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A CLASS OF MAXIMAL OPERATORS WITH ROUGH
KERNEL ON PRODUCT SPACES

YONG DING AND CHIN-CHENG LIN

Dedicated to Professor Ké6zé Yabuta on the occasion of his 60th birthday

ABSTRACT. In this note the authors prove the LP (R"xR™)-boundedness
for a class of maximal singular integral operators with rough kernel on
product spaces. This extends a result obtained by Chen and Wang in
1992.

1. Introduction

In 1992, L. K. Chen and X. Wang [2] considered the LP-boundedness of
the maximal operator supy ¢, | Tk f|, where the operator Tk is defined by

TKf<z>7 [ K69 ey dgar,

0 gn—1

and

M= {K(rf) = r*nzaj(rmj(g); /Z |aj(r)|2% <1,9; € L*(S" 1),
J o J

/ Q; (&) dé =0 for all j, and Z HQj”%Z(Sn—l) < oo}.
Sn—1 J
In [2] Chen and Wang proved the following result:

THEOREM A. Let 2n/(2n —1) < p < oo, n > 2. Then the operator
supgen [Tk f| is bounded on LP(R™); that is,
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sup |T, H <C .
| sup sl ., < CollFllncery

for all f in the Schwartz class.

In this note we extend this result to product spaces, with Q; € La(Sn—1 x
Sm=1) 1 < ¢ < co. Let n,m > 2 and let {Q;} be a countable subset of
L9(S" 1 x §m~1) 1 < q < oo, satisfying the following conditions (for all j):

(1.1) Q;(t€,sn) = Q;(&mn)  forany t,5 >0,

(1.2) / Q;(&ndE=0 for any n € S™71,
Snfl

(1.3) / Q;(&n)dn=0 for any £ € "1,
Smfl

Moreover, suppose ”Qj”%q(SHflemfl) < 00. Let M denote the class of
all kernels of the form K(r§,sn) = r="s™™ > a;(r,s);(§,n) (defined for
r>0,5>0,and (£,1) € "1 x S™1), where

TT drds
(1.4) //Z|aj(r,s)\2 — <1.
oo J

Let us define the singular integral operator Tk by

Tk f(x,y) = K(rg sn)f(z —r&y — sn)r"~s™ " d€ dndr ds.
HAL

We denote by ¢’ the conjugate index of ¢; that is, 1/¢ + 1/¢’ = 1. We shall
prove the following theorem:

THEOREM 1. Suppose that {Q;} C L1(S"~1 x S™~1) satisfies the above
conditions and Tk is defined as above. Suppose that q and p satisfy one of
the following conditions:

(a) 1 < q <2 andmax{2nq¢'/(2n+nq —2),2mq¢ /2m+mq —2)} <p <
2 /(q' —2),
(b) 2 <¢g<max{2(n—1)/(n—2),2(m—1)/(m—2)} and max{2nq’/(2n+
ng' —2),2mq’ /(2m +mq' —2)} < p < o0,
(¢) ¢ >max{2(n—1)/(n—2),2(m—1)/(m—2)} and 1 < p < 0.
Then the mazimal operator supgens [Tk f| can be extended to a bounded op-
erator on LP(R™ x R™). That is,

H Sup T fl|| < Ul
eM P

where, here and below, we denote || f| Ly @nxrm) by || f]lp-
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REMARK. Clearly, if we take ¢ = 2 and consider the case of one parameter,
then the conclusion of Theorem 1 under condition (b) is identical to that of
Theorem A. If either n = 2 or m = 2, condition (b) means 2 < g < oo, and
condition (¢) means ¢ = co, which is a special case of (b).

2. Preliminaries
Let us begin by proving some lemmas.
LEMMA 1. Suppose that Q € LI(S"~ x S™=1) for ¢ > 1 satisfies (1.1)—

(1.3). Then for any 0 < o < 1/q’, there exist 0 < £,0 < 1, and a constant
C = C(o,¢,0) such that

2 2

//’ // 577 —i(rz-€+sy-n) dfd deS
rs

11

Sn— IXS‘WL 1

. —ay, - -6 | .10
< min { el b~ ol kel
where, here and below, we denote ||Q| pa(gn—1xgm-1) by |2l

Proof. Let

2 2
:// // (€, e =) g gy 0
rs
1 1

Sn— IXSWL 1

By the cancellation conditions (1.2) and (1.3), we have

2 2 2d d
://‘ / Q(E’n)e—isy-ne—irw‘ﬁo [e—ir$~(5—€0) _ 1] dédn‘ ras
rs
1 1

Sn—lxsm—1
2 2
drds\ "/ 2
cf ol [ [ire-te-gr 22 asan}
1 1

Gn—1y gm—1

§0x|2< I e~ sodsdn) < ClzPljlp.

Sn—1xgm—1

IN

The same argument gives I(z,y) < C|y|?[|Q[|2. Thus,

(2.1) I(z,y) < C||Q|g min{]z|?, y[*}.
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On the other hand,
2
Q& m)e v de d
Sn—lxsm—1
// 77/)e—i(m~£+sy~n)ei(mf’wLSy-n’) d¢ dnde' dn,
(§n—1xgm=—1)2

where © denotes the conjugate of Q. Let

2 2
_ / / o ilra (E—€)+sy-(n—n')) 4 45
rs
11

Clearly, |J| < (log2)2. Moreover, by [3] there is a constant C' such that
1
- (€= &My (n—n")|’

Thus, for any 0 < ¢ < 1, we have

| <c

1
lz-(E=&)ly-(n—n")l°

|| < Co
Taking 0 < o < 1/¢/, we get

(22) I(xy) <C, // (¢ )& )|

(Snfl XSm71)2

< G '2( // |«sd—€(§lvq>1/ql
( // Imdndnl"q)l/q,

Sm— IXSm7

d¢ dn d¢' dn'
lz- (§ =&y - (n—n)|°

< Co Qx| =yl =
Combining (2.1) and (2.2), we see that for 0 < o < 1/¢
I(z,y) < ColQ7 - min x|, [y[*, |2| =]y~ }.
By interpolating we get
(2.3) I(z,y) < CQ7 - min{|a|ly], 2|~y =7, 2|yl =7, 2]yl

where 0 < 0 < 1/¢’ and 0 < ¢,0 < 1. In fact, taking 6/(24+0) <7 < (1+0)/
(24 o), we have

I(z,y) = I(z,y) I(z,y)' "
< ClQU2 T - {lz| Ny~ = O 2| |y| 7,
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where e = 27 — 0(1 — 7) and 0 = (1 — 7). Similarly, we have
I(z,y) < Ol |yl
This completes the proof of Lemma, 1. O
The following lemma is related to Stein’s spherical maximal function. Let

us give some definitions. For a function f(x,y) on R™ x R™, we denote the
spherical maximal function on the first variable x of f by

M f(x,y) —sup/|fx—rt9y)|d9

the spherical maximal function on the second variable y of f by

Mo f(z,y) = sup / Flary — s6)] do,
s>03m71

and the spherical maximal function on S"~1 x S™~1 of f by

M* f(x,y) = sup // flz =10,y — sd)| df do.
rs>(39n gt

From the above definitions it is easy to see that
(2.4) M f(z,y) < MM f(z,y).

LEMMA 2. Suppose that n,m > 2 and p > max{n/(n —1),m/(m — 1)}.
Then the spherical mazimal function M*f of f is bounded on LP(R™ x R™);
that is, [|M*fll, < Cllf]p-

Proof. By (2.4) and the results of J. Bourgain [1] and E. M. Stein [5], we
have

1/p
Mg, < ( I/ |M2M1f<x,y>|pdxdy)

R xRmMm

1/p
<[ 1M oy o)
Rn

— C’( / (/ |M1f(x,y)|pdx)dy) v < C| fllp-
En

Rm™

This is the desired conclusion. O
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3. Proof of Theorem 1
Let us write Tk f(z,y) as

Ticf(z,y) = //Z%TS J[ semsa-rey—smacan™ .

Sn—1xgm—1

Applying Schwarz’s inequality, we get

etz (] [ )
(//Z // x—Tﬁyy—sn)dfdnrd:ijm

J Sn—1x gm—1

Take two Schwartz functions ¢; € S(R™) and ¢y € S(R™) satisfying
(1) 0 < ¢1,92 < 1, suppyi(x) C {z:1/2 < [z] < 2}, supppa(y) C
{y:1/2<yl <2}
(ii) 35, 01(2'|z]) = 1,30, 2(2°ly]) = 1 for all x € R™\{0},y € R™\{0}.
Define the operators S} and S? by
Stg(a) = e1(2'z)a(@),  SEh(y) = wa(2[yDh(y).

Since f(z,y) = >, >, (Shu ® S f)(2,y) for any f € S(R™ x R™) and
I,k € Z, we have, by (1.4) and Minkowski’s inequality,

T f (=, y)| < (772‘ // Q;(&m)

Sn—1x gm—1

2 1/2
drds
X f(x =1y —sn)ddn )

ol+1 gk+1

-z ] )] -

2l 2k Sn—1yx gm—1

X f(ox —r&y —sn)dEdn

X [ -

Sn—1yx gm—1

2drds /2
X (Sz1+u®S§+vf)($—7‘§,y—sn)d§dn‘ - )

drds)l/2

2l+1 2k+1

-(zxx ]/
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2l+1 2k+1

TREER S ] ] e

2k SnleSTrlfl

2 drds 1/2
X (Sllﬂl®S,%+Uf)(x—rf,y—sn)d§dn >

=" Buu(f)(2y)
We first estimate the L?(R™ x R™)-norm of By (f)(x,y). Let

Lz,y) = / / (€0 (Styn @ 524 ) (& — 1€,y — sn) dE dn.

Sn,—l XSm,—l

‘We then have
Gy Lew= [[ emeteree

g1y gm—1
x o1 (2 z])pa (250 y]) f (2, y) dE .
Applying Plancherel’s theorem and (3.1), we get

2l+1 2k+1

LRGIES >3 v i NECRIK R~

2t 2k RmxR™
2l+1 2k+1

*ZZZ/ / // |ny dx dy drds

2t 2k R®XxXR™
ol 1 gk+1

<sey [ [ ] wen

1/2<|2l+ux|<2 ol 2k Sn—1yx gm—1
1/2< 2k vy <2

) >drds
« e~ H@réty-sn) d¢ d’?’ ?\f(x, y)|2 dx dy.

By Lemma 1,

LTINS J - (i ezt el o120

1/2<|2’+“w\<2
1/2< 2k vy|<2

2 ff[2y|, |2lx|-9|2kys}) Fe,y)? da dy

< Cmin{27"277, 24727, 27 <2v? 2u09=ve}||£|3.
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Thus, for 0 < 0 < 1/¢’ and 0 < €,6 < 1, we obtain
(3.2) | Buw(f)|, < Cmin {274/2270/2 guo/2va/2,
2—u5/221}9/2’ 2u9/22—v5/2} Hf||2
We now estimate the LP(R™ x R™)-norm of By ,(f)(x,y). This will allow

us to finish the proof of Theorem 1 under the conditions (a), (b), and (c),
respectively.

Proof of Theorem 1 for condition (a). Let us first consider the case when
2<p<2¢/(q —2). Since

ol+1 gk+1

(Bun(De) < SIS [
J Lok

2k

' 2/d" dr ds
J] 18t Stutto = reoy - sm)|agan) " T

Sn—1x gm—1

by duality there is a function g(z,y) € L®/2) (R"xR™) satisfying || g|(p/2) <1
such that

[Buo (N5
o l[zx/]

1 9 d 2/d dr ds
: |Sl+u ® S flx =18y — 577)| d§dn s lg(z,y)| dz dy.
Sn—l Xsm—l

Changing variables and applying Holder’s inequality (note that ¢’/2 > 1), we
get

2 2
| Bu,o(f ||2<C// ZZ‘SlJru@SkJrv xy‘Q//
11

Rn X Rm

2/q’
drds dx dy

lg(a + 27,y + 28sy)|* P de d )

Sn—1x gm—1

sy <o ff 53 IStk @ SErafe D) (M (gl 72) . )P'" dee dy

R™ xR™

ZZ|SZI+U & Sl%+1;f('7 )|2
k p/2

l

<C

* ! 2/q’
for i,
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where M* is the Hardy-Littlewood maximal operator on product spaces de-
fined by

M*g(x,y) = sup
g( y) 7r,5>0 rm

o / lg(w, 2)| dw dz.

lz—w|<r
ly—z|<s

It is well known that M™* is a bounded operator on L?(R™ x R™) for p > 1
(see [4]). Since p < 2¢'/(¢’ — 2) implies 2(p/2)'/q' > 1, by the choice of g, we
get

2/q

< C < C.
sy e = CN9lr2y <

| a2, || = gl 2|

(p/2)’
It follows from the Littlewood-Paley theorem and (3.3) that

(3-4) [Buo(F)llp < Cllfllp-

Interpolating between (3.2) and (3.4) and applying Minkowski’s inequality,
we obtain

(35) || sw T (NI| <CUfly  for 2<p <2/(d ~2).
KeM p

We next consider the case of max{2n¢q’/(2n+nq’ —2),2mq’/(2m+mqg —2)} <
p < 2. Set

Er,sf('r7 y) = // Qj(€7 77) (Sll-i-u 02y Sl%—i—vf) ('T - 2lT§7 Yy—- 2k377) df d77
Sn—lxgm—1
Then,

2

Bu,v(f)(%y):(ZZZ//z\ Brof(a,) 2":53)”2.

g l k 1

Hence, to prove B, ,(f) € LP(R™ x R™), it suffices to show

E,of(z,y) € LP {12 <12 {12 [LQ ([172] x [1,2], dij‘g)k},l},j) ,dxdy}.

By duality again, there is a function g depending on the indices j, I, and k
and satisfying

gla,y,r,5,5,1,k) € L” {12 <l2 {l2 {LQ ([172] x [1,2], d:ﬂjs),k},l},j),dxdy}
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with ||g|| <1 such that
[ Buo ()l

2 2
-/ Z;;l/l/sn_lsm_?jm)
dr ds

X (Stiw ® S f) (@ —2'r€,y — 28sn) dé dn g(z,y, 7, s 3l k)=

-fisssf] ] o

Rn xR™ 1 18n—-1xgm-—1

g(x + 21T§7 ) + 2k877) T, S7.j7 l7 k) (Sl1+u ® S/?:-‘r’uf) ($ y) df d77

(/] ] o

1 §n—1xgm-—1

dx dy

drds

dx dy

drd 1/2
(—|—2lrf, + 2k sn, 8, 4,1, k) d€ dn " S) }

2\ /2
(S Iste st
l k

p/

p

Ug(ﬂC,y):zl:Zk:(zj:/Q/z // Q;(¢,m)

drds\”
X gla + 26,y + 28sm, 7,5, k) dS dn :88) .

Then, by the Littlewood-Paley theory we have

(3.6) 1Buso (H)llp < 1T )2l [1.f 1l

Note that [|(Ug)'/?|, = ||Ug||p 7o for p’ > 2. Therefore, there is a function
h e L&'/ (R x R™) with |2l /2 < 1 such that

Vgl 2 = // ZZ(Z// [ o

1 gn—1xgm-—1

drds\ >
g(z +2'r€,y + 2%sm, 1,8, 5,1, k) - S) h(z,y) dz dy.
S
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By Holder’s inequality and Schwarz’s inequality, we have

1Ugllp /2
IS ] oeoran)”

q 1/d dr ds)
( // lg(x +2'r€,y + 2%sm, 7,5, 4,1, k)| dﬁdn) }h(w,y)dwdy
S

Sn—1y gm—1

s (s ]

R xR™

1/q’ 2
dr ;ls} h(z,y)dxdy

Sn—1xgm—1

< (;nﬂji) //ZZZ{//

Rm™

1/4’ 2

, drd

( // l9(x + 27€, y + 28,7, 5,5, 1, k)| dé“dn) - s} h(z, y)dwdy.
rs

Sn—l Xs’m—l

Using the hypotheses > j ||Q]||(2I < oo and changing variables, we obtain

1Ugllp/2
2 2
<C// {//( // lg(z,y. 75,4, 1, k)7
RnX]RnL 11 S"tflxsmfl

’ /q
X ‘h(x —olrg,y — 2’“577)’(1/2 d¢ dn > d?;ds} dz dy

e[S {[]prwrien)”

R ><]Rm

drd
|g($ y,'l"s_%l,k)‘ L 8} dxdy
rs

< C//ZZZ//@ T,Y,T, S ],l,k)|2drds< (hq,/z)(x,y)f/q/ dz dy

Rn XRnL
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22
, drds i o 2/q’
< CH ZZZ//|9('7'7rvsvj7l’k)|2 rs (M (hq/2)(7)>
Lok Jd1
Since max{2n¢'/(2n + ng’ — 2),2mq'/(2m + mq¢' — 2)} < p, we have
(2/q") - (p'/2) > max{n/(n —1),m/(m — 1)}. Using Lemma 2, we get

“(he'12)(-, ) < Cllh oy
(O CEIO0) e Nt LG T
By (3.6) and the choice of g(x,y,r,s,j,1, k) and h, we obtain

1/2 1/2
1Buw (D, < Co UG 7 AN, < Collgll - IRNE 0y, A1, < Coll £l
for max{2nq’/(2n+nq’ —2),2mq’ /(2m+mq’—2)} < p < 2. Again, interpolat-
ing between (3.2) and the above inequality and using Minkowski’s inequality,
we get

v/ v'/2)

H;up |TK(f)|H <C|flly
eM P

for max{2nq’'/(2n + nq’ — 2),2mq’/(2m + mq¢' — 2)} < p < 2, which together
with (3.5) proves Theorem 1 under condition (a). O

Proof of Theorem 1 for condition (b). As in the preceding proof, we first
consider the case 2 < p < co. Since ¢’ < 2, using Holder’s inequality twice,
we obtain

(Buno () (2, y))
ol+1 gk+1
< (Xl Yy [
J Lk 5 gk
2/d drds

/ / |ty @S2y f(w — 1€,y — sm)|” de dn)

Sn—1y gm—1
2l+1 2k+1

xx

drds
St ® 824y fla — 1€,y — sn)|° dg dn—

Sn—lxSm—1
By the same argument as in the proof of (3.3), we obtain
2 *
(37) [Bus(DI < OH ) ILINEL MERTS INITRUIRIeS
p/2

where g(z,y) € L®/?"(R* x R™) satisfies ||g|(,/2)y < 1. Hence, by (3.7), the
LP(R™ x R™) (p > 1) boundedness of M*, and the choice of g, we obtain
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(3.4) for 2 < p < oo. Interpolating between (3.2) and (3.4) and applying
Minkowski’s inequality, we get

sup |Tx(f)[|| <Clfll,  for 2<p<oo.
KeM P

The proof of this inequality for max{2nq’/(2n 4+ ng’ — 2),2mq’'/(2m + mq' —
2)} < p < 2 is exactly the same as in the case (a). Thus we obtain the
conclusion of Theorem 1 under condition (b). O

Proof of Theorem 1 for condition (¢). In this case, we have 1 < ¢
< min{2(n — 1)/n,2(m — 1)/m} < 2. The proof for the case 2 < p < c©
is the same as the proof in case (b), so we only consider the case 1 < p < 2.
Using the same idea and notations as in case (a), we have

2 2
) drds
IUgp1/2SCHZZZ//LQ("'aTaSa]vlak)P rs
l k 7 1 1

X H(M*(hq/m)('»'))m /2y

Since (p'/2) > 1, we have (2/¢')-(p'/2)" > (2/¢') > max{n/(n—1),m/(m—1)}.
Using Lemma 2 together with the choice of g(x,y,r, s, j,1, k) and h, we obtain
|Buw(f)llp < Cpllfllp for 1 < p < 2. It is now easy to see that the conclusion
of Theorem 1 holds under condition (c). O

p'/2
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