is zero.

Next, we give the second variation formula for F-harmonic maps and de-
scribe the F-Jacobi operator Jp.

THEOREM 2.2 (Second variation formula; see [1]). Let ¢ : M — N be an
F-harmonic map. Let ¢s; : M — N (—e < s,t < €) be a compactly supported
two-parameter variation such that ¢oo = ¢, and set V. = 0, . /0t|s1=0 and



660 MITSUNORI ARA

W = 0¢s.1/0s|s1=0. Then
82
0s0t

Er(dss) = /M W(Jrs (V) W),

s,t=0

_ /M P (dj'Q) (T, d) (VWV, dg)v,

2 _ ~ m
" /M F (%) : {<VV»VW> - L RN, mez—)mei,W)}vg,

where {,) is the inner product on T*M @ ¢~'TN, RN is the curvature tensor
of N, and Jp 4(V) is given by

Jegs(V)=V* (F” (%'2) A(VV,d¢)dp + F' (@) -@V)

Y do2Y &
— F/ ( 5 ) . ;RN(V, ¢*ei)¢*€i, Ve F(¢71TN)
‘We put
92
I(V,W) = T I Er(sy)-

An F-harmonic map ¢ is called F-stable, or stable, if I(V,V) > 0 for any
compactly supported vector field V' along ¢, or equivalently, if the eigenvalues
of the F-Jacobi operator Jr , are all nonnegative.

REMARK 2.3. In the case of harmonic maps, the equation (2.1) reads

Tre(V) =V'VV =3 RN (V, prei)pue; =: Ja4(V).
i=1
This is the Jacobi operator for harmonic maps. The operator V*V is often
denoted by A and called the rough Laplacian.

Some geometric properties of F-harmonic maps are described in [1].

3. Stability of F-harmonic identity maps

Throughout this section, we assume that F’ + F” # 0 on (0,00). This
assumption ensures that the F-Jacobi operator is elliptic. We deal with the
F-Jacobi operator of the identity map. When the identity map of M is F-
stable, we say that M is F-stable (see [8]).

THEOREM 3.1. Let M be an m-dimensional compact Riemannian man-
ifold and F : [0,00) — [0,00) a strictly increasing C? function such that
mF"(m/2) + (2 —m)F'(m/2) > 0. Then M is F-stable.
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REMARK 3.2. In the case of harmonic maps, the assumption mF" (m/2)
+ (2 —=m)F’'(m/2) > 0 implies that m < 2, since F' =1 and F"’ = 0.

In the case of p-harmonic maps, this assumption implies that p > m,
since F'(m/2) = m®/2=1 and F"(m/2) = (p — 2)m®P/2=2 Moreover,
for exponentially harmonic maps this assumption is always satisfied, since
F'(m/2) = F"(m/2) = e™/2. Therefore, the theorem is an extension of the
results of [9] for p-harmonic maps and of [3] for exponentially harmonic maps.

Proof. Recall the formula of K.Yano (see [19])

[ atmsatv)viey = [ {31eval ~ aivvy b,

where Ly g is the Lie derivative of the metric g.
By the Cauchy-Schwarz inequality,

mlLygl* =m Y Lvgleie;)?
ij=1
i 2
m (g(VCz“/’ ej) +g(ei, Ve, V))
1

i

S,
I

(g(vei‘/a 67;) + g(ei; vﬁ’iv))2

%
3
M

@
Il
—

m

9(Ve,V,e)? >4 (Z g(V.,V, ei)> = 4(div V)2

i=1

NE

4m

1

o
Il

Thus we have

/M 9(Tpa(V), V)vg = F" (%) /M(div V)2,

+F (%) /M i {g(veiVa Ve, V) — g(RM(Va €i)ei, V)} Vg

P (%) /M(div V)2, + F' (%) /M 9(Joa(V), V),

F (%) /M(div V)20, + F' (%) /M {;|£Vg|2 ~ (div V)Q} v,
> 1 {mF” (%) +(2-m)F (%)}/M(div V)2, > 0.

m

Hence M is F-stable. O

THEOREM 3.3. Let M be an m-dimensional compact Riemannian man-
ifold which supports a nonisometric, conformal vector field V, and let F :
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[0,00) — [0,00) be a strictly increasing C? function. Then M is F-stable if
and only if F satisfies mF" (m/2) + (2 — m)F'(m/2) > 0.

Proof. Since a vector field V on M is conformal if and only if Lyg =
—(2/m)(divV)g , (1/2)|Lvg]? = (2/m)(div V)2 Then we have

/M 9(Trsa(V), Vv, =F" () /N (v V),
w7 () [ {31eval - @,

:% {mF” (%) +(2—m)F’ (%)}/M(divV)gvg.

If V is nonisometric conformal, we have div V' # 0. This completes the proof.
O

Next we use methods of [9], [14], and [17] to establish the following theorem,
which extends a theorem in [17] for p-harmonic maps.

THEOREM 3.4. Let M be an m-dimensional compact Einstein manifold
whose Ricci tensor equals pg for some Einstein constant p. Let F : [0,00) —
[0,00) be a strictly increasing C? function such that F'(m/2)+ F"(m/2) > 0.
Then M is F-stable if and only if F' satisfies

o (3) 2 (7 (3) 07 ()0

where \1 is the smallest positive eigenvalue of the Laplacian for functions.

Proof. By the Kodaira-de Rham-Hodge decomposition, we have an orthog-
onal direct sum decomposition

X(M)={VeX(M)| divV =0} & {grad f|f € C°(M)},

where X' (M) is the space of all smooth vector fields on M. The Laplacian
A preserves this decomposition. Under the Einstein condition, Jriq also
preserves this decomposition, since RM is a scalar multiple of the identity.
Hence it suffices to show that the assertion holds separately on vector fields
V with divV = 0, and on the gradients grad f.
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For any vector field V' such that divV = 0, we have

/ 9(Jria(V),V)v,
M

m

= (™) /M (arad(div V), Vo, + 7 () /M 9 Tsa(V), V),
F”C;)Z;{;Evm2(vaf}vg

1 m
:-F(—)/ Ly gl?v, > 0.
B B) M| vy Vg =

On the other hand, we have

| 9raa(erad f),mad £y, = " (
M

m

5 ) /Mg(grad(div grad f), grad f)v,

v () /N 9l amad ). grad

a1 = () [ aerad(Af).emad o,

m

F(
T3

) | aterad(as) = 2c(grad 1), grad v,
Now recall that
/ g(grad(Af), grad f)v, > )\1/ g(grad f, grad f)v,
M M

for every function f, and that there is some function f; satisfying Af; = A1 f1.
If M is F-stable, then (3.1) gives

0 S/ 9(Jria(grad f1), grad f1)v,
M

= (F’ (%) F (%)) AL /Mg(gradfhgradfl)vg

T) p/M g(grad f1, grad f1)vg.

—2W(
2

Therefore we have

o ()< (7 (2) 47 () 0
Conversely, if
o () 0= (7 (2) - ()

/ 9(Jria(grad f), grad f)vg, > 0.
M

Thus M is F-stable. O

then (3.1) yields
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COROLLARY 3.5. Let M be an m-dimensional compact Finstein manifold,
and let F : [0,00) — [0,00) be a strictly increasing C? function. Then the
following assertions hold:

(1) If F""(m/2) > 0 and M is stable, then M is F-stable.
(2) If =F'(m/2) < F""(m/2) <0 and M is F-stable, then M is stable.

Next we give the result for spherical space forms, which extends the results
given in [13, Prop. 5.6] and [17, Th. 5.8] for harmonic maps and p-harmonic
maps, respectively.

PROPOSITION 3.6. Let F : [0,00) — [0,00) be a strictly increasing C?
function such that F"(m/2) > 0. Then every spherical space form (S™/G,g),
where G # {e} is a finite group acting fized point freely on S™, is F-stable.
Here the metric g is the Riemannian metric on the quotient space S™/G
induced by the standard metric can of constant curvature one on S™.

Proof. Since (S™/G,g) is Einstein (i.e., the Ricci tensor p of g satisfies
p = (m —1)g), the manifold (S™/G, g) is F-stable if and only if the smallest
positive eigenvalue A\ of the Laplacian for functions is bigger than or equal to
(2(m —1)F'(m/2))/(F'(m/2) + F"(m/2)). The eigenvalues of the Laplacian
of (8™, can) are k(k+m — 1), for k =0,1,2,---, and if k¥ > 2, then

k(k+m—1)>2(m—1) > Q(m‘l)F'(’”P;i?’(m)'

Moreover, the eigenfunctions of the smallest positive eigenvalue m with k =1
of (8™, can) are given by f oigm, where f is a linear map of R™*! into R
and igm is the natural inclusion of S™ into R™*!. Therefore it suffices to
show that every linear G-invariant function f on R™*! must be zero. But
this follows immediately from the assumption that G acts fixed point freely
on S™. Clearly, we have f(z) = (z,y) for x € R™"! and some y € R™*1.
The G-invariance of f implies that v -y = y for all ¥ € G. Hence, unless f
vanishes, the point y/|y| € S™ must be a fixed point of G. O

THEOREM 3.7. FEwvery compact Riemannian manifold of constant curva-
ture, except the standard unit sphere (S™,can) (m > 3), is F-stable for some
strictly increasing and convex C? function F : [0, 00) — [0, 00).

Proof. Since every compact Riemannian manifold of positive constant cur-
vature is as in Proposition 3.6 (see [18, Lemma 5.1.1]) and every compact
Riemannian manifold of constant nonpositive curvature is F-stable if ' > 0
(see [1, Theorem 6.2]), the assertion follows. O
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4. F-strongly unstable manifolds

First we recall the definitions of superstrongly unstable manifolds, strongly
unstable manifolds and unstable manifolds.

DEFINITION 4.1.  An m-dimensional Riemannian manifold M with a Rie-
mannian metric {, )y is said to be superstrongly unstable (SSU), if there exists
an isometric immersion in R” such that, for any unit tangent vector X to M
at any point x € M, the following functional is always negative:

m
" QY (X), X)ar = 3 (2AB(X,v).BIX, va))
4.1 a=1

_ (B(X,X),B(va,va)>R7~).

Here B is the second fundamental form of the immersion, and {v,}7, is a
local orthonormal frame field on M near z.

DEFINITION 4.2. A compact Riemannian manifold M is strongly unstable
(SU) if M is neither a domain nor a target of any nonconstant stable harmonic
map. A compact Riemannian manifold M is unstable (U) if the identity map
of M is unstable.

REMARK 4.3. For compact irreducible symmetric spaces, the notions SSU,
SU, and U are equivalent (see [6] and [10]).

We now introduce the notions of F-strongly unstable manifolds and F-
unstable manifolds.

DEFINITION 4.4. A compact Riemannian manifold M is F-strongly un-
stable (F-SU) if M is neither a domain nor a target of any nonconstant stable
F-harmonic map. A compact Riemannian manifold M is F-unstable (F-U) if
the identity map of M is F-unstable.

We will prove the following theorem, which is one of our main results.

THEOREM 4.5. Let M be an SSU manifold. Then there exists a strictly
increasing and strictly convex C? function F : [0,00) — [0,00) such that M
is F-SU.

REMARK 4.6. In the case F'(t) =t (so that F'-SU manifolds are SU) we
know that SSU manifolds are F-SU. However, note that the function F in the
theorem must be strictly convex.

In order to prove the theorem, we derive average variational formulas, as
in [15]. We assume throughout that ¢ : M — N is an F-harmonic map from
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an m-dimensional Riemannian manifold into an n-dimensional Riemannian
manifold.

We can isometrically immerse N into R” with second fundamental form
B. Let {e;}™,, V, and V' denote a local orthonormal frame field on M, a
unit vector in R” and the tangential projection of V' onto N, respectively. We
can choose an adopted orthonormal basis {V,};_; in R such that {V,};_;

T
is tangent to IN. Denote by fth the flow generated by VpT. Then apply the

. . v,
second variational formula with ¢, = f,” o ¢, ¢o = ¢, and s = ¢, and over
p=1,...,r

Zdtg 9)le=o —Z/ {F <|d¢’| > <Z<~eivg,¢*ei>)2

=1

(4.2)

=1

dél?\ = / =
+ F, <|T> Z (|v6ivp—r|2 - <RN(VpT7¢*ei)¢*ei7VpT>> }dvg'
As V, is parallel in R", we have
@EinT =N V¢*€i VpT = (Rv¢*€i VpT)T = (Rvduei(v;n - V;JL))T
= —("Vo. V)T = A (bues),
and so
(Ve VT dues) = (A% (rei), pues) = (B(duei, duei), V, ).
Thus

r m 2
(43) <Z<@Eiv;ra ¢*61>> -

p=1

2

> B(guei, puci)
=1

We have also

DA
p=1

= Z ‘AV:— (¢*ei) i = ZZ<AV”L (¢x€i), Vq>2
p=1

—ZZ (;5*6“ anT>2 :Z‘B(d)*eiav:]”?
q=1

p=1g¢=1

(4.4)

From (4.2)—(4.4) and the Gauss equation, we obtain the following result.
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m 2

THEOREM 4.7 (Average second variational formula on the target).
> B(¢uei, ¢uci)

" 2 Al , [ |do|?
SiBe U oo = [ {F (“5)
p=1 M i=1

(4.5) +F (@) Z<QN(¢*ei)v¢*ei>}dvg'

i=1

Similarly, we can isometrically immerse M into R”. Let {V,"}7_; be the
tangential projection of an orthonormal frame field {V,};_; in R" onto M.

VT
Denote by f, © the flow generated by Vp—'—7 apply the second variational formula

-
with ¢; = ¢Oftv” , 09 = ¢ and s = t and sum over p = 1,...,r. For

convenience, we choose (Vi, -+, V) = (e1, - ,em) to be tangent to M,
(Vint1, -+, Vi) = (v1,- -+ ,Vpr—m) to be normal to M, and Ve;|, at = € M.
We have

m

2
T d2 T s d 2 _
S Er(00 £ o =Y /M{F" (%) (zweiqs*v,,w*e»)
p=1 p=1

=1
(4.6)

2\ m [
+ F’ <|d§| ) Z <|V€i¢*‘/;;r|2 _ <RN (¢*Vp—r7¢*ei) ¢*ei7¢*VpT>> }d’UM
=1

Since Vp—r =V, - VpJ- and V), are parallel in R", we have

>, (mevg,@e») => (Zweid@vg - ¢*veivg,¢*ei>>

p=1 \i=1 p=1 \i=1

T m 2
= Z (Z«@ezd(ﬁ)vp—r - Qs*vel'VpLa ¢*ez>>

(4.7) p=1 \i=1

= (Z«?eid@ew@eg) - i (Z(c{)*A”“ei7¢*ei>>

p=1 \i=1 i=1

1 r—m m 2

= Z|d|d¢|2|2 + Z <Z<¢*Ayaeia¢*ei>> )
a=1 \i=1

where AY=~ is the Weingarten map of M in R" in the normal direction v,,.
It follows from (4.5) in [6] that
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m m

D Ve Ve (do(V,) =Y (Ve Ve, do)(V,)

i=1 i=1

+2) (Ve,dd)(Ve,V,") + > 6.Ve, VeV,

i=1 i=1
From the Weitzenbock formula [3] we get

m

> (Ve Ve, d) (V1)

i=1
= _ZRN &V, a¢*ez)¢*€z+¢* Ric (VpT) _AH(qu)(VpT)v

where Ay denotes the Hodge-Laplacian on 1-form. Hence,

DY {Ve, 0V, Ve 6.V,) = (RN (6.V,], fuei)pues, 6.V, }
p=1i=1

m

s 1
=Z{§A|d¢2 =Y (Ve Ve, 6.V, 6.V,
p=1 i=1

m

Z<RN(¢* ,¢*61)¢*62,¢)*VT>}
=1

(48) =) (2D (Ve d)(Ve,V,) — ij $.Ve,Ve,V,| — . Ric™ (V)

p=1 i=1 i=1

+ D (d6) (V). do(VyD)) + 5 Al

Zm@ €i); duei) + ([d(Dud)(es), duei) + 5 A|d¢|2
(4.

From (4.6)—
d2

p7E)
e dt

8) and the F-harmonicity we obtain

Er(é¢)|i=o

- /M{F (1) ( dldgPP 1 Y (i ¢*Amei,¢*ei>>2)

a=1

i (@) (iw*cﬂ(ei),@e»

i=1

Hd(Lrd)(er), buei) + %A|d¢|2) }dvg
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/ , ( ldo]? . mo ’
- [1F (T) Lol + 3 (3 (6.4% ern )

a=1 i=1
d 2 m d 2
P (%) S (6.Q"(es), dues) — F” (%') ild|d¢|2l2}dv
=1

Hence we have the following result:

THEOREM 4.8 (Average second variational formula on the domain).

2
d2 d 2 r—m m
@EF(QS ft )|t 0= /M{F” <|(§|> Z <Z<¢*A”“6u¢*6¢>>

p=1 a=1 =1

(49) v (190) Z<¢*QN<ei>7¢*ei>}dvg-

The following lemma is essential in our argument.

LEMMA 4.9. For any constant a > 0, there is a strictly increasing and
convez C? function F : [0,00) — [0,00) such that t - F"(t) < a- F'(t) for any
t>0.

Proof. The following functions have the desired properties:
(i) Fi(t) =t""1 0<b<a,
(ii) an( ):Zz" Laitt,n<a+1l,a1>0,a0;,>0(=2,---,n),
(111 = f elo GWdugs  where G(u) is a continuous function and
( ) <a
O

From this lemma we obtain the following result concerning the relations
(4.5) and (4.9).

LEMMA 4.10. Let M be an SSU manifold. Then there exists a strictly

increasing and conver C? function F : [0,00) — [0,00) such that

d? T
Ep(f,:/” 0 @)|t=0 <0 for any F-harmonic maps ¢ from M,

Jt2
= dt

d2

FTEl Ep(¢po ft )|t 0<0 for any F-harmonic maps ¢ into M.
p=1
Proof. Set

—(QM(X), X
4= min —(Qa" (X), X)m <> 0.

xXeUM 2|B(X,X)|%-
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By Lemma 4.9 there exists a strictly increasing and convex C? function F :
[0,00) — [0, 00) such that

1" <QM( ) >M /

Let {va}2_; be a local orthonormal frame field on M and let ¢.e; =
S afv,. We can choose {v,}"_; so that Y .-, af a =0if a # 3. Let
Co —Zl L(a®)? and B(va,v3) = Bag. Then |d¢\2 Z'y 1 Cy and

2
d 2 m d 2 m
(' ; ) ZB butir duci)| + F' (%)Z (@Y (Bner), dues)
2 -1
(|d¢|2> Z ZaaaﬁB
a,f=11=1
|d¢)|2 n m n N 2 n m N ﬁ
( > 22 Zai Bay | — Z Zaia’i (Bag, Byy)
y=1 \i=1 a=1 a,f=1i=1
dol?\
(' o > Y CaCs(Baa, Byg)
a,B=1
dol?\
(' ‘;" > > Ca(2B25 — (Baa, Bag))

a,f=1

—zn:c F" W zn:C (B B
= a 9 B\Paa; B5>
a=1

o (M95) S (@82 — (Ban: Ba)

p=1
- dg|? [do1*\
< 1! | /
_an F ( D) ‘d(b' B ot F 9 BocouBQB»
a=1 B:l

Hence by (4.10) we have
d? Al
g Pr(fe” 0 9)li=0 <0

p=1

Similarly, for each 1 < a <71 —m, choose a corresponding local orthonormal
basis {ef'}7._; in M such that A" is diagonizable, and let Bf; = (A" (e'), ef).
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2
d 2\ T—m m d 2 m
F" (' ; ) 3 (o) < (150) S
; =1
o)
d*\ -
(1 ) > QB - Bl
r—m m - " ‘d¢‘2 9 o o
SZ Z‘¢*€i| F B) -|do|” - B Bj;
a=11i,j=1
dg|?\ =
<| 9 )Z Bu))

Hence by (4.10) we have

Ep(¢o ft )|t 0 <0. O

Proof of Theorem 4.5. The assertion follows immediately from Lemma 4.9
and Lemma 4.10. O

COROLLARY 4.11. Let M be a compact irreducible symmetric space. Then

there exists a strictly increasing and strictly convex C? function F : [0, 00) —
[0,00) such that M is F-SU if and only if M is F-U.

Proof. This follows immediately from Corollary 3.5, Theorem 4.5 and the
results of [10], [12], and [16] (see Theorem 4.14). O

The following diagram summarizes our results:

see [6] and [10] see [6] and [10]

MissU —— ym.su —— m.vU

f
() (x % %) Cor.3.5

M . F-U

The arrows marked by asterisks hold under the following conditions:
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() If M is a compact irreducible symmetric space.
(#x) If F is as in Theorem 4.5.

(x* ) If F is convex, and M is a compact irreducible symmetric space.

For compact irreducible F-U symmetric spaces we obtain, using the results
of [6], [10], [12] and Theorem 3.4:

THEOREM 4.12. Let F : [0,00) — [0,00) be a strictly increasing and con-
vex C? function. Then M is a compact irreducible F-U symmetric space if
and only if M is as given in Table 1, with vF" (w) < F'(w).

TABLE 1
v w
(1) | simply connected simple Lie groups
(A1 2o | B2
(C)i>2 20+ 1 24l
(2) SU(2n)/Sp(n), n >3 ool | 2non—l
(3) spheres S*, k>3 = k
(4) quaternionic Grassmannians
Sp(l+n)/Sp(l) x Sp(n), I >n>1| l+n 2In
(5) Es/F, 13/5 7
(6) Cayley plane Fy/Spin(9) 2 8

We next consider the case of p-harmonic maps, i.e., when F(t) = (2t)?/?/p.

COROLLARY 4.13. M is a compact irreducible p-U symmetric space (p >
2) if and only if M is as given in Table 2 below.

Proof. Note that in the case where F' is convex, every F-U manifold is U

(see Corollary 3.5(1)). On every compact irreducible symmetric space M with
the Cartan-Killing metric,

2K () e F'(%)

Fr(g)+F7(3) m F(3)+F"(3)
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TABLE 2

(1) simply connected simple Lie groups
(A;)i>1 where p < 3

(C1)i>2 where I >p—2

(2) | SU(2n)/Sp(n), n >3 wheren >p—3

(3) spheres S*, k > 3 where k > p

(4) quaternionic Grassmannians
Sp(l+n)/Sp(l) x Sp(n), | >n>1
where (p — 2)(I+n) < 4in

(5) Es/Fy where p < 76/13

(6) | Cayley plane Fy/Spin(9), where p < 10

where ¢ is the scalar curvature of M and m = dim M. Since dim 4; = 1% + 21,
dim B, = 10 and dim C; = 2I% + [, we see that
B2 F' (%)
P+20+1 " F(2)+F7(2)
if and only if (1% + 21) - F"((I* +21)/2) < F'((1* + 21)/2),
20+1 - F'(2)
2042 " F(Z)+F(Z)
if and only if (204 1)- F"((21* +1)/2) < F'((21> +1)/2),

M(A)i>1 =

M (Ch)p>2 =

which gives entry (1) of Table 1. Similar computations give entries (2)—(6) by
using the fact that

m?—n—1
AL(SU(2n)/Sp(m)nzs = ——55—.
dim SU(2n)/Sp(n) = 2n?® —n — 1,
k
ky _ : k _
)\1(3)_2(/{—1)’ dim S” =k,
l+n

M(Spli+m)/Sp(D) x Spln)) =
dim Sp(l 4+ n)/Sp(l) x Sp(n) = 4in,

13 .
A (Ee/Fy) = ITL dim Eg/Fy = 14,



674 MITSUNORI ARA

2
A1(Fy/Spin(9)) = 3’ dim Fy/Spin(9) = 16. O

In the case where F'(t) = ¢, the above theorem contains the following result
of Howard-Wei and Ohnita:

THEOREM 4.14 ([6], [10], [12] and [16]). Let M be a compact irreducible
symmetric space. The following statements are equivalent:

(a) M is SSU.

(b) M is SU.

(¢) M is U.

(d) M is one of the following:
(1) one of the simply connected simple Lie groups (A;);>1 and (Cp)i>2;
(2) SU(2n)/Sp(n),n > 3;
(3) a sphere S* k > 3;
(4) a quaternionic Grassmannian Sp(l4+n)/Sp(l)xSp(n), 1 > n > 1;
(5) EG/F4,'
(6) the Cayley plane Fy/Spin(9).

5. Nonexistence of F-harmonic maps

In this section, we prove nonexistence theorems for nonconstant F-harmonic
maps by adapting the techniques in [17] and [7]. We first derive the Bochner
formula.

THEOREM 5.1 (Bochner formula).

2 2
ar (M) = r (1% ){—<AHd¢,d¢>+|Vd¢|2

- Z(RN(%% Pxej)dsej, Pxei) + Z(@ RicM e;, ¢*6¢>}

ij

d 2
(M) ao? - 91a?

Proof. We have

F <d§2> _ F// <d¢2) . <Vd¢, d¢>2

2 2

d 2
- F (%) |dof? - (9]

2
L ('d¢' ) { — (Apdd, de) + [Vdg|?




INSTABILITY AND NONEXISTENCE THEOREMS 675

= (BN (huei, duej)dues, duei) + Y _(d. Ric e, ¢>*ei>}.

O

THEOREM 5.2. Let F : [0,00) — [0,00) be a strictly increasing and strictly
convexr C? function. Let ¢ : M — N be an F-harmonic map, and suppose
that RicM >0 and RN < 0. Then we have:

(1) ¢ must be constant or totally geodesic.
Furthermore, if, in addition, F'(0) = 0, then we have:
(2) If Ric™ > 0 at some point, then ¢ must be a constant map.

(3) If RN > 0, then ¢ must be either a constant map or a mapping of
rank one, that is, whose image is a closed geodesic.

Proof. Integrating the Bochner formula and observing that, by the F-
harmonicity,

/M P (@) (A pd, dbyo, — /M<5d¢,5 (F (@) dd)))vg ~0

we have
, (|do)?
og/MF (' ;ﬁ' >-Vd¢l2vg
d 2
:/ F/ <| q2b| > <RN(¢*€7;7¢*6j)¢*€j,¢*€i>vg
(5.1) M 2
_ /M F’ <|dq2b|> Z(qﬁ* RicM €i, P+€;) Vg

K2

d 2
M

Thus, each nonpositive term is zero. We set B = {z € M : |d¢(z)] > 0}. If
¢ is not constant, then B is a nonempty open subset of M. In view of the
inequality on the left of (5.1), ¢ is totally geodesic and |d¢| is constant on B.
Hence B is also closed in M, so B = M. Therefore, ¢ is totally geodesic in
M.

Next we assume that F’(0) = 0. Since the function F is strictly convex,
this assumption implies that if F’(t) = 0 then t = 0. If Ric™ > 0 at some

point, then F’ (%) — 0, i.e., |d¢| = 0 at that point. If dp # 0, then B is

a nonempty open subset of M. In view of the last integral in (5.1), |d¢| is
constant on B. Hence B is also closed, so B = M, which is a contradiction.

It RN < 0, then F” (%) =0 or (RN($sei, bue;)bres, dues) = 0. In this
case, the equation (RN (¢.e;, pue;)buej, pue;) = 0 implies that the rank of ¢
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is either zero, and hence ¢ is constant, or one, in which case the image of a
totally geodesic ¢ is a closed geodesic and the rank is constant and equal to
one. U

We next study F-harmonic maps to manifolds which have convex functions.
The following lemma is essential in our argument.

LEMMA 5.3. Let ¢ : M — N be a C' map between Riemannian manifolds
and f a real valued C? function on N. Let F : [0,00) — [0,00) be a strictly
increasing C? function. Then, for every C' function n on M, we have

# (98 ats o 0).dn) = - (1498) trace(vap o dopn

2
(V- (grad f) 0 6), F ('d¢' ) dg).

Proof. Let {e;} be an orthonormal frame around some point of M which
satisfies Ve; = 0 at that point. We then compute:

2
(V(n-(grad f) o §), F ('dd" ) i)

2
=SV (e ) 0. F (M55 dse
o
2

=D _{dn(e:)((grad ) °¢)7F’< )d¢<ei)>

# X0 (1955 ) (Tasie (a0 )0 ), dofer)

d 2 2
(P (' ; >d(f0¢)7dn>+nF' (' 49) )Trace<Vdf><d¢>, 1),
This completes the proof. O

Using this lemma, we can now prove the following theorem.

THEOREM 5.4. Let M be a compact connected Riemannian manifold and
N a Riemannian manifold admitting a strictly convex function on N. Let
F : [0,00) — [0,00) be a strictly increasing C? function. Then every F-
harmonic map ¢ from M to N must be a constant map.

REMARK 5.5. This theorem is an extension of results obtained in [4], [2]
and [7] for harmonic maps and p-harmonic maps, respectively.

Proof. Let f be a real valued strictly convex function on N. Taking n =1
in the above lemma and integrating on M, we obtain, via the first variational
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formula for F-harmonic maps, the equation

/M <|d¢2) Trace(Vdf)(dg, d)v,

Hence we have d¢ = 0 everywhere on M, which completes the proof. O

We next consider the case where the domain manifold is complete, noncom-
pact and connected. Using Lemma 5.3, we can prove Liouville type theorems.

PROPOSITION 5.6. Let M be a complete and noncompact connected Rie-
mannian manifold and N a Riemannian manifold which possesses a strictly
convez function f on N such that the uniform norm ||df||ec is bounded. Let
F : [0,00) — [0,00) be a strictly increasing C* function. Then every F-
harmonic map ¢ from M to N with finite [, F’ (@) - |délvg must be a
constant map.

Proof. For every R > 0 we can find a Lipschitz continuous function n on
M such that n(z) = 1 for x € Br, n(z) = 0 for x € M \ Bap,0 < n <1,
and |dn| < C/R with a number C' > 0 which is independent of R. Here By
denotes a geodesic ball with radius R and with fixed point xg.

By Lemma 5.3 we have

/M (I ¢|2)Trace(vdf)(d¢vd¢)77vg

2
— [ F (M55 wats o,
(Lo’
< [ (M55l a6l

Since ||df||o is bounded and [, F” (%) - |d¢|vg < 00, we obtain

/ F'(|d§|2)Trace(Vdf)(d¢ doy, < & <|d¢2> \dolv,
Br

R
Letting R — oo, we have d¢ = 0, which completes the proof. O

We can construct a smooth and strictly convex function whose uniform
norm is bounded on a simply connected manifold with nonpositive sectional
curvature (see [7]). Hence we have the following result.

THEOREM 5.7. Let M be a complete and noncompact connected Riemann-
ian manifold and N a simply connected Riemannian manifold with nonpos-
itive sectional curvature. Let F : [0,00) — [0,00) be a strictly increas-
ing C? function. Then every F-harmonic map ¢ from M to N with finite

2
Ju F' (%) - |délvg must be a constant map.
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Next we consider the case where N = R. In this case we can deal with
F-subharmonic functions. We call a function ¢ on M F-subharmonic if and
only if ¢ satisfies the inequality

TraceV (F' <@> dqb) > 0.

THEOREM 5.8. Let M be a complete and noncompact connected Riemann-
ian manifold. Let F : [0,00) — [0,00) be a strictly increasing C? function.

; ; : - |de|?
Then every F-subharmonic function ¢ from M with finite fM F (T) .

|dp|vg must be a constant map.

Proof. Note that there is a non-decreasing strictly convex function f with
bounded derivative on the real line. Then we get

[ 7 (M5 tracecva oo, < - [ 7 (195 qacs o 00 anie,

for every non-negative function 1 with compact support. The proof is now
completed in the same way as that of Theorem 5.6. O
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