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INSTABILITY AND NONEXISTENCE THEOREMS FOR
F -HARMONIC MAPS

MITSUNORI ARA

Abstract. In this paper we study the unstability and nonexistence
of F -harmonic maps. We introduce the notion of F -strongly unstable

and F -unstable manifolds and discuss properties of such manifolds. We
classify all compact irreducible F -unstable symmetric spaces.

1. Introduction

The theory of harmonic maps, p-harmonic maps, and exponentially har-
monic maps, is a powerful area of differential geometry that has applications
to various fields, including topology and physics. Recently, Wei [17] stud-
ied the second variational formula for p-harmonic maps and, extending the
work of Howard-Wei [6] and Ohnita [10], classified compact irreducible p-
superstrongly unstable symmetric spaces.

The author [1] introduced the notions of F -energy and F -harmonic maps
which generalize harmonic, p-harmonic and exponentially harmonic maps. In
this paper, we first establish the second variational formula of the F -energy
and then introduce the notions of F -unstability and F -strong unstability.
We consider a nonnegative valued strictly increasing C2 function F on the
interval [0,∞). We define the F -energy EF (φ) for a smooth map φ between
Riemannian manifolds (M, g) and (N,h) by

EF (φ) =
∫
M

F

(
|dφ|2

2

)
vg,

where vg is the volume element of g. Critical mappings of EF are called
F -harmonic maps (see [1]). Notice that F -harmonic maps are harmonic, p-
harmonic, and exponentially harmonic if F (t) is equal to t, (2t)p/2/p and
et, respectively. Roughly speaking, our F -harmonic map is F -stable if the
second variation of the F -energy is nonnegative, and F -unstable otherwise.
In particular, a compact Riemannian manifold M is F -unstable if the identity
map is F -unstable, and F -strongly unstable if M is neither a domain nor a
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target of any nonconstant stable F -harmonic map. In the case F (t) = t, we
use the terms unstable and strongly unstable.

By the definition, F -strong unstability implies F -unstability. In the case
when F (t) = t and M is a compact irreducible symmetric space, the converse
is true, by a theorem of Howard-Wei [6] and Ohnita [10].

In this paper we first prove a striking F -stability theorem, which says the
following: Let F be a strictly increasing C2 function satisfying mF ′′(m/2) +
(2−m)F ′(m/2) ≥ 0. Then every m-dimensional compact Riemannian mani-
fold M is F -stable (see Theorem 3.1).

We then prove an F -stability theorem, which generalizes results of Urakawa
(see [13]) for harmonic maps and of Wei (see [17, Theorem 5.8]) for p-harmonic
maps, and which says the following: Assume F is C2 and strictly increasing
and convex. Then every compact Riemannian manifold of constant curvature,
except the standard sphere (Sm, can) (m ≥ 3), is F -stable (see Theorem 3.7).

The following result clarifies the relation between the notions of F -unsta-
bility and F -strong unstability.

Theorem A (see Corollary 4.11). Let M be a compact irreducible sym-
metric space. Then there exists a strictly increasing and strictly convex C2

function F : [0,∞) → [0,∞), such that M is F -strongly unstable if and only
if it is F -unstable.

We remark that in the case F (t) = t this was proved by Howard-Wei
and Ohnita. Theorem A says that the same result holds for other function
F . Moreover, if F : [0,∞) → [0,∞) is an arbitrary strictly increasing C2

function satisfying F ′′ ≥ 0 everywhere, we can classify all compact irreducible
symmetric spaces which are F -unstable (see Theorem 4.12). As a corollary,
we can classify all compact irreducible symmetric spaces for which the identity
map is unstable as a p-harmonic map (see Corollary 4.13).

Comparing our classifications with that of Wei (see [17]), we find that the
notions of superstrong unstability and unstability are different in the case of
p-harmonic maps. This is in sharp contrast to the result obtained by Howard-
Wei and Ohnita for the case of harmonic maps.

This paper is organized as follow. In Section 2, we recall some facts on
F -harmonic maps and the second variational formula of the F -energy. In
Section 3, we study unstability as an F -harmonic map for identity maps. In
Section 4, we deal with F -strongly unstable and F -unstable manifolds. In
Section 5, we give the Bochner formula and prove nonexistence theorems for
F -harmonic maps.

Acknowledgements. The author wishes to express his gratitude to Pro-
fessor Hajime Urakawa for his constant encouragement and valuable advice,
and also to Professor Makoto Sakaki for his suggestions to improve this work.
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2. F -harmonic maps

Let F : [0,∞)→ [0,∞) be a strictly increasing C2 function. Let φ : M →
N be a smooth map from an m-dimensional Riemannian manifolds (M, g) to
a Riemannian manifold (N,h). We call φ an F -harmonic map if it is a critical
point of the F -energy functional. That is, φ is an F -harmonic map if and
only if

d

dt

∣∣∣∣
t=0

EF (φt) = 0

for any compactly supported variation φt : M → N (−ε < t < ε) with φ0 = φ.
Let ∇ and N∇ denote the Levi-Civita connections of M and N , respec-

tively. Let ∇̃ be the induced connection on φ−1TN defined by ∇̃XW
=N ∇φ∗XW , where X is a tangent vector of M and W is a section of φ−1TN .
We choose a local orthonormal frame field {ei}mi=1 on M . We define the F -
tension field τF (φ) of φ by

τF (φ) =
m∑
i=1

[
∇̃ei

{
F ′
(
|dφ|2

2

)
φ∗ei

}
− F ′

(
|dφ|2

2

)
φ∗∇eiei

]
= F ′

(
|dφ|2

2

)
τ(φ) + φ∗ grad

{
F ′
(
|dφ|2

2

) }
,

where τ(φ) =
∑m
i=1(∇̃eiφ∗ei − φ∗∇eiei) is the tension field of φ.

With this notation we have the following result:

Theorem 2.1 (First variation formula; see [1]).

d

dt

∣∣∣∣
t=0

EF (φt) = −
∫
M

h(V, τF (φ))vg,

where V = dφt/dt|t=0.

Therefore a smooth map φ : M → N is an F -harmonic map if and only if
the F -tension field τF (φ) is zero.

Next, we give the second variation formula for F -harmonic maps and de-
scribe the F -Jacobi operator JF .

Theorem 2.2 (Second variation formula; see [1]). Let φ : M → N be an
F -harmonic map. Let φs,t : M → N (−ε < s, t < ε) be a compactly supported
two-parameter variation such that φ0,0 = φ, and set V = ∂φs,t/∂t|s,t=0 and
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W = ∂φs,t/∂s|s,t=0. Then

∂2

∂s∂t

∣∣∣∣
s,t=0

EF (φs,t) =
∫
M

h(JF,φ(V ),W )vg

=
∫
M

F ′′
(
|dφ|2

2

)
〈∇̃V, dφ〉〈∇̃W,dφ〉vg

+
∫
M

F ′
(
|dφ|2

2

)
·

{
〈∇̃V, ∇̃W 〉 −

m∑
i=1

h(RN (V, φ∗ei)φ∗ei,W )

}
vg,

where 〈, 〉 is the inner product on T ∗M ⊗φ−1TN , RN is the curvature tensor
of N , and JF,φ(V ) is given by

JF,φ(V ) = ∇̃∗
(
F ′′
(
|dφ|2

2

)
· 〈∇̃V, dφ〉dφ+ F ′

(
|dφ|2

2

)
· ∇̃V

)
− F ′

(
|dφ|2

2

)
·
m∑
i=1

RN (V, φ∗ei)φ∗ei, V ∈ Γ(φ−1TN).
(2.1)

We put

I(V,W ) =
∂2

∂s∂t

∣∣∣∣
s,t=0

EF (φs,t).

An F -harmonic map φ is called F -stable, or stable, if I(V, V ) ≥ 0 for any
compactly supported vector field V along φ, or equivalently, if the eigenvalues
of the F -Jacobi operator JF,φ are all nonnegative.

Remark 2.3. In the case of harmonic maps, the equation (2.1) reads

JF,φ(V ) = ∇̃∗∇̃V −
m∑
i=1

RN (V, φ∗ei)φ∗ei =: J2,φ(V ).

This is the Jacobi operator for harmonic maps. The operator ∇̃∗∇̃ is often
denoted by ∆ and called the rough Laplacian.

Some geometric properties of F -harmonic maps are described in [1].

3. Stability of F -harmonic identity maps

Throughout this section, we assume that F ′ + F ′′ 6= 0 on (0,∞). This
assumption ensures that the F -Jacobi operator is elliptic. We deal with the
F -Jacobi operator of the identity map. When the identity map of M is F -
stable, we say that M is F -stable (see [8]).

Theorem 3.1. Let M be an m-dimensional compact Riemannian man-
ifold and F : [0,∞) → [0,∞) a strictly increasing C2 function such that
mF ′′(m/2) + (2−m)F ′(m/2) ≥ 0. Then M is F -stable.
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Remark 3.2. In the case of harmonic maps, the assumption mF ′′(m/2)
+ (2−m)F ′(m/2) ≥ 0 implies that m ≤ 2, since F ′ = 1 and F ′′ = 0.

In the case of p-harmonic maps, this assumption implies that p ≥ m,
since F ′(m/2) = m(p/2)−1 and F ′′(m/2) = (p − 2)m(p/2)−2. Moreover,
for exponentially harmonic maps this assumption is always satisfied, since
F ′(m/2) = F ′′(m/2) = em/2. Therefore, the theorem is an extension of the
results of [9] for p-harmonic maps and of [3] for exponentially harmonic maps.

Proof. Recall the formula of K.Yano (see [19])∫
M

g(J2,id(V ), V )vg =
∫
M

{
1
2
|LV g|2 − (div V )2

}
vg,

where LV g is the Lie derivative of the metric g.
By the Cauchy-Schwarz inequality,

m|LV g|2 = m
m∑

i,j=1

LV g(ei, ej)2

= m

m∑
i,j=1

(
g(∇eiV, ej) + g(ei,∇ejV )

)2
≥ m

m∑
i=1

(g(∇eiV, ei) + g(ei,∇eiV ))2

= 4m
m∑
i=1

g(∇eiV, ei)2 ≥ 4

(
m∑
i=1

g(∇eiV, ei)

)2

= 4(div V )2.

Thus we have∫
M

g(JF,id(V ), V )vg = F ′′
(m

2

)∫
M

(div V )2vg

+ F ′
(m

2

)∫
M

m∑
i=1

{
g(∇eiV,∇eiV )− g(RM (V, ei)ei, V )

}
vg

= F ′′
(m

2

)∫
M

(div V )2vg + F ′
(m

2

)∫
M

g(J2,id(V ), V )vg

= F ′′
(m

2

)∫
M

(div V )2vg + F ′
(m

2

)∫
M

{
1
2
|LV g|2 − (div V )2

}
vg

≥ 1
m

{
mF ′′

(m
2

)
+ (2−m)F ′

(m
2

)}∫
M

(div V )2vg ≥ 0.

Hence M is F -stable. �

Theorem 3.3. Let M be an m-dimensional compact Riemannian man-
ifold which supports a nonisometric, conformal vector field V , and let F :
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[0,∞) → [0,∞) be a strictly increasing C2 function. Then M is F -stable if
and only if F satisfies mF ′′(m/2) + (2−m)F ′(m/2) ≥ 0.

Proof. Since a vector field V on M is conformal if and only if LV g =
−(2/m)(div V )g , (1/2)|LV g|2 = (2/m)(div V )2. Then we have

∫
M

g(JF,id(V ), V )vg =F ′′
(m

2

)∫
M

(div V )2vg

+ F ′
(m

2

)∫
M

{
1
2
|LV g|2 − (div V )2

}
vg

=
1
m

{
mF ′′

(m
2

)
+ (2−m)F ′

(m
2

)}∫
M

(div V )2vg.

If V is nonisometric conformal, we have div V 6≡ 0. This completes the proof.
�

Next we use methods of [9], [14], and [17] to establish the following theorem,
which extends a theorem in [17] for p-harmonic maps.

Theorem 3.4. Let M be an m-dimensional compact Einstein manifold
whose Ricci tensor equals ρg for some Einstein constant ρ. Let F : [0,∞)→
[0,∞) be a strictly increasing C2 function such that F ′(m/2) +F ′′(m/2) > 0.
Then M is F -stable if and only if F satisfies

2ρF ′
(m

2

)
≤
(
F ′
(m

2

)
+ F ′′

(m
2

))
λ1,

where λ1 is the smallest positive eigenvalue of the Laplacian for functions.

Proof. By the Kodaira-de Rham-Hodge decomposition, we have an orthog-
onal direct sum decomposition

X (M) = {V ∈ X (M) | div V = 0} ⊕ {grad f |f ∈ C∞(M)},

where X (M) is the space of all smooth vector fields on M . The Laplacian
∆ preserves this decomposition. Under the Einstein condition, JF,id also
preserves this decomposition, since RM is a scalar multiple of the identity.
Hence it suffices to show that the assertion holds separately on vector fields
V with div V = 0, and on the gradients grad f .
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For any vector field V such that div V = 0, we have∫
M

g(JF,id(V ), V )vg

= −F ′′
(m

2

)∫
M

g(grad(div V ), V )vg + F ′
(m

2

)∫
M

g(J2,id(V ), V )vg

= F ′
(m

2

)∫
M

{
1
2
|LV g|2 − (div V )2

}
vg

=
1
2
F ′
(m

2

)∫
M

|LV g|2vg ≥ 0.

On the other hand, we have∫
M

g(JF,id(grad f), grad f)vg = −F ′′
(m

2

)∫
M

g(grad(div grad f), grad f)vg

+ F ′
(m

2

)∫
M

g(J2,id(grad f), grad f)vg

=F ′′
(m

2

)∫
M

g(grad(∆f), grad f)vg(3.1)

+ F ′
(m

2

)∫
M

g(grad(∆f)− 2c(grad f), grad f)vg.

Now recall that∫
M

g(grad(∆f), grad f)vg ≥ λ1

∫
M

g(grad f, grad f)vg

for every function f , and that there is some function f1 satisfying ∆f1 = λ1f1.
If M is F -stable, then (3.1) gives

0 ≤
∫
M

g(JF,id(grad f1), grad f1)vg

=
(
F ′
(m

2

)
+ F ′′

(m
2

))
λ1

∫
M

g(grad f1, grad f1)vg

− 2F ′
(m

2

)
ρ

∫
M

g(grad f1, grad f1)vg.

Therefore we have

2F ′
(m

2

)
ρ ≤

(
F ′
(m

2

)
+ F ′′

(m
2

))
λ1.

Conversely, if

2F ′
(m

2

)
ρ ≤

(
F ′
(m

2

)
+ F ′′

(m
2

))
λ1,

then (3.1) yields ∫
M

g(JF,id(grad f), grad f)vg ≥ 0.

Thus M is F -stable. �
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Corollary 3.5. Let M be an m-dimensional compact Einstein manifold,
and let F : [0,∞) → [0,∞) be a strictly increasing C2 function. Then the
following assertions hold:

(1) If F ′′(m/2) ≥ 0 and M is stable, then M is F -stable.
(2) If −F ′(m/2) < F ′′(m/2) ≤ 0 and M is F -stable, then M is stable.

Next we give the result for spherical space forms, which extends the results
given in [13, Prop. 5.6] and [17, Th. 5.8] for harmonic maps and p-harmonic
maps, respectively.

Proposition 3.6. Let F : [0,∞) → [0,∞) be a strictly increasing C2

function such that F ′′(m/2) ≥ 0. Then every spherical space form (Sm/G, g),
where G 6= {e} is a finite group acting fixed point freely on Sm, is F -stable.
Here the metric g is the Riemannian metric on the quotient space Sm/G
induced by the standard metric can of constant curvature one on Sm.

Proof. Since (Sm/G, g) is Einstein (i.e., the Ricci tensor ρ of g satisfies
ρ = (m− 1)g), the manifold (Sm/G, g) is F -stable if and only if the smallest
positive eigenvalue λ1 of the Laplacian for functions is bigger than or equal to
(2(m− 1)F ′(m/2))/(F ′(m/2) + F ′′(m/2)). The eigenvalues of the Laplacian
of (Sm, can) are k(k +m− 1), for k = 0, 1, 2, · · · , and if k ≥ 2, then

k(k +m− 1) > 2(m− 1) ≥ 2(m− 1)
F ′
(
m
2

)
F ′
(
m
2

)
+ F ′′

(
m
2

) .
Moreover, the eigenfunctions of the smallest positive eigenvalue m with k = 1
of (Sm, can) are given by f ◦ iSm , where f is a linear map of Rm+1 into R
and iSm is the natural inclusion of Sm into Rm+1. Therefore it suffices to
show that every linear G-invariant function f on Rm+1 must be zero. But
this follows immediately from the assumption that G acts fixed point freely
on Sm. Clearly, we have f(x) = 〈x, y〉 for x ∈ Rm+1 and some y ∈ Rm+1.
The G-invariance of f implies that γ · y = y for all γ ∈ G. Hence, unless f
vanishes, the point y/|y| ∈ Sm must be a fixed point of G. �

Theorem 3.7. Every compact Riemannian manifold of constant curva-
ture, except the standard unit sphere (Sm, can) (m ≥ 3), is F -stable for some
strictly increasing and convex C2 function F : [0,∞)→ [0,∞).

Proof. Since every compact Riemannian manifold of positive constant cur-
vature is as in Proposition 3.6 (see [18, Lemma 5.1.1]) and every compact
Riemannian manifold of constant nonpositive curvature is F -stable if F ′′ ≥ 0
(see [1, Theorem 6.2]), the assertion follows. �
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4. F -strongly unstable manifolds

First we recall the definitions of superstrongly unstable manifolds, strongly
unstable manifolds and unstable manifolds.

Definition 4.1. An m-dimensional Riemannian manifold M with a Rie-
mannian metric 〈, 〉M is said to be superstrongly unstable (SSU), if there exists
an isometric immersion in Rr such that, for any unit tangent vector X to M
at any point x ∈M , the following functional is always negative:

〈QMx (X), X〉M =
m∑
α=1

(
2〈B(X, vα),B(X, vα)〉Rr

− 〈B(X,X), B(vα, vα)〉Rr
)
.

(4.1)

Here B is the second fundamental form of the immersion, and {vα}mα=1 is a
local orthonormal frame field on M near x.

Definition 4.2. A compact Riemannian manifold M is strongly unstable
(SU) if M is neither a domain nor a target of any nonconstant stable harmonic
map. A compact Riemannian manifold M is unstable (U) if the identity map
of M is unstable.

Remark 4.3. For compact irreducible symmetric spaces, the notions SSU,
SU, and U are equivalent (see [6] and [10]).

We now introduce the notions of F -strongly unstable manifolds and F -
unstable manifolds.

Definition 4.4. A compact Riemannian manifold M is F -strongly un-
stable (F -SU) if M is neither a domain nor a target of any nonconstant stable
F -harmonic map. A compact Riemannian manifold M is F -unstable (F -U) if
the identity map of M is F -unstable.

We will prove the following theorem, which is one of our main results.

Theorem 4.5. Let M be an SSU manifold. Then there exists a strictly
increasing and strictly convex C2 function F : [0,∞) → [0,∞) such that M
is F -SU.

Remark 4.6. In the case F (t) = t (so that F -SU manifolds are SU) we
know that SSU manifolds are F -SU. However, note that the function F in the
theorem must be strictly convex.

In order to prove the theorem, we derive average variational formulas, as
in [15]. We assume throughout that φ : M → N is an F -harmonic map from
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an m-dimensional Riemannian manifold into an n-dimensional Riemannian
manifold.

We can isometrically immerse N into Rr with second fundamental form
B. Let {ei}mi=1, V , and V > denote a local orthonormal frame field on M , a
unit vector in Rr and the tangential projection of V onto N , respectively. We
can choose an adopted orthonormal basis {Vp}rp=1 in Rr such that {Vp}np=1

is tangent to N . Denote by f
V >p
t the flow generated by V >p . Then apply the

second variational formula with φt = f
V >p
t ◦ φ, φ0 = φ, and s = t, and over

p = 1, . . . , r:

r∑
p=1

d2

dt2
EF (f

V >p
t ◦ φ)|t=0 =

r∑
p=1

∫
M

{
F ′′
(
|dφ|2

2

)( m∑
i=1

〈∇̃eiV >p , φ∗ei〉

)2

+ F ′
(
|dφ|2

2

) m∑
i=1

(
|∇̃eiV >p |2 − 〈RN (V >p , φ∗ei)φ∗ei, V

>
p 〉
)}

dvg.

(4.2)

As Vp is parallel in Rr, we have

∇̃eiV >p =N ∇φ∗eiV >p = (R∇φ∗eiV >p )> = (R∇φ∗ei(Vp − V ⊥p ))>

= −(R∇φ∗eiV ⊥p )> = AV
⊥
p (φ∗ei),

and so

〈∇̃eiV >p , φ∗ei〉 = 〈AV
⊥
p (φ∗ei), φ∗ei〉 = 〈B(φ∗ei, φ∗ei), V >p 〉.

Thus

(4.3)
r∑
p=1

(
m∑
i=1

〈∇̃eiV >p , φ∗ei〉

)2

=

∣∣∣∣∣
m∑
i=1

B(φ∗ei, φ∗ei)

∣∣∣∣∣
2

.

We have also

r∑
p=1

∣∣∣∇̃eiV >p ∣∣∣2 =
r∑
p=1

∣∣∣AV ⊥p (φ∗ei)
∣∣∣2 =

r∑
p=1

n∑
q=1

〈AV
⊥
p (φ∗ei), Vq〉2

=
r∑
p=1

n∑
q=1

〈B(φ∗ei, Vq), V >p 〉2 =
n∑
q=1

|B(φ∗ei, Vq)|2
(4.4)

From (4.2)–(4.4) and the Gauss equation, we obtain the following result.
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Theorem 4.7 (Average second variational formula on the target).

r∑
p=1

d2

dt2
EF (f

V >p
t ◦ φ)|t=0 =

∫
M

{
F ′′
(
|dφ|2

2

) ∣∣∣∣∣
m∑
i=1

B(φ∗ei, φ∗ei)

∣∣∣∣∣
2

+ F ′
(
|dφ|2

2

) m∑
i=1

〈QN (φ∗ei), φ∗ei〉

}
dvg.(4.5)

Similarly, we can isometrically immerse M into Rr. Let {V >p }rp=1 be the
tangential projection of an orthonormal frame field {Vp}rp=1 in Rr onto M .

Denote by f
V >p
t the flow generated by V >p , apply the second variational formula

with φt = φ ◦ fV
>
p

t , φ0 = φ and s = t and sum over p = 1, . . . , r. For
convenience, we choose (V1, · · · , Vm) = (e1, · · · , em) to be tangent to M ,
(Vm+1, · · · , Vr) = (ν1, · · · , νr−m) to be normal to M , and ∇ei|x at x ∈ M .
We have

r∑
p=1

d2

dt2
EF (φ ◦ fV

>
p

t )|t=0 =
r∑
p=1

∫
M

{
F ′′
(
|dφ|2

2

)( m∑
i=1

〈∇̃eiφ∗V >p , φ∗ei〉

)2

+ F ′
(
|dφ|2

2

) m∑
i=1

(
|∇̃eiφ∗V >p |2 − 〈RN

(
φ∗V

>
p , φ∗ei

)
φ∗ei, φ∗V

>
p 〉

)}
dvM .

(4.6)

Since V >p = Vp − V ⊥p and Vp are parallel in Rr, we have

r∑
p=1

(
m∑
i=1

〈∇̃eiφ∗V >p , φ∗ei〉

)2

=
r∑
p=1

(
m∑
i=1

〈(∇̃eidφ)V >p − φ∗∇eiV >p , φ∗ei〉

)2

=
r∑
p=1

(
m∑
i=1

〈(∇̃eidφ)V >p − φ∗∇eiV ⊥p , φ∗ei〉

)2

=
m∑
p=1

(
m∑
i=1

〈(∇̃eidφ)ep, φ∗ei〉

)2

+
r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2

(4.7)

=
1
4
|d|dφ|2|2 +

r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2

,

where Aνα is the Weingarten map of M in Rr in the normal direction να.
It follows from (4.5) in [6] that
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m∑
i=1

∇ei∇ei(dφ(V >p )) =
m∑
i=1

(∇ei∇eidφ)(V >p )

+ 2
m∑
i=1

(∇eidφ)(∇eiV >p ) +
m∑
i=1

φ∗∇ei∇eiV >p .

From the Weitzenböck formula [3] we get
m∑
i=1

(∇ei∇eidφ)(V >p )

= −
m∑
i=1

RN (φ∗V >p , φ∗ei)φ∗ei + φ∗RicM (V >p )−4H(dφ)(V >p ),

where 4H denotes the Hodge-Laplacian on 1-form. Hence,
r∑
p=1

m∑
i=1

{
〈∇eiφ∗V >p ,∇eiφ∗V >p 〉 − 〈RN (φ∗V >p , φ∗ei)φ∗ei, φ∗V

>
p 〉
}

=
r∑
p=1

{
1
2
4|dφ|2 −

m∑
i=1

〈∇ei∇eiφ∗V >p , φ∗V >p 〉

−
m∑
i=1

〈RN (φ∗V >p , φ∗ei)φ∗ei, φ∗V
>
p 〉

}

=
r∑
p=1

〈−2
m∑
i=1

(∇eidφ)(∇eiV >p )−
m∑
i=1

φ∗∇ei∇eiV >p − φ∗RicM (V >p )(4.8)

+4H(dφ)(V >p ), dφ(V >p )〉+
1
2
4|dφ|2

=
m∑
i=1

〈φ∗QN (ei), φ∗ei〉+ 〈d(4Hφ)(ei), φ∗ei〉+
1
2
4|dφ|2.

From (4.6)–(4.8) and the F -harmonicity we obtain
r∑
p=1

d2

dt2
EF (φt)|t=0

=
∫
M

{
F ′′
(
|dφ|2

2

)1
4
|d|dφ|2|2 +

r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2


+ F ′
(
|dφ|2

2

)( m∑
i=1

〈φ∗QN (ei), φ∗ei〉

+〈d(4Hφ)(ei), φ∗ei〉+
1
2
4|dφ|2

)}
dvg
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=
∫
M

{
F ′′
(
|dφ|2

2

)1
4
|d|dφ|2|2 +

r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2


+ F ′
(
|dφ|2

2

) m∑
i=1

〈φ∗QN (ei), φ∗ei〉 − F ′′
(
|dφ|2

2

)
1
4
|d|dφ|2|2

}
dvg.

Hence we have the following result:

Theorem 4.8 (Average second variational formula on the domain).

r∑
p=1

d2

dt2
EF (φ ◦ fV

>
p

t )|t=0 =
∫
M

{
F ′′
(
|dφ|2

2

) r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2

+ F ′
(
|dφ|2

2

) m∑
i=1

〈φ∗QN (ei), φ∗ei〉

}
dvg.(4.9)

The following lemma is essential in our argument.

Lemma 4.9. For any constant a > 0, there is a strictly increasing and
convex C2 function F : [0,∞)→ [0,∞) such that t · F ′′(t) < a · F ′(t) for any
t > 0.

Proof. The following functions have the desired properties:
(i) F1(t) = tb+1, 0 < b < a,
(ii) F2,n(t) =

∑n
i=1 ait

i, n < a+ 1, a1 > 0, ai ≥ 0 (i = 2, · · · , n),
(iii) F3(t) =

∫ t
0
e
∫ s
0 G(u)duds, where G(u) is a continuous function and

u ·G(u) < a.
�

From this lemma we obtain the following result concerning the relations
(4.5) and (4.9).

Lemma 4.10. Let M be an SSU manifold. Then there exists a strictly
increasing and convex C2 function F : [0,∞)→ [0,∞) such that

r∑
p=1

d2

dt2
EF (f

V >p
t ◦ φ)|t=0 < 0 for any F -harmonic maps φ from M ,

r∑
p=1

d2

dt2
EF (φ ◦ fV

>
p

t )|t=0 < 0 for any F -harmonic maps φ into M .

Proof. Set

a = min
X∈UM

−〈QMx (X), X〉M
2|B(X,X)|2Rr

> 0.
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By Lemma 4.9 there exists a strictly increasing and convex C2 function F :
[0,∞)→ [0,∞) such that

(4.10) t · F ′′(t) < min
X∈UM

−〈QMx (X), X〉M
2|B(X,X)|2Rr

· F ′(t) for any t > 0.

Let {vα}nα=1 be a local orthonormal frame field on M and let φ∗ei =∑n
α=1 a

α
i vα. We can choose {vα}nα=1 so that

∑m
i=1 a

α
i a

β
i = 0 if α 6= β. Let

Cα =
∑m
i=1(aαi )2 and B(vα, vβ) = Bαβ . Then |dφ|2 =

∑n
γ=1 Cγ and

F ′′
(
|dφ|2

2

) ∣∣∣∣∣
m∑
i=1

B(φ∗ei, φ∗ei)

∣∣∣∣∣
2

+ F ′
(
|dφ|2

2

) m∑
i=1

〈QN (φ∗ei), φ∗ei〉

=F ′′
(
|dφ|2

2

) n∑
α,β=1

m∑
i=1

aαi a
β
i Bαβ

2

+ F ′
(
|dφ|2

2

) n∑
γ=1

 m∑
i=1

2

(
n∑
α=1

aαi Bαγ

)2

−
n∑

α,β=1

m∑
i=1

aαi a
β
i 〈Bαβ , Bγγ〉


=F ′′

(
|dφ|2

2

) n∑
α,β=1

CαCβ〈Bαα, Bββ〉

+ F ′
(
|dφ|2

2

) n∑
α,β=1

Cα(2B2
αβ − 〈Bαα, Bββ〉)

=
n∑
α=1

Cα

F ′′( |dφ|2
2

) n∑
β=1

Cβ〈Bαα, Bββ〉

+F ′
(
|dφ|2

2

) n∑
β=1

(2B2
αβ − 〈Bαα, Bββ〉)


≤

n∑
α=1

Cα

F ′′( |dφ|2
2

)
|dφ|2B2

αα + F ′
(
|dφ|2

2

) n∑
β=1

(2B2
αβ − 〈Bαα, Bββ〉)

 .

Hence by (4.10) we have

r∑
p=1

d2

dt2
EF (f

V >p
t ◦ φ)|t=0 < 0.

Similarly, for each 1 ≤ α ≤ r −m, choose a corresponding local orthonormal
basis {eαi }ni=1 in M such that Aνα is diagonizable, and let Bαij = 〈Aνα(eαi ), eαj 〉.
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Then

F ′′
(
|dφ|2

2

) r−m∑
α=1

(
m∑
i=1

〈φ∗Aναei, φ∗ei〉

)2

+ F ′
(
|dφ|2

2

) m∑
i=1

〈φ∗QN (ei), φ∗ei〉

=
r−m∑
α=1

F ′′( |dφ|2
2

)( m∑
i=1

Bαii|φ∗eαi |2
)2

+ F ′
(
|dφ|2

2

) m∑
i,j=1

(2(Bαij)
2 −BαiiBαjj)|φ∗eαi |2


≤
r−m∑
α=1

m∑
i,j=1

|φ∗eαi |2
(
F ′′
(
|dφ|2

2

)
· |dφ|2 ·BαiiBαjj

+F ′
(
|dφ|2

2

) m∑
l=1

(2(Bαil)
2 −BαiiBαll)

)
.

Hence by (4.10) we have
r∑
p=1

d2

dt2
EF (φ ◦ fV

>
p

t )|t=0 < 0. �

Proof of Theorem 4.5. The assertion follows immediately from Lemma 4.9
and Lemma 4.10. �

Corollary 4.11. Let M be a compact irreducible symmetric space. Then
there exists a strictly increasing and strictly convex C2 function F : [0,∞)→
[0,∞) such that M is F -SU if and only if M is F -U.

Proof. This follows immediately from Corollary 3.5, Theorem 4.5 and the
results of [10], [12], and [16] (see Theorem 4.14). �

The following diagram summarizes our results:

M : SSU

M : F -SU

M : SU M : U

M : F -U

Q
Q
Qs

Q
Q

(∗∗)
Th.4.5

�� (∗)(∗)
see [6] and [10]see [6] and [10]

- -

-

6
(∗ ∗ ∗) Cor.3.5

The arrows marked by asterisks hold under the following conditions:
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(∗) If M is a compact irreducible symmetric space.
(∗∗) If F is as in Theorem 4.5.

(∗ ∗ ∗) If F is convex, and M is a compact irreducible symmetric space.

For compact irreducible F -U symmetric spaces we obtain, using the results
of [6], [10], [12] and Theorem 3.4:

Theorem 4.12. Let F : [0,∞)→ [0,∞) be a strictly increasing and con-
vex C2 function. Then M is a compact irreducible F -U symmetric space if
and only if M is as given in Table 1, with vF ′′(w) < F ′(w).

Table 1

v w

(1) simply connected simple Lie groups

(Al)l≥1 l2 + 2l l2+2l
2

(Cl)l≥2 2l + 1 2l2+l
2

(2) SU(2n)/Sp(n), n ≥ 3 2n2−n−1
n+1

2n2−n−1
2

(3) spheres Sk, k ≥ 3 k
k−2

k
2

(4) quaternionic Grassmannians

Sp(l + n)/Sp(l)× Sp(n), l ≥ n ≥ 1 l + n 2ln

(5) E6/F4 13/5 7

(6) Cayley plane F4/Spin(9) 2 8

We next consider the case of p-harmonic maps, i.e., when F (t) = (2t)p/2/p.

Corollary 4.13. M is a compact irreducible p-U symmetric space (p ≥
2) if and only if M is as given in Table 2 below.

Proof. Note that in the case where F is convex, every F -U manifold is U
(see Corollary 3.5(i)). On every compact irreducible symmetric space M with
the Cartan-Killing metric,

2F ′
(
m
2

)
F ′
(
m
2

)
+ F ′′

(
m
2

) · c
m

=
F ′
(
m
2

)
F ′
(
m
2

)
+ F ′′

(
m
2

) ,
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Table 2

(1) simply connected simple Lie groups

(Al)l≥1 where p < 3

(Cl)l≥2 where l > p− 2

(2) SU(2n)/Sp(n), n ≥ 3 where n > p− 3

(3) spheres Sk, k ≥ 3 where k > p

(4) quaternionic Grassmannians

Sp(l + n)/Sp(l)× Sp(n), l ≥ n ≥ 1

where (p− 2)(l + n) < 4ln

(5) E6/F4 where p < 76/13

(6) Cayley plane F4/Spin(9), where p < 10

where c is the scalar curvature of M and m = dimM . Since dimAl = l2 + 2l,
dimB2 = 10 and dimCl = 2l2 + l, we see that

λ1(Al)l≥1 =
l2 + 2l

l2 + 2l + 1
<

F ′
(
m
2

)
F ′
(
m
2

)
+ F ′′

(
m
2

)
if and only if (l2 + 2l) · F ′′((l2 + 2l)/2) < F ′((l2 + 2l)/2),

λ1(Cl)l≥2 =
2l + 1
2l + 2

<
F ′
(
m
2

)
F ′
(
m
2

)
+ F ′′

(
m
2

)
if and only if (2l + 1) · F ′′((2l2 + l)/2) < F ′((2l2 + l)/2),

which gives entry (1) of Table 1. Similar computations give entries (2)–(6) by
using the fact that

λ1(SU(2n)/Sp(n))n≥3 =
2n2 − n− 1

2n2
,

dimSU(2n)/Sp(n) = 2n2 − n− 1,

λ1(Sk) =
k

2(k − 1)
, dimSk = k,

λ1(Sp(l + n)/Sp(l)× Sp(n)) =
l + n

l + n+ 1
,

dimSp(l + n)/Sp(l)× Sp(n) = 4ln,

λ1(E6/F4) =
13
18
, dimE6/F4 = 14,
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λ1(F4/Spin(9)) =
2
3
, dimF4/Spin(9) = 16. �

In the case where F (t) = t, the above theorem contains the following result
of Howard-Wei and Ohnita:

Theorem 4.14 ([6], [10], [12] and [16]). Let M be a compact irreducible
symmetric space. The following statements are equivalent:

(a) M is SSU.
(b) M is SU.
(c) M is U.
(d) M is one of the following:

(1) one of the simply connected simple Lie groups (Al)l≥1 and (Cl)l≥2;
(2) SU(2n)/Sp(n), n ≥ 3;
(3) a sphere Sk, k ≥ 3;
(4) a quaternionic Grassmannian Sp(l+n)/Sp(l)×Sp(n), l ≥ n ≥ 1;
(5) E6/F4;
(6) the Cayley plane F4/Spin(9).

5. Nonexistence of F -harmonic maps

In this section, we prove nonexistence theorems for nonconstant F -harmonic
maps by adapting the techniques in [17] and [7]. We first derive the Bochner
formula.

Theorem 5.1 (Bochner formula).

4F
(
|dφ|2

2

)
= F ′

(
|dφ|2

2

){
−〈4Hdφ, dφ〉+ |∇dφ|2

−
∑
ij

〈RN (φ∗ei, φ∗ej)φ∗ej , φ∗ei〉+
∑
i

〈φ∗RicM ei, φ∗ei〉

}

+ F ′′
(
|dφ|2

2

)
· |dφ|2 · |∇|dφ||2

Proof. We have

4F
(
|dφ|2

2

)
= F ′′

(
|dφ|2

2

)
· 〈∇dφ, dφ〉2

+ F ′
(
|dφ|2

2

)
· 〈4dφ, dφ〉+ F ′

(
|dφ|2

2

)
· |∇dφ|2

= F ′′
(
|dφ|2

2

)
· |dφ|2 · |∇|dφ||2

+ F ′
(
|dφ|2

2

){
− 〈4Hdφ, dφ〉+ |∇dφ|2
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−
∑
ij

〈RN (φ∗ei, φ∗ej)φ∗ej , φ∗ei〉+
∑
i

〈φ∗RicM ei, φ∗ei〉

}
.

�

Theorem 5.2. Let F : [0,∞)→ [0,∞) be a strictly increasing and strictly
convex C2 function. Let φ : M → N be an F -harmonic map, and suppose
that RicM ≥ 0 and RN ≤ 0. Then we have:

(1) φ must be constant or totally geodesic.
Furthermore, if, in addition, F ′(0) = 0, then we have:

(2) If RicM > 0 at some point, then φ must be a constant map.
(3) If RN > 0, then φ must be either a constant map or a mapping of

rank one, that is, whose image is a closed geodesic.

Proof. Integrating the Bochner formula and observing that, by the F -
harmonicity,∫

M

F ′
(
|dφ|2

2

)
〈4Hdφ, dφ〉vg =

∫
M

〈δdφ, δ
(
F ′
(
|dφ|2

2

)
dφ

)
〉vg = 0

we have

0 ≤
∫
M

F ′
(
|dφ|2

2

)
· |∇dφ|2vg

=
∫
M

F ′
(
|dφ|2

2

)
〈RN (φ∗ei, φ∗ej)φ∗ej , φ∗ei〉vg

−
∫
M

F ′
(
|dφ|2

2

)∑
i

〈φ∗RicM ei, φ∗ei〉vg

−
∫
M

F ′′
(
|dφ|2

2

)
· |∇|dφ||2 · |dφ|2vg ≤ 0.

(5.1)

Thus, each nonpositive term is zero. We set B = {x ∈ M : |dφ(x)| > 0}. If
φ is not constant, then B is a nonempty open subset of M . In view of the
inequality on the left of (5.1), φ is totally geodesic and |dφ| is constant on B.
Hence B is also closed in M , so B = M . Therefore, φ is totally geodesic in
M .

Next we assume that F ′(0) = 0. Since the function F is strictly convex,
this assumption implies that if F ′(t) = 0 then t = 0. If RicM > 0 at some
point, then F ′

(
|dφ|2

2

)
= 0, i.e., |dφ| = 0 at that point. If dφ 6≡ 0, then B is

a nonempty open subset of M . In view of the last integral in (5.1), |dφ| is
constant on B. Hence B is also closed, so B = M , which is a contradiction.

If RN < 0, then F ′
(
|dφ|2

2

)
= 0 or 〈RN (φ∗ei, φ∗ej)φ∗ej , φ∗ei〉 = 0. In this

case, the equation 〈RN (φ∗ei, φ∗ej)φ∗ej , φ∗ei〉 = 0 implies that the rank of φ
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is either zero, and hence φ is constant, or one, in which case the image of a
totally geodesic φ is a closed geodesic and the rank is constant and equal to
one. �

We next study F -harmonic maps to manifolds which have convex functions.
The following lemma is essential in our argument.

Lemma 5.3. Let φ : M → N be a C1 map between Riemannian manifolds
and f a real valued C2 function on N . Let F : [0,∞) → [0,∞) be a strictly
increasing C2 function. Then, for every C1 function η on M , we have

〈F ′
(
|dφ|2

2

)
d(f ◦ φ), dη〉 =− F ′

(
|dφ|2

2

)
Trace(∇df)(dφ, dφ)η

+ 〈∇(η · (grad f) ◦ φ), F ′
(
|dφ|2

2

)
dφ〉.

Proof. Let {ei} be an orthonormal frame around some point of M which
satisfies ∇ei = 0 at that point. We then compute:

〈∇(η·(grad f) ◦ φ), F ′
(
|dφ|2

2

)
dφ〉

=
∑
i

〈∇ei(η · (grad f) ◦ φ), F ′
(
|dφ|2

2

)
dφ(ei)〉

=
∑
i

〈dη(ei)((grad f) ◦ φ), F ′
(
|dφ|2

2

)
dφ(ei)〉

+
∑
i

ηF ′
(
|dφ|2

2

)
〈∇dφ(ei)((grad f) ◦ φ), dφ(ei)〉

=〈F ′
(
|dφ|2

2

)
d(f ◦ φ), dη〉+ ηF ′

(
|dφ|2

2

)
Trace(∇df)(dφ, dφ).

This completes the proof. �

Using this lemma, we can now prove the following theorem.

Theorem 5.4. Let M be a compact connected Riemannian manifold and
N a Riemannian manifold admitting a strictly convex function on N . Let
F : [0,∞) → [0,∞) be a strictly increasing C2 function. Then every F -
harmonic map φ from M to N must be a constant map.

Remark 5.5. This theorem is an extension of results obtained in [4], [2]
and [7] for harmonic maps and p-harmonic maps, respectively.

Proof. Let f be a real valued strictly convex function on N . Taking η ≡ 1
in the above lemma and integrating on M , we obtain, via the first variational
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formula for F -harmonic maps, the equation∫
M

F ′
(
|dφ|2

2

)
Trace(∇df)(dφ, dφ)vg = 0.

Hence we have dφ = 0 everywhere on M , which completes the proof. �

We next consider the case where the domain manifold is complete, noncom-
pact and connected. Using Lemma 5.3, we can prove Liouville type theorems.

Proposition 5.6. Let M be a complete and noncompact connected Rie-
mannian manifold and N a Riemannian manifold which possesses a strictly
convex function f on N such that the uniform norm ‖df‖∞ is bounded. Let
F : [0,∞) → [0,∞) be a strictly increasing C2 function. Then every F -
harmonic map φ from M to N with finite

∫
M
F ′
(
|dφ|2

2

)
· |dφ|vg must be a

constant map.

Proof. For every R > 0 we can find a Lipschitz continuous function η on
M such that η(x) = 1 for x ∈ BR, η(x) = 0 for x ∈ M \ B2R, 0 ≤ η ≤ 1,
and |dη| ≤ C/R with a number C > 0 which is independent of R. Here BR
denotes a geodesic ball with radius R and with fixed point x0.

By Lemma 5.3 we have∫
M

F ′
(
|dφ|2

2

)
Trace(∇df)(dφ, dφ)ηvg

=−
∫
M

F ′
(
|dφ|2

2

)
〈d(f ◦ φ), dη〉vg

≤
∫
M

F ′
(
|dφ|2

2

)
· ‖df‖∞ · |dφ| · |dη|vg.

Since ‖df‖∞ is bounded and
∫
M
F ′
(
|dφ|2

2

)
· |dφ|vg <∞, we obtain∫

BR

F ′
(
|dφ|2

2

)
Trace(∇df)(dφ, dφ)vg ≤

C

R

∫
M

F ′
(
|dφ|2

2

)
· |dφ|vg.

Letting R→∞, we have dφ = 0, which completes the proof. �

We can construct a smooth and strictly convex function whose uniform
norm is bounded on a simply connected manifold with nonpositive sectional
curvature (see [7]). Hence we have the following result.

Theorem 5.7. Let M be a complete and noncompact connected Riemann-
ian manifold and N a simply connected Riemannian manifold with nonpos-
itive sectional curvature. Let F : [0,∞) → [0,∞) be a strictly increas-
ing C2 function. Then every F -harmonic map φ from M to N with finite∫
M
F ′
(
|dφ|2

2

)
· |dφ|vg must be a constant map.
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Next we consider the case where N = R. In this case we can deal with
F -subharmonic functions. We call a function φ on M F -subharmonic if and
only if φ satisfies the inequality

Trace∇
(
F ′
(
|dφ|2

2

)
dφ

)
≥ 0.

Theorem 5.8. Let M be a complete and noncompact connected Riemann-
ian manifold. Let F : [0,∞) → [0,∞) be a strictly increasing C2 function.
Then every F -subharmonic function φ from M with finite

∫
M
F ′
(
|dφ|2

2

)
·

|dφ|vg must be a constant map.

Proof. Note that there is a non-decreasing strictly convex function f with
bounded derivative on the real line. Then we get∫

M

F ′
(
|dφ|2

2

)
Trace(∇df)(dφ, dφ)ηvg ≤ −

∫
M

F ′
(
|dφ|2

2

)
〈d(f ◦ φ), dη〉vg

for every non-negative function η with compact support. The proof is now
completed in the same way as that of Theorem 5.6. �

References

[1] M. Ara, Geometry of F -harmonic maps, Kodai Math. J. 22 (1999), 243–263.

[2] L. F. Cheung and P. F. Leung, A remark on convex functions and p-harmonic maps,
Geom. Dedicata 56 (1995), 269–270.

[3] J. Eells and L. Lemaire, Some properties of exponentially harmonic maps, Proc. Ba-

nach Center Semester on P.D.E., 27 (1990), 129–136.
[4] W. B. Gordon, Convex functions and harmonic maps, Proc. Amer. Math. Soc. 33

(1972), 433–437.

[5] M. C. Hong, On the conformal equivalence of harmonic maps and exponentially har-
monic maps, Bull. London Math. Soc. 24 (1992), 488-492.

[6] R. Howard and S. W. Wei, Non-existence of stable harmonic maps to and from certain
homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc.
294 (1986), 319–331.

[7] S. Kawai, p-harmonic maps and convex functions, Geom. Dedicata. 74 (1999), 261-265.
[8] T. Nagano, Stability of harmonic maps between symmetric spaces, Harmonic maps

(New Orleans, 1980), Lecture Notes in Math., vol. 949, Springer-Verlag, Berlin, 1982.
pp. 130–137.

[9] T. Nagano and M. Sumi, Stability of p-harmonic maps, Tokyo J. Math. 15 (1992),
475–482.

[10] Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku
Math. J. 38 (1986), 259–267.

[11] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18

(1966), 380–385.

[12] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous
Riemannian manifold, Compositio Math. 59 (1986), 57–71.

[13] , Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer.
Math. Soc. 301 (1987), 557–589.



INSTABILITY AND NONEXISTENCE THEOREMS 679

[14] , Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, vol.
132, Amer. Math. Soc., Providence, RI, 1993.

[15] S. W. Wei and C. M. Yau, Regularity of p-energy minimizing maps and p-superstrongly
unstable indices, J. Geom. Analysis 4 (1994), 247–272.

[16] S. W. Wei, An extrinsic average variational method, Contemp. Math. 101 (1989),

55–78.
[17] , Representing homotopy groups and spaces of maps by p-harmonic maps, In-

diana Univ. Math. J. 47 (1998), 625–670.
[18] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

[19] K. Yano, On harmonic and killing vector fields, Ann. of Math. 55 (1952), 38–45.

Graduate School of Information Sciences, Tohoku University, Katahira, Sendai

980-8577, Japan

E-mail address: ara@ims.is.tohoku.ac.jp


