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ON THE DEGREE OF IDEAL MEMBERSHIP PROOFS
FROM UNIFORM FAMILIES OF POLYNOMIALS

OVER A FINITE FIELD

JAN KRAJÍČEK

Abstract. Let f0, f1, . . . , fk be n–variable polynomials over a finite
prime field Fp. A proof of the ideal membership f0 ∈ 〈f1, . . . , fk〉 in

polynomial calculus is a sequence of polynomials h1, . . . , ht such that

ht = f0, and such that every hi is either an fj , j ≥ 1, or obtained from
h1, . . . , hi−1 by one of the two inference rules: g1 and g2 entail any

Fp–linear combination of g1, g2, and g entails g · g′, for any polynomial
g′. The degree of the proof is the maximum degree of the hi’s.

We give a condition on families {fN,0, . . . , fN,kN }N<ω of nN–variable

polynomials of bounded degree implying that the minimum degree of
polynomial calculus proofs of fN,0 from fN,1, . . . , fN,kN cannot be boun-
ded by an independent constant and, in fact, is Ω(log(log(N))). In
particular, we obtain an Ω(log(log(N))) lower bound for the degrees of
proofs of 1 (so called refutations) of the (N,m)–system (defined in [4])

formalizing a modular counting principle (where m is fixed and not di-
visible by p, and the parameter N is not divisible by m), and a similar

lower bound for refutations of systems encoding that N is composite
(whenever N is a prime). No bounds were previously known for these

systems. The same method yields Ω(log(N)) lower bounds for the de-

gree of coefficient polynomials in Nullstellensatz proofs.
The method is based on a new result about a uniform way of gener-

ating all submoduli of tabloid moduli.

0. Introduction

We are concerned here with algebraic proof complexity and we shall use the
combinatorics of the representation theory of symmetric groups (in particular,
Young tableaux) to obtain new degree lower bounds for Nullstellensatz proofs
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and for polynomial calculus proofs. The application requires a new result
describing a uniform combinatorial way of generating all submoduli of tabloid
moduli. The connection between the fields is achieved by identifying certain
polynomial rings with permutation moduli. I shall discuss first the background
for proof complexity and then the combinatorics of Young tableaux used.

Algebraic proof complexity studies time complexity of non-deterministic
algorithms accepting exactly systems of polynomial equations over a fixed
field that are not solvable in that field (or some specified extension). In our
case the field will be a finite prime field, so the encoding of the system for
algorithms is straightforward.

Proof complexity in a broad sense, as I understand it, studies time com-
plexity of non-deterministic algorithms accepting a set L of finite objects of
certain type (natural numbers, polynomials, graphs, formulas, etc.). A non-
deterministic acceptor A of L is called a proof system for L, a computation
accepting y is an A–proof of “y ∈ L”. The main goal of proof complexity is to
exhibit an explicit L for which there is no proof system running in polynomial
time. The qualification explicit means that L should belong to some com-
putational complexity class X such as, for example, coNP, polynomial time
hierarchy, or polynomial space. As the existence of a proof system running
in polynomial time just means that L ∈ NP, proof complexity aims in effect
at showing that X 6⊆ NP. For example, whether coNP ⊆ NP is a major open
problem in complexity theory and logic.

The name proof complexity for this area comes from its most important and
most developed part when L is the set of propositional tautologies TAUT (this
part of proof complexity is called propositional proof complexity), cf. [9]. Log-
ical calculi for proving propositional tautologies that are sound and complete
are, in particular, non-deterministic acceptors of TAUT. A standard conjec-
ture that NP 6= coNP thus implies that none of these calculi admit polynomial
size proofs of all tautologies. However, it is a challenge and a fundamental
open problem of logic (cf. [17]) to prove unconditional lower bounds for ordi-
nary Hilbert-style propositional calculi that one can find in logic text-books.
Such bounds would also have concrete corollaries for bounded arithmetic in
terms of consistency of various open complexity-theoretic conjectures, cf. [15].
These open problems about bounded arithmetic are the most important open
questions about the logic of first-order theories of arithmetic.

Despite some remarkable achievements no non-trivial lower bounds for the
usual calculus based on a finite number of axiom schemes and on modus
ponens are known.

In previous research it turned out that some open proof complexity ques-
tions about usual propositional calculi working with boolean connectives can
be reduced to questions about degree lower bounds in various ideal mem-
bership proof systems. In fact, boolean connectives can be represented by
polynomials (with 0 and 1 representing the truth values) and thus polynomial
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rings are as good an environment for propositional logic as is boolean logic
itself. We shall not repeat the reductions here and instead concentrate on
“algebraic” proof systems from the beginning. The reader is encouraged to
consult [4, 6].

There are two main algebraic proof systems studied at present time. One
system is the Nullstellensatz proof system NS, where a proof of the ideal
membership f0 ∈ 〈f1, . . . , fk〉 (we will say just “a proof of f0 from f1, . . . , fk”),
with fi ∈ F [x], is a sequence g1, . . . , gk ∈ F [x] such that

g1f1 + · · ·+ gkfk = f0

By Hilbert’s Nullstellensatz, a proof of unsolvability of f1 = 0, . . . , fk = 0 in
the algebraic closure F̃ of F is a proof of 1 from f1, . . . , fk. This is also called
a refutation of f1, . . . , fk.

Note that unsolvability of polynomial systems over Fp (in Fp) is a coNP-
complete language and hence the complexity of proof systems for it are as
important as for tautologies.

Another proof system is polynomial calculus1. A polynomial calculus proof
(PS-proof) of f0 from f1, . . . , fk is a sequence of polynomials h1, . . . , ht such
that ht = f0, and such that every hi is either an fj , j ≥ 1, or obtained from
h1, . . . , hi−1 by one of the two inference rules:

(1) Addition rule: g1 and g2 entail any Fp–linear combination of g1, g2.
(2) Multiplication rule: g entails g · g′, for any polynomial g′.

The degree of the NS–proof is the maximum degree of gifi’s, and the degree
of the PC–proof is the maximum degree of hi’s. Our goal is to prove lower
bounds on the degree of proofs.

We shall study the case when the underlying field is Fp and when we
are interested in solvability in Fp rather than in F̃p. This is easily achieved
by including equations xp − x = 0, for all variables x, among the starting
polynomials.

The degree of NS–proofs is obviously related to the so called effective Null-
stellensatz of Brownawell [5] and Kollár [14]. However, their results are proved
for algebraically closed fields and the methods yield nothing for the case of
bounds over finite fields. The first non-trivial lower bounds for Fp were proved
in [4, 6]; see those papers for a more detailed discussion of this connection.

We shall consider dense representation of polynomials. A polynomial f
with variables x1, . . . , xn and of degree d is represented by a list of coefficients
(in Fp) of all monomials of degree up to d, even if these are zero. The list
has length proportional to nd; hence superpolynomial lower bounds on size
correspond to non-constant lower bounds on the degree.2

1This was first formally considered as a proof system in [8].
2I remark that some of the lower bounds, most notably for the (N,m)–systems, actually

hold also for the size of the sparse representation.



44 JAN KRAJÍČEK

Other algebraic systems studied include various extensions of NS (see [4,
6]), and the system F (MODp) combining algebraic and propositional reason-
ing (see [15, Section 12.6]).

NS–proofs are particular PC–proofs (first derive by the multiplication rule
all gifi’s and then sum them up using the addition rule) and strong lower
bounds are known for them, cf. [6]. PC is a natural “depth 1” subsystem of
F (MODp). Recently a lower bound for PC was proved [21]. No lower bounds
are known even for constant-depth F (MODp), except for a weak fragment
(cf. [16]).

Although we put the emphasis on proof complexity, the technical heart of
our paper is a new way of generating submoduli of certain permutation moduli.
It can be described briefly as follows. Let λ = (λ1, . . . , λk), λ1 + · · · + λk =
N , be a partition of a natural number N into integers. A decomposition
X1∪· · ·∪Xk = {0, . . . , N−1} of N into disjoint sets of size |Xi| = λi is called
a λ–tabloid. The tabloid module Mλ over a field F is the F–vector space
whose basis is the set of λ–tabloids. The symmetric group Sym(N) acts on
λ–tabloids, and hence on elements of Mλ, and Mλ is an F [ Sym(N)]–module,
where F [ Sym(N)] is the appropriate group-algebra.

We give a combinatorial/logical description of all submoduli of Mλ, de-
pending only on

∑
i≥2 λi but not on N (Theorem 3.3). This is based on an-

alyzing uniformity (definability) of various combinatorial manipulations with
Young tableaux and Specht moduli, as used in James’ characteristic-free rep-
resentation theory of the symmetric group [13]. The connection between al-
gebraic proof complexity and combinatorics of tabloid moduli is achieved by
identifying certain polynomial rings with certain moduli. The present paper
is the first to make this connection and to apply the representation theory to
algebraic proof systems.

Our method and results expand upon work of Ajtai [1, 2]. In connection
with a combinatorial problem arising in propositional proof complexity he
needed to characterize solvability of symmetric systems of linear equations
(we describe his work in Section 2). While working on [18] I noticed that
a notion of uniformity used there could yield a lower bound for PC proofs
of the modular counting principles represented by the (N,m)–systems of [4]
if a certain construction with tabloid moduli is made uniform. (No lower
bound for these principles follows from [21].) This we achieve by exploiting
the constructions in [2] and [13, 12] (in particular, results on Specht modules
there).

Another corollary of our method is a strengthening of Ajtai’s results in
the form of effective bounds (Theorem 3.5). As an application to algebraic
proof complexity we show that the minimum degree of PC–refutations of the
(N,m)–systems cannot be bounded by an independent constant and, in fact,
must be at least Ω(log(log(N))) (where m is not divisible by p, the field Fp is
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fixed, and N is a parameter) (Corollary 5.3). No lower bounds for the degree
of PC–refutations of these systems were previously known3.

In fact, we prove a general sufficient condition (Theorem 5.1) implying an
Ω(log(log(N))) lower bound for any family {fN,1, . . . , fN,kN }N<ω of polyno-
mial systems, provided the family is given in a uniform way, with uniform
being defined in terms of first-order logic (or, equivalently by Lemma 1.4,
combinatorially). We use this to show also a lower bound for proofs of pri-
mality of N , as encoded by a uniform system of equations defined here. The
same arguments give Ω(log(N)) lower bounds for NS–proofs (Theorem 5.6).

These explicit non-constant lower bounds are derived from new technical
results in Section 3. The reader interested only in the non-existence of con-
stant degree proofs can bypass this section and go to Theorem 5.5. There we
prove that families with constant degree PC–refutations admit also constant
degree NS–refutations. For this result we need only a bound to the num-
ber of submoduli of particular tabloid moduli (Corollary 3.2 which follows
already from Ajtai’s work). In particular, a non-constant lower bound for the
(N,m)–systems follows from Theorem 5.5 combined with the non-constant
degree lower bound for NS from [4]. The non-existence of constant degree
NS–refutations for general uniform systems can be derived from Theorem
3.1. Note that linear lower bounds would follow from the non-constant lower
bounds (which we proved already in the preliminary version of this paper),
should the main theorem announced in [22] hold in characteristic p (presently
it is claimed only in characteristic zero4).

We shall not actually use any results or methods from [18] but only a
rudimentary notion of uniformity used there, and the entire presentation is
self-contained. (In Section 3 we use some definitions and constructions from
[13, 12] that are fully described there.)

The reader interested in more background information and in connections
to some other topics may consult [15] or the introduction to [6].

Throughout this paper we fix a finite prime field Fp.

1. Uniform systems of polynomials

We shall define first the (N,m)–system as it nicely motivates the more
general definition of uniform polynomial families. Here N is identified with
{0, . . . , N − 1} and [N ]m denotes the set of m–element subsets of N .

Definition 1.1 ([4]). Let N ≥ m ≥ 2. The variables of the (N,m)–
system are xe, where e ranges over [N ]m. The system consists of the following
polynomials:

3More than a year after the preliminary version of this paper was available, the paper
[7] improved the bounds for the particular (N,m)–systems to Ω(N).

4As I was told by S. Riis in March ’98.
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(1) Qe := x2
e − xe , for each e.

(2) Qe,f := xe · xf , for every e, f such that e ∩ f 6= ∅ but e 6= f .
(3) Qi := 1−

∑
e: i∈e xe , for each i ∈ N .

We identify a polynomial system {Fi}i with the system of equations {Fi = 0}i
and, in particular, the (N,m)–system with the system of equations Qe = 0,
Qe,f = 0, Qi = 0.

Assume that xe := ae is a solution of the (N,m)–system in some integral
domain. Then, by the equationsQe = 0, all ae are 0 or 1, and by the remaining
equations the set

{e ∈ [N ]m | ae = 1}
is a partition of N into m–element sets. Thus the system has a solution iff m
divides N .

For m not dividing N the ideal in Fp[x] generated by the system is then
necessarily trivial (a simple consequence of Nullstellensatz). We shall be in-
terested in the minimum degree of PC–refutations (i.e., proofs of 1) of the
system.

The crucial uniformity property (to be defined formally bit later) of the
(N,m)–system is the following. Variables are indexed by e ∈ [N ]m and equa-
tions are naturally indexed by e (Case 1), by pairs (e, f) (Case 2), and by
singletons {i} (Case 3). The permutations of N act on the (indices of) vari-
ables, on (indices of) equations, as well as on monomials and polynomials,
and the (N,m)–system is invariant under such actions. This means that the
coefficient of a monomial, say xgxh, in the equation indexed by, say, (e, f)
depends only on the isomorphism type of finite structure (U ; e, f, g, h) with
universe U := e∪f ∪g∪h and distinguished sets e, f, g, h, but not on N . This
invariance property is the key property of families of polynomials systems,
which allows us to apply the representation theory of the symmetric group.

We shall first define a general notion of an index, and of uniformity and
definability of sets of indices. We will then treat polynomial systems, in
particular.

We define uniformity of sets of indices in two equivalent ways. In a logical
way as a definability in a certain first order language, and in a combinatorial
way in terms of types of finite structures formed from indices. Although the
combinatorial version is somewhat more rudimentary and would suffice for
the present paper, the logical version allows easier explanation of Ajtai’s work
in Section 2, as well as generalizations of the method developed in [18].

Definition 1.2. Let L(C) be a first order language having an element-
sort and a set-sort, and consisting of an equality predicate = in both sorts,
of a membership relation ∈ between elements and sets, and of a finite set
C of element constants. The set-sort can be used only as parameters; i.e.,
quantifiers may range only over the element-sort.
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An L(C)–structure M interprets the element-sort by its elements and the
set-sort by its subsets. We shall always assume that all constants from C are
different in M .

Let k ≥ 1.
(1) A k–ary index in M is a k–tuple i = (i1, . . . , ik) of finite subsets of M

such that k ≥ |ij |, for j = 1, . . . , k.
(2) Index(M,k) is the set of k–ary indices in M . The support of i is

the set supp(i) :=
⋃
j ij . The support-size is the cardinality of the

support.
(3) M (k) is the Fp–vector space whose basis is the set Index(M,k).
(4) A vector from M (k) is definable (tacitly in L(C)) over a set A ⊆ M

if for each a ∈ Fp there is an L(C)–formula θa(α) with parameters
from C ∪ A, α = (α1, . . . , αk), such that the coefficient of the index
j = (j1, . . . , jk) is a iff the formula θa(j) holds in M .

(5) A family XM
i ⊆ M (k) of sets of vectors from Index(M,k), with M

ranging over finite L(C)–structures and i ∈ Index(M, `), is uniform
(or definable) iff there are L(C)–formulas θa(γ, α), a ∈ Fp, with no
parameters other than C, with γ = γ1, . . . , γ`, α = α1, . . . , αk of the
set-sort such that for every M and every i ∈ Index(M, `) the vector
XM
i is defined in M by formulas θa(i, α).

The results proved later on hold for a more general notion of an index
(roughly, a finite structure of any order with a bounded support), but we avoid
such generality here as we have no interesting applications for the general case.

We now characterize definability in a more combinatorial way.

Definition 1.3. Let M be an L(C)–structure, A ⊆M , i ∈ Index(M, r),
and let SymC(M/A) be the group of permutations of M fixing point-wise the
set C ∪ A. The type of i over A, denoted by tpC(i/A), is the isomorphism
type of the L(C)–structure

〈C ∪ supp(i) ∪A; {c}c∈C , {a}a∈A, i1, . . . , ir〉
with the universe C ∪ supp(i) ∪A. The support-size of the type is the cardi-
nality of the set C ∪ supp(i) ∪A.

Note that over any M , types of r–ary indices over A are in a bijective corre-
spondence with orbits of SymC(M/A) acting on Index(M, r). The following
lemma is a simple model-theoretic fact. Note that it is important that we
allow quantification only over the element-sort.

Lemma 1.4. Let L(C), A and r be fixed. Then the following two state-
ments hold:

(1) For any L(C)–formula ψ(α), α = α1, . . . , αr, with parameters from
A there is a (necessarily finite) set S of types over A of r–ary indices
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such that for each M ⊇ A large enough (depending on the formula ψ)
and every i ∈ Index(M, r)

M |= ψ(i) iff tpC(i/A) ∈ S.

(2) For any (necessarily finite) set S of types over A of r–ary indices
there is a quantifier-free formula ψ(α) with parameters from A such
that for every M and every i ∈ Index(M, r)

M |= ψ(i) iff tpC(i/A) ∈ S.

In particular, let XM ⊆ Index(M, r), with M ranging over L(C)–structures
containing A, be a family of sets of r–ary indices. Then XM is definable by
an L(C)–formula iff it is definable in terms of types (for M large enough).

We now discuss an embedding of polynomial rings into vector spaces M (r).

Definition 1.5. Let M be an L(C)–structure, and let k ≥ 1.

(1) Var(M,k) is the set of variables indexed by elements of Index(M,k)
different from ∅ = (∅, . . . , ∅). (The index ∅ will represent 1 in mono-
mials.)

(2) Mon(M,k, d) is the set of all monomials formed from Var(M,k) and
of degree at most d. Monomials from Mon(M,k, d) are identified with
indices from Index(M,kd), utilizing the index ∅ for monomials of de-
gree ` ≤ d. In particular, the monomial xi1xi2 . . . xi` , it = (it1, . . . , i

t
k),

is identified with the kd–ary index (i11, . . . , i
1
k, . . . , i

`
1, . . . , i

`
k, ∅, . . . , ∅).

(3) A polynomial over M is a function from some set Mon(M,k, d) to Fp.
It is definable over a set A ⊆M if for each a ∈ Fp there is an L(C)–
formula θa(α) with parameters from C ∪ A, α = (α1,1, . . . , α1,k, . . . ,
αd,1, . . . , αd,k) such that the coefficient of the monomial xj1,1,...,j1,k ·· · ··
xjd,1,...,jd,k is a iff the formula θa(j) holds in M . Poly(M,k, d) is the
set of polynomials of degree at most d with variables from Var(M,k).

(4) A family FMi , with M ranging over finite L(C)–structures and i ∈
Index(M, `), of polynomials with variables from Var(M,k) and of de-
gree at most d is uniform (or definable) iff there are L(C)–formulas
θa(γ, α), a ∈ Fp, with no parameters other than C, with γ = γ1, . . . , γ`,
α = α1,1, . . . , αd,k of the set-sort such that for every M and every
i ∈ Index(M, `) the polynomial FMi is defined in M by formulas
θa(i, α).

We shall use the notations FM (i, j) or FMi,j to denote the unique a ∈ Fp
such that θa(i, j) holds in M , and we shall write FMi =

∑
j F

M (i, j)xj , where
xj (sometimes written only as j) denotes the monomial corresponding to index
j.
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Note that, in particular, Lemma 1.4 says that a family FM is uniform iff
the value FM (i, j) ∈ Fp depends only on the type tpC((i, j)) of the pair of
indices (i, j) (for M large enough).

The reason for the somewhat unnatural embedding of monomials of degree
` ≤ d into kd–ary indices is that we need a fixed number of variables αij for
formulas θa(α) defining polynomials.

The representation of monomials by indices does not account for the com-
mutativity of variables. As we wish to work only in the commutative context
we remedy the situation by including in all families F a particular uniform
family COMMk.

Definition 1.6. COMMk is a uniform family indexed by pairs i, j of
elements Var(M,k), with the polynomial COMMk

i,j being xixj − xjxi.

We conclude this section with two technical lemmas.

Lemma 1.7. Let r ≥ 1, s ≥ 0, let A ⊆ M , and let ω be a type of an
r–index i = (i1, . . . , ir) over A, and s the support-size of ω. If |M | ≥ s, then
the cardinality of

{i ∈ Index(M, r) | tpC(i/A) = ω}

modulo p depends only on the remainder of |M | modulo pν , for any pν > rr
2/2.

Proof. A type is given by 2r − 1 numbers m1, . . . ,m2r−1 specifying the
number of elements of M \ (A ∪ C) in all regions of the Venn diagram of
i1, . . . , ir inside supp(i), together with a placement of constants from C ∪ A
in these regions. Clearly |C ∪ A| +

∑
jmj = s, so if |M | ≥ s, the number of

r–indices for a given C,A with the type specified by the mj ’s is

K :=
(
M ′

m1

)(
M ′ −m1

m2

)
· · · · ·

(
M ′ −

∑2r−2
j=1 mj

m2r−1

)

=
M ′(M ′ − 1) · · · · · (M ′ + 1−

∑2r−1
j=1 mj)

Π2r−1
j=1 (mj !)

,

where M ′ := |M | − |A ∪ C|.
To determine K mod p it is enough to know

M ′(M ′ − 1) · · · · · (M ′ + 1−
2r−1∑
j=1

mj)

modulo the power of p in the product in the denominator. As Π2r−1
j=1 (mj !) ≤

(r!)r/2 ≤ rr2/2, knowing M ′ modulo any power pν > rr
2/2 will do. �
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The following lemma is a simple corollary of the previous statement. Recall
that, for a polynomial f ∈ Poly(M,k, t) and a monomial j ∈ Mon(M,k, t),
fj is the coefficient of j in f .

Lemma 1.8. Let A,B ⊆ M and let k, t ≥ 1. Let f, g ∈ Poly(M,k, t) be
polynomials defined over A and B respectively. If |M | ≥ |A ∪ B ∪ C| + k2t,
then the value ∑

j∈Mon(M,k,t)

fj · gj ∈ Fp

depends only on |M | mod pν , for any pν > (kt)k
2t2/2.

2. Ajtai’s work on definability of solutions of uniform systems of
linear equations

Ajtai [2] studied5 in a very interesting work the definability (in certain
expansions M∗ of the original structures M) of solutions of uniform systems
of linear equations.

Definition 2.1. Let ν ≥ 1 and s ≥ 0 be fixed.
(1) Lν,s is the language expanding L(C) by the following (element-sort)

constants and predicates: constants e0, e1, unary predicates Rν,j(x)
for j = 0, . . . , pν − 1, and binary predicates x ≤ y and Di(x, y), for
i = 0, . . . , s. The Lν,s–formulas are assumed to maintain the property
that no quantifier ranges over the set-sort.

(2) T ν,s is the Lν,s–theory with the following axioms:
(a) ≤ is a linear ordering with e0 and e1 the first and the last ele-

ments, respectively.
(b) Rν,1(e0) holds and Rν,j(a) implies Rν,j′(a′), whenever a′ is the

successor of a and j′ = j + 1(mod pν).
(c) Di(a, b) holds iff the distance between a and b is i.

It is clear that T ν,s admits a form of quantifier elimination (verified by
induction on the size of a formula, cf. [2, Lemma 8]).

Lemma 2.2. Let φ be an Lν,0–formula. Then there is s ≥ 0 depending only
on ν and on the size of φ, and a quantifier-free Lν,s–formula ψ such that φ
and ψ are equivalent in any model M∗ of T ν,s of sufficiently large cardinality.

The lemma explains why Lν,0–definability of a property of structures M
implies that the property depends only on the cardinality of M modulo pν .
This is because if φ is a sentence then it is equivalent to a boolean combination
of conditions Rν,j(e1), for some j < pν (for M∗ large enough).

5The presentation of [2] is rather unfriendly. However, readers willing to suffer are

rewarded.
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Ajtai [2] proved a remarkable theorem, stated below using our notion of
uniformity. We will derive later (see Theorem 3.5) the equivalence of condi-
tions 1 and 3 in this theorem from Lemma 1.8 and Theorem 3.3 (with effective
bounds on sufficiently large).

Theorem 2.3 (Ajtai [2]). Let L(C) and k, ` ≥ 1 be given. Assume that
a family FMi , i ∈ Index(M, `), is a uniform family of linear polynomials with
variables from Var(M,k). Then there exists ν ≥ 1 (depending only on |C|, k,
` and tacitly on p) and a set Q ⊆ {0, . . . , pν−1} such that for every sufficiently
large finite L(C)–structure M the following three statements are equivalent:

(1) The system {FMi = 0}i∈ Index(M,`) is solvable in Fp.
(2) The system {FMi = 0}i∈ Index(M,`) has a solution in Fp that is Lν,0 -

definable in any expansion M∗ of M to a model of T ν,0. The definition
of the solution is common for all M .

(3) |M | ≡ r mod pν for some r ∈ Q.

Ajtai states the theorem using the notion of a family induced by quadruples.
For the benefit of a reader familiar with [1, 2] we now include a proof that our
notion of uniformity (definability) coincides with that notion, and hence that
our formulation is equivalent to the original one. (The theorem, however, is
not needed anywhere else in the paper, and the part of this theorem that we
shall use will actually be deduced in full from our results.)

By Theorems 1 and 2 (using Lemma 1.4 here) and Corollary 6 of [2] (and
its extension discussed in the last section of [2]; see also [1, Theorem 4]) it is
enough to show that if a family is uniform then it is induced by a quadruple
(as defined on pp. 4-5 of [2]). In fact, we show that these two notions coincide.

A quadruple is in our setting equivalent to a finite set of the following data
that we shall call a pattern. (We give the definition for any d ≥ 1 as this will
be needed later on.) A pattern is an `–ary index i and a set X ⊇ C ∪ supp(i)
such that |X \ (C ∪ supp(i))| ≥ k2d, and a mapping u : Mon(X, k, d) → Fp
such that u(j) = u(j′) if tpC(j/ supp(i)) = tpC(j′/ supp(i)).

The pattern uniquely determines a polynomial of degree at most d with
variables from Var(M,k), ∑

j

u(πj(j))xj ,

where πj ∈ SymC(M/ supp(i)) is any permutation moving j into Mon(X, k, d).
Hence the coefficient of xj depends only on tpC(j/ supp(i)) and so, by Lemma
1.4, the polynomial is definable over supp(i).

The pattern (X, i, u) corresponds to a uniform system of polynomials F
as follows. The polynomials in F are indexed by π(i) for π ∈ SymC(M),
and the coefficient of xj in the polynomial Fπ(i) is the coefficient of xπ

−1(j) in
the polynomial determined by the pattern. The system is uniform by Lemma
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1.4 again, as F (i, j) depends only on tpC((i, j)). Hence a quadruple (a finite
collection of patterns) corresponds to a uniform family too.

On the other hand, a uniform system F is described by a quadruple as
follows. For every type ω of an index i (there are only finitely many) choose
iω such that tpC(iω) = ω. For Xω take any set extending C ∪ supp(iω) by
k2d elements, and define uω by

uω(j) := F (iω, j).

The quadruple consists of all patterns (Xω, iω, uω). Hence we have shown
that every uniform system corresponds to a quadruple of patterns of bounded
size (at most |C|+ `2 + k2 for d = 1). Thus Ajtai’s theorem applies.

3. Definable generators of permutation moduli

The ambient space for moduli will be the Fp–vector space M (r) defined
in Definition 1.2. Recall that Poly(M,k, t) is a subspace of M (kt). Tabloid
moduli (see below) will provide other examples of subspaces of M (r).

Let W be a subset of M (r). The group SymC(M) acts on M (r) and
we say that W is symmetric iff it is closed under this action. A symmetric
W that is also a vector subspace of M (r) is thus an Fp[SymC(M)]–module,
where Fp[SymC(M)] is the group algebra (corresponding to the group algebra
denoted by ZpSn in [2]; we use here the notation of [20]).

We shall say that a setG generatesW iff it generatesW as an Fp[SymC(M)]
module, and that it generates W as a vector space iff W is the Fp–linear span
of G.

We recall now several definitions and facts from [13, 12]. Let µ = (µ1, . . . ,
µs) be a partition of N := |M |; i.e., the µi’s are non-negative integers such
that

∑
i µi = N . A partition is proper iff µ1 ≥ µ2 ≥ · · · ≥ µs.

A µ–tabloid is an index that is an ordered s–tuple T = (T1, . . . , Ts) of
disjoint subsets of M such that |Ti| = µi. A µ–tableaux t is a µ–tabloid T
together with linear orderings of all Ti’s. The underlying tabloid is denoted
by {t} (in accordance with [13, 12]). Tabloid T has rows T1, . . . , Ts, and
tableaux t has also columns consisting of the first, second, etc., elements of
the rows. The support-size of T is

∑
j≥2 |Tj |.

The tabloid module Mµ is an Fp–vector space whose basis is the set of all
µ–tabloids. SymC(M) acts on tabloids, and hence on elements of Mµ, and
Mµ is Fp[SymC(M)]–module. Note that tabloid T is determined by the rows
T2, . . . , Ts; hence Mµ is Fp[SymC(M)]–isomorphic to a submodule of M (r),
where s− 1 ≤ r and |Ti| ≤ r, all i ≥ 2. The embedding sends a tabloid T to
the r–index ind(T ) := (T2, . . . , Ts).

On the other hand, M (r) is isomorphic to a submodule of a direct sum of
tabloid moduli. To see this note that the 2r intersections Y1 ∩ · · · ∩ Yr, where
Yj is either ij or its complement M \ij , form a partition of M that determines
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the r–index i. (Not all partitions of M are obtained in this way, so we get a
submodule.) This encoding of r–indices by tabloids is formalized as follows.

For X ⊆M put X1 := X and X0 := M \X, and for i ∈ Index(M, r) and
ε ∈ {0, 1}r \ {(0, . . . , 0)} put

iε :=
⋂
t≤r

iεtt

Note that the iε are disjoint, for different ε, have size at most r, and that i = i′

iff iε = i′ε for all ε ∈ {0, 1}r \ {(0, . . . , 0)}. Define the tabloid (not necessarily
corresponding to a proper partition)

tab(i) := (M \ supp(j), j1, . . . , j2r−1),

where j ∈ Index(M, 2r − 1) is an index whose coordinates are numbered by
ε ∈ {0, 1}r \ {(0, . . . , 0)} in the lexicographic order and such that the εth

coordinate is the set iε.
Let µj range over partitions corresponding to all tab(i), i ∈ Index(M, r).

As | supp(i)| ≤ r2, there are only finitely many such µj ’s (depending on r).
The map tab is an embedding of M (r) into

⊕
jM

µj . The map ind is not
its inverse, but the definitions of X ⊆ M (r) clearly correspond to those of
ind( tab(X)) (as rows in ind( tab(i)) correspond to the inner regions of the
Venn diagram of i). Note that the support-sizes of i and tab(i), and of T and
ind(T ) are the same.

We use this correspondence to extend the notion of definability and unifor-
mity from Section 1 to tabloid moduli: by definability from A of a subset W
of a tabloid module

⊕
jM

µj we mean the L(C)–definability of ind(W ) from
constants A. More generally, v ∈

⊕
λM

λ is definable from A if for every λ the
set ind( prλ(v)) ⊆ ind(Mλ) is definable from A, where prλ is the projection
on Mλ. In particular, each ind( prλ(v)) has its own L(C)–formula defining it.
Note that in the particular case

⊕
λM

λ =
⊕

jM
µj = tab( Index(M, r)) the

notions are the same, as each µj corresponds to a different type of r–indices
and hence all the (possibly different) definitions for ind( prµj (v)) can be in-
corporated into a single definition using a definition by cases distinguishing
the type of µj .

In the more general direct sum some λ’s may occur several times. Note also
that Poly(M,k, t) ⊆ M (kt) and that definability results for M (kt) pull-back
to Poly(M,k, t) as it is itself definable in M (kt) (without parameters).

In our terminology Ajtai’s theorem [2, Theorems 7 and 7’] says the follow-
ing.

Theorem 3.1 (Ajtai [2]). Let M be a finite L(C)–structure and let W be
a submodule of M (r). Then there is ν ≥ 1 depending only on r, and a set
G ⊆W generating W such that the following holds:

(1) The cardinality of G depends only on r but not on M .
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(2) Every element of G is Lν,0–definable in any expansion M∗ of M to a
model of T ν,0 by formulas of size bounded in terms of r only.

We shall not use this theorem, but we note its immediate corollary (that
was in a special case also obtained by D.G.D. Gray [10, 11]). Explicit bounds
on c can be computed from our Theorem 3.3 below.

Corollary 3.2. Given r there is c such that for any M the module M (r)

has at most c different submoduli.

Our main technical result is the following theorem describing another form
of defining sets of generators for submoduli of M (r). The construction is
partly based on Ajtai’s construction underlying Theorem 3.1 and partly on
constructions from [13, 12] describing the Specht modules and their orthogonal
complements as kernels and ranges of suitable linear maps.

We give a proof utilizing some facts related to tabloid moduli from [13, 12].
(These are also explained in the proof of Lemma 3.4.)

Denote byM (r,s) the submodule ofM (r) generated by those i ∈ Index(M, r)
whose support-size is at most s. So, in particular, M (r) = M (r,r2) and
M (r,0) ∼= Fp. Note that M (r,s) is a submodule of M (r′) if r ≤ r′ with an
associated natural projection. For K a uniform family of linear polynomials
Ki with variables indexed by r′–indices denote by V (KM ) the vector subspace
of M (r′) consisting of solutions to the homogeneous system {KM

i x = 0}i, and
by Vr,s(KM ) the projection of V (KM ) onto M (r,s).

Theorem 3.3. Given r, s ≥ 1 there are c, ` ≥ 1 and r′ ≥ r, uniform
families H1, . . . , Hc of vectors from M (r,s) and uniform families K1, . . . , Kc

of vectors from M (r′) such that the following holds:

(1) The vectors Ht
i and Kt

i in the families Ht and Kt, t ≤ c, respectively,
are indexed by ordered `–tuples i such that the support-size of each i
is at most 2s+1s2.

(2) For every M of size at least |C|+2s+1s2, if s < p then any submodule
W of M (r,s) is generated as a vector space by one of the systems
(Ht)M .

(3) For every M of size at least |C|+ 2s+1s2, any submodule W of M (r,s)

is Vr,s((Kt)M ) for a Kt, t ≤ c.

Proof. Assume |M | ≥ |C| + 2s+1s2. We shall show that any submodule
W of M (r,s) is a span of some HM , where H is a uniform family indexed
by `–tuples of support-size at most 2s+1s2. For a fixed ` there are a priori
finitely many such uniform families as there are finitely many types of pairs
(i, j) of indices of H(i, j), and as we are working over a finite field. (This latter
condition is, in fact, not necessary but this follows only from the construction.)



DEGREE OF IDEAL MEMBERSHIP PROOFS 55

The existence of a suitable H is proved by an induction argument of a
structure that is, in part, similar to the proof of [2, Theorems 7 and 7’]. (We
modify the induction and use a construction from [12] in place of a duality
argument in [2].) The construction yields families Kt in any characteristic
and families Ht if p > s; this assumption is used only in Lemma 3.4 (Part 2).

We shall first motivate the general set-up for the induction by considering
a special case. This allows us also to introduce a few necessary concepts.

Let W ⊆ M (r,s). By the embedding tab we may identify W with a sub-
module of some sum

⊕
jM

µj , where each µj–tabloid has support-size at most
s. Consider the special case when, in fact, W is a submodule of a single Mµ

and when µ is proper.
By James’ submodule theorem [13, Theorem 4.8] either Sµ ⊆ W or W ⊆

(Sµ)⊥, where Sµ is the Specht module. Let ψi,v be the maps Mµ → Mλi,v

from [13, Definition 17.10] (see the proof of Lemma 3.4 for the definition) and
let

η :=
2r−1⊕
i=1

µi+1−1⊕
v=0

ψi,v

be the map Mµ → Y µ, where Y µ :=
⊕

i,vM
λi,v .

If Sµ ⊆W , take U := η(W ) ⊆ Y µ and assume that G ⊆ U spans U . Then

H := η(−1)(G) ∪ Sµ

spans W as Sµ = Ker(η) by [13, Corollary 17.18]. In fact, in place of η(−1)(G)
it is enough to have one representative for every fiber of η over G, as η(u) =
η(v) implies u− v ∈ Sµ.

If, on the other hand, W ⊆ (Sµ)⊥, we use the maps ϕi,v : Mλi,v → Mµ

from [12] (denoted there by ψi,−v; for the definition see the proof of Lemma
3.4). Let ρ :=

∑
i,v ϕi,v ◦ prλi,v : Y µ → Mµ be the sum of these maps (with

the same range for i, v as in η). Take U := ρ(−1)(W ) ⊆ Y µ, and assume that
G ⊆ U spans U . By [12, Corollary 3], ρ(Y µ) = (Sµ)⊥, so H := ρ(G) spans
W in this case.

Hence in either case we construct a spanning set H for W from a spanning
set G for U . To get a good estimate on the parameters of such families we shall
proceed slightly differently. We shall construct a set H ′ ⊆ W that generates
W (as a module) from a generating set G′ for U , and in the construction we
shall estimate the growth of the number of parameters needed to define any
vector in the generating set. In the course of the construction we also derive
an estimate for the cardinality of H ′. Given such a set H ′, we shall construct
a uniform family H explicitly in Claim 3.

To make this construction work, it will be enough to show:

(1) Sµ is spanned by a uniform family indexed by 2s–tuples.
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(2) If p > s, then for any w ∈ Y µ definable over A, element of η(−1)(w)
of Mµ is definable over some A′ such that |A′ \ A| ≤ 2s2. Hence the
pull-back η(−1)(G′) together with Sµ is generated by a set in which
every vector is defined from the same tuples as those in G′ augmented
by 2s2–tuples or from 2s–tuples.

(3) The image ρ(w) ∈Mµ of any w ∈ Y µ definable over A is also definable
over A. Hence the image ρ(G′) is a generating set parametrized by
the same indices as G′.

(4) Some suitable G′ exists.

This will be the basis of an induction argument as the module Y µ is in
a sense simpler than Mµ. (It does not contain the irreducible factor Dµ :=
Sµ/(Sµ∩Sµ⊥), cf. [13].) The first three of these conditions will be guaranteed
by Lemma 3.4 and the last condition will amount to the induction hypothesis.

We describe first the inductive construction of H ′, then give a bound ` for
the number of parameters and construct H, and describe the construction of
systems Kt.

For any µ let µ̃ be the reordering of µ that is proper. So µ = µ̃ for proper
µ. We assume that µ1 ≥

∑
j≥2 µj , so µ̃1 = µ1. (Since |M | ≥ 2s and the

support-size of any starting µj is at most s, this holds for all starting µj ’s.)
For any partition λi,v occurring in the definition of η, λ̃i,v is lexicographically
bigger than µ, provided µ is proper. Moreover, the support-size of λi,v is at
most the support-size of µ.

We shall consider sets X of partitions where a partition may occur with
repetitions; these will be called multi-sets. We shall study definability of
elements of

⊕
λ∈XM

λ. Recall (from the beginning of this section) that v ∈⊕
λ∈XM

λ is definable over A if each projection prMλ(v) ∈Mλ (with different
projections for different occurrences of Mλ in the direct sum) is definable over
A by a separate definition Bλ(α). For this purpose we may always replace any
λ by λ̃ and permute, in a suitable way, the α’s in Bλ. Thus we may assume
without a loss of generality that all partitions in X are proper.

For a multi-set X of proper partitions all of which have the support-size
at most s we describe the following operation. Let µ be the lexicographi-
cally minimal partition occurring in X that is different from the maximal
(N, 0, . . . , 0). (If no such partition exists the operation is undefined.) Take
any occurrence of it in X and replace it by all λi,v from the definition of η,
replacing further those λi,v that are not proper by λ̃i,v. The new multi-set is
denoted by Xsucc.

Consider the class X of all such multi-sets X that can be obtained by
repeated applications of the operation to the set Xmin of all partitions corre-
sponding to all tab(i), for all i ∈ Index(M, r) of the support-size at most s
(i.e., to the set of µj ’s at the beginning, with µj possibly replaced by µ̃j).
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The property that Y occurs later than X in the sequential generation
(which is unique) of X from Xmin defines a strict linear order Y � X on X
(by the remark above about the lexicographic ordering of proper µ and λ̃i,v),
the multi-set Mmin is �–minimal, and the �–maximal multi-set Xmax has the
form of several copies of the lexicographically biggest partition (N, 0, . . . , 0).
Denote by d(X) the number of Y � X; hence d(Xmax) = 0 and d(Xmin) =
|X | − 1.

Claim 1: |Xmin| ≤ 2(r+2)s, |X | ≤ 2(r+2)ss2s , and any multi-set X ∈ X has
size (counting multiplicities) at most 2(r+2)ss2s .

Proof. We estimate the cardinality of Xmin by the number of partitions
µ = (µ1, . . . , µ2r ) such that

∑
j≥2 µj ≤ s. This is(

s+ 2r − 1
s

)
≤ (2r + s)s ≤ (2r + r2)s ≤ 2(r+2)s.

There are at most 2s different proper partitions of support-size
∑
j≥2 µj ≤

s. Call the number of µ̃ in the lexicographic ordering of such proper partitions
the level of µ, level 1 corresponding to the lexicographically largest partition
µ̃ = (N, 0, . . . , 0) and the largest level hmax to the smallest µ̃. Now, Xmin has
at most |Xmin| elements in the maximal level hmax ≤ 2s. So after at most
|Xmin| steps we get Y with all partitions in level ≤ hmax − 1, and of size
|Y | ≤ |Xmin| · (s−1). The factor (s−1) comes from the fact that the number
of λi,v’s is ≤ s− 1. Getting rid of level (hmax− 1)–partitions in Y requires at
most |Y | steps, increasing the size of Y to at most |Xmin| · (s − 1)2. So the
entire process until reaching Xmax needs at most

|X | ≤
2s∑
t=0

|Xmin|(s− 1)t ≤ 2(r+2)s · s2s

steps, and any Y occurring in it has a cardinality bounded by the same quan-
tity

|Y | ≤ 2(r+2)s · s2s .

This proves the claim. �

Using�–downwards induction, we shall prove, for anyX ∈ X , the following
statement:

For any submodule U ⊆
⊕

λ∈XM
λ there is H ′ ⊆ U generating U and such

that any vector in H ′ is definable from a 2s2d(X)–tuple. Moreover, the size
of H ′ is at most 2(r+2)ss2s + d(X).

Consider the initial case X := Xmax. The module Mµ for µ = (N, 0, . . . , 0)
is just the field Fp, so

⊕
λ∈XM

λ = Fp⊕ · · · ⊕Fp, with |Xmax| ≤ 2(r+2)s · s2s

copies of Fp.
Any particular vector in this module is definable without parameters (as

there is a separate definition for any coordinate picking an element of Fp). It
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is also enough to take |Xmax| of these vectors in any generating set H ′, as
this is the maximal dimension. This proves the initial case of the induction.

For the induction step assume that the statement holds for all Y � X. Let
X0 ⊆ X be the multi-set of all occurrences of the partition µ that is replaced
in the operation (i.e., µ is the lexicographically minimal partition). Let

W ⊆
⊕
λ∈X

Mλ =
⊕
µ∈X0

Mµ ⊕
⊕

λ∈X\X0

Mλ.

Let u ∈
⊕

λ∈XM
λ and let t be a µ–tableaux and κt its signed column

sum. Consider the coordinate uλ = prMλ(u) of u in Mλ. By [13, Lemma
4.6 and Corollary 4.7], uλκt = 0 for all λ that are lexicographically greater
than µ (as the lexicographical ordering refines the partial ordering D used in
[13]; see [13, Definitions 3.2 and 3.4]), and uλκt = c · et for some c ∈ Fp, if
λ = µ. Thus uκt ∈

⊕
λ∈XM

λ is a vector whose first |X0| coordinates are
Fp–multiples of the polytabloid et and all other coordinates corresponding to
λ ∈ X \X0 are zero.

Fix a µ–tabloid t and take X1 ⊆ X0 to be the set of all occurrences of
µ’s such that for some u ∈ W , uκt has a non-zero coordinate corresponding
to the particular µ (and hence is a non-zero Fp–multiple of et). Using the
occurrences from X1 as the first k := |X1| occurrences of µ in the direct sum,
we may assume that we have k vectors u1, . . . , uk ∈W such that uiκt has its
first k coordinates of the form ci,j · et, j = 1, . . . , k, and all other coordinates
zero, with all ci,i 6= 0.

Let X2 ⊆ X1 be the maximal set such that there are u1, . . . , uk ∈ W with
(uiκt)j = ci,jet and an invertible k × k matrix E with entries from Fp such
that the following holds: the vectors vi with entries vij :=

∑
m≤k ci,mEm,j for

j ≤ k, and vij := 0 for j > k are such that vij = 1 iff i = j ∈ X2 and vij = 0
otherwise. The vectors vi are in

⊕
λ∈XM

λ and the map defined by κt and E
(mapping u to uκt and then changing the first k coordinates by E) maps W
onto a submodule W ′ ⊆

⊕
λ∈XM

λ.
For i ≤ |X0| denote by pri(W ′) the projection of W ′ on the ith copy of Mµ

in the direct sum; we assume that first k′ := |X2| ≤ k coordinates corresponds
to elements of X2.

Claim 2. For i ≤ k′, we have pri(W ′) ⊇ Sµ and, in fact,

0⊕ · · · ⊕ 0⊕ Sµ ⊕ 0⊕ · · · ⊕ 0 ⊆W ′,
with Sµ in the ith position. For k′ < i ≤ k we have pri(W ′) ⊆ (Sµ)⊥.

Proof. By the construction of E, for i ≤ k′ the module W ′ contains the
vector

0⊕ · · · ⊕ 0⊕ et ⊕ 0⊕ · · · ⊕ 0
with the polytabloid et in the ith position. This proves the first part of
the claim. For the second part note that by the James submodule theorem
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Sµ ⊆ pri(W ′) or pri(W ′) ⊆ (Sµ)⊥. If the former were the case, then a
vector u ∈W ′ would exist with pri(u) = et, i.e., we would have pri(uκt) 6= 0,
contradicting the maximality of X2. �

The map determined by E is clearly one-to-one, and both the map and its
inverse are definable without parameters. This is because the map is a matrix
of fixed size, so its entries from Fp are explicitly given by the definition. Thus
any generator set for W ′ can be pulled to W without extra parameters. We
may thus assume without a loss of generality that W itself has the properties
of W ′. Namely, there are k ≥ 1 and k ≥ k′ ≥ 0 such that:

(1) For 1 ≤ i ≤ k′, pri(W ) ⊇ Sµ and

0⊕ · · · ⊕ 0⊕ Sµ ⊕ 0⊕ · · · ⊕ 0 ⊆W
with Sµ in the ith position.

(2) For k′ < i ≤ k, pri(W ) ⊆ (Sµ)⊥.
We now consider two cases, similar to the special case considered earlier.

Case 1 is when k′ ≥ 1. Map W to a submodule U of⊕
µ∈X2

⊕
i,v

Mλi,v ⊕
⊕

λ∈X\X2

Mλ,

applying η to the first k′ coordinates and the identity to all other coordinates
(the ranges for i and v being as in the definition of η). Call this map η′. Let
Y be the multi-set of partitions so obtained. As Y � X, by the induction
assumption we have G′ ⊆ U generating U such that any vector in G′ is
definable from a 2s2d(Y )–tuple of parameters. Now, Ker(η′) = Sµ⊕ · · · ⊕Sµ
and so

η′
(−1)(G′) ∪ {0⊕ · · · ⊕ 0⊕ Sµ ⊕ 0⊕ · · · ⊕ 0 | Sµ in the ith position, i ≤ k′}

generates W . By parts 1 and 2 of Lemma 3.4 we can take a set H ′ consisting
of a representative of each fiber of η′ over G′, and of a generator of each
0 ⊕ · · · ⊕ 0 ⊕ Sµ ⊕ 0 ⊕ · · · ⊕ 0, such that all elements of H ′ are definable
from a tuple of size 2s2d(Y ) + 2s2 = 2s2(d(Y ) + 1) ≤ 2s2d(X). Then H ′

generates the same set as η′(−1)(G′) ∪ Sµ ⊕ · · · ⊕ Sµ, which is W . Moreover,
|H ′| ≤ |G′|+ k′ ≤ 2(r+2)ss2s + d(Y ) + k′ ≤ 2(r+2)ss2s + d(X).

In Case 2 we have k′ = 0, i.e., pri(W ) ⊆ (Sµ)⊥ for all i ∈ X0. Let Y be
the multi-set obtained by removing all µ’s from X by the operation. Hence⊕

λ∈XM
λ changes to ⊕

µ∈X0

⊕
i,v

Mλi,v ⊕
⊕

λ∈X\X0

Mλ.

Let ρ′ be the map⊕
µ∈X0

⊕
i,v

Mλi,v ⊕
⊕

λ∈X\X0

Mλ →
⊕
λ∈X

Mλ,
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that applies the map ρ (defined in the proof of the theorem) to the each of
the |X0|

⊕
i,vM

λi,v–parts of
⊕

ξ∈Y M
ξ, and the identity to the other parts.

Hence Rng(ρ′) = (Sµ)⊥ ⊕ · · · ⊕ (Sµ)⊥
⊕

λ∈X\X0
Mλ, and so if G′ generates

ρ′(−1)(W ), then H ′ := ρ′(G′) generates W . By the induction assumption and
by Part 3 of Lemma 3.4, every vector in H ′ is definable from tuples of size
2s2d(Y ) ≤ 2s2d(X).

Note that Lemma 3.4 requires that |M | ≥ |C ∪ A| + 2s2; i.e., |M | ≥
|C|+ 2s+1s2 suffices since we have |A| ≤ (2s − 1)2s2.

Claim 3: Let H ′ ⊆ W ⊆
⊕

λM
λ be a set generating W and having the

following properties.

(1) Every vector in H ′ is definable from a 2s+1s2–tuple.
(2) |H ′| ≤ S.

Then there is a uniform family H that generates W as a vector space and that
is indexed by (dlog2(S)e+ 1 + 2s+1s2)–tuples of support-size at most 2s+1s2.

Proof. To prove the claim note first that different vectors in H ′ might
be definable from the same index i by different definitions, say by Av,λ(i, j)
(where v ∈ H ′, λ is a coordinate, j runs over indices corresponding to λ–
tabloids, and i the parameter index), while we need a single definitionBλ(iv, j)
(iv an index of parameters from which v is definable by B). Now, Bλ defines
the Fp–coordinate of the λ–tabloid tab(j) in the Mλ–part of the direct sum.
This is arranged as follows.

Take ` such that 2`−1 ≥ |H ′|. Any `–tuple i = (i1, . . . , i`) determines an
(`−1)–tuple of bits i∗ ∈ {0, 1}`−1 by i∗j = 1 if ij = ij+1, and i∗j = 0 otherwise,
for j < `. To different v ∈ H ′ assign different v∗ ∈ {0, 1}`−1 and define
Bλ(i, j), i = (i′, i′′), an (`+2s+1s2)–tuple, to be Av,λ(i′′, j) if the support-size
of i′ is ≤ 2 and i′

∗ = v∗ and i′′ = iv, and identically zero otherwise.
Hence we have a single definition B = (Bλ)λ such that for any v ∈ H ′

there is an (` + 2s+1s2)–tuple i of support-size ≤ 2s+1s2 such that prMλ(v)
is definable by Bλ from i. Now take H to be the set of vectors defined by the
same definition B, but with i running over all possible (` + 2s+1s2)–tuples.
Clearly H ′ generates every element of H, and H is symmetric. So H generates
as a vector space the same module that H ′ generates as a module, i.e., the
module W . This proves the claim. �

We can now complete the proof of the theorem. By the inductive construc-
tion we have a generating set H ′ for W satisfying the hypothesis of Claim 3
with S ≤ 2(r+2)ss2s . Hence the required H exists by Claim 3.

The systems Kt are obtained as follows. The module W is transformed
in the construction (by η or ρ(−1)) to submodules Wu of

⊕
λ∈XuM

λ, with
X0, . . . , Xm �–listing X . Denote by y(u) the tuples of variables indexed by
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tabloid generators of
⊕

λ∈XuM
λ. In particular, x := y(0) are variables in-

dexed by µ–tabloids. Hence, x ∈ W iff there exist vectors y(u) in all Wu,
u = 0, . . . ,m− 1, such that η(y(u)) = y(u+1) or y(u) = ρ(y(u+1)) respectively.
Any particular sequence of these equations gives one linear system Kt; an es-
timate for their number and for the number of parameters follows from Claim
1 in the same way as for systems Ht. �

We now address the issue of the constants C. Namely, the theory in [13,
12] which we use has been developed for Fp[Sym(M)]–moduli, while we use
Fp[SymC(M)]–moduli. To see that this is, in fact, equivalent note that an
Fp[SymC(M)]–module Mµ, µ = (µ1, . . . , µh), is isomorphic to a direct sum
of Fp[Sym(M \ C)]–moduli of the form Mλ, for all partitions λ of M \C into
h rows such that λi ≤ µi (all i), having one copy of Mλ in the direct sum
for any partition of C into h classes C1, . . . , Ch of sizes µi− λi. In particular,
the copy of Mλ in the sum corresponding to λ and to the partitioning of C
into C1, . . . , Ch represents the submodule of Mµ generated as a vector space
by tabloids T = (T1, . . . , Th) such that Ci ⊆ Ti, for all i. Moreover, the
isomorphism between the Fp[SymC(M)]–module and the direct sum clearly
furnishes a translation between the definitions of elements.

The notions arising in the following lemma are defined in [13, 12]. We recall
these definitions in the proof of the lemma.

Lemma 3.4. Let µ = (µ1, . . . , µ2r ) be a proper partition such that
∑
j≥2 µj

≤ s. Assume A ⊆M and |M | ≥ |C ∪A|+ 2s2.

(1) Let et ∈ Sµ be any polytabloid from Mµ. Then ind(et) is definable
from a 2s–tuple.

(2) Let ψi,v : Mµ →Mλi,v be the linear maps from [13, Definition 17.10],
and let η :=

⊕2r−1
i=1

⊕µi+1−1
v=0 ψi,v. Assume s < p. Let w ∈ Rng(η) ⊆⊕

i,vM
λi,v be definable from A. Then there is u ∈ η(−1)(w) ⊆ Mµ

definable from some A′ such that |A′ \A| ≤ 2s2.
(3) Let ϕi,v : Mλi,v →Mµ be the linear maps from [12], denoted by ψi,−v

there. Let ρ :=
∑
i,v ϕi,v ◦ prλi,v (with the same range for i, v as in

Part 2), and let w ∈
⊕

i,vM
λi,v be definable from A. Then ρ(w) is

also definable from A.

Proof of Part 1. Assume that µ = (µ1, µ2, . . . , µ2r ). By [13, 4.5] Sµ is
generated by any one polytabloid et. Here t is some tableau (defining the
tabloid {t}) and et = {t}κt, where κt =

∑
π∈Ct sgn(π)π is the signed column

sum. Ct is the subgroup of SymC(M) that fixes set-wise all columns of t.
Consider the elements of the first s columns of t (there are ≤ 2s such

elements) as a parameter 2s–tuple i = (i1, . . . , i2s). We may think of it as
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defining a tableau ti with 2r rows

(i1, . . . , is, X), (is+1, . . . , is+µ2), . . . , (is+∑2≤j≤2r−1 µj
, . . . , is+

∑
2≤j≤2r µj

),

where X is an arbitrary ordering of M \ supp(i). The ordering of X is, in
fact, irrelevant as κti depends only on i (only the first s columns of ti can
be non-trivial). The column stabilizer group Cti is a finite subgroup of the
symmetric group of supp(i) of size depending on s, and hence the signed
column sum κti can be listed explicitly (using i as parameters).

Denote by vi the vector obtained from eti by the ind–operation. As any eti
generates Sµ, vi generates ind(Sµ), and the uniform system {vi}i generates
ind(Sµ) as a vector space. �

Proof of Part 2. The map η is the direct sum of some maps ψi,v, 1 ≤ i < 2r,
0 ≤ v < µi+1 (cf. [13, Definition 17.10]). The map ψi,v maps Mµ, µ =
(µ1, . . . , µ2r ), to Mλi,v , λi,v = (µ1, µ2, . . . , µi−1, µi+µi+1−v, v, µi+2, . . . , µ2r ),
by sending a µ–tabloid T to

∑
{T ′ | T ′ ∈ XT }, where XT is the set of all λi,v–

tabloids T ′ that agree with T on all rows except for the ith and the (i+ 1)st
rows, and the (i+ 1)st row of T ′ is a subset of size v of the (i+ 1)st row of T .

We shall utilize certain moduli Sµ
∗,µ, similar to the proof of [2, Lemma

35]. Let (µ∗, µ) be a pair of partitions with 2r rows such that µ∗1 = µ1 and
µ∗i ≤ µi for all i, and such that µ∗ is also proper (and hence a partition of an
integer not greater than N). Let C∗t , where t is a µ–tableaux, be a subgroup
of Ct which fixes point-wise all elements of t outside µ∗. Let Sµ

∗,µ be the
module spanned by all eµ

∗,µ
t := {t}(

∑
π∈C∗t

sgn(π)π). Note that e0,µ
t = {t}

(where 0 is the partition with all rows except the first empty) and eµ,µt = et,
so S0,µ = Mµ and Sµ,µ = Sµ . (These modules are defined in [13, Definitions
17.2 and 17.4].)

Assume µ∗ 6= µ and that i > 1 is the first row such that µ∗i−1 = µi−1 but
µ∗i < µi. Define (see [13, Definition 15.10]) two new pairs as follows:

(1) Pair (µ∗, µRi): change µi to µ∗i and µi−1 to µi−1 + µi − µ∗i .
(2) Pair (µ∗Ai, µ): change µ∗i to µ∗i + 1 if µ∗i + 1 ≤ µ∗i−1; otherwise let the

new pair be (µ∗Ai, µ) := (0, 0).

These operations also make sense for µ–tableaux. Here tRi is t with the
µi − µ∗i elements of the ith row of t that are outside µ∗i moved to the end of
the (i− 1)st row.

The crucial facts (see [13, Theorem 17.13]) are that Sµ
∗,µψi−1,µ∗i

= Sµ
∗,µRi

and Sµ
∗,µ∩ Ker(ψi−1,µ∗i

) = Sµ
∗Ai,µ. This will link these moduli with the map

η. Map ψi−1,µ∗i
affects only two rows of a tabloid. Thus the following claim

can be rephrased (and proved) as a statement about hyper-graphs. We shall
follow, however, a more direct approach, related to [2, Lemma 35].
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Claim 1. Let w′ ∈ Sµ
∗,µRi be definable over A and assume that w′ =

ψi−1,µ∗i
(u′) for some u′ ∈ Sµ

∗,µ. Assume p > s. Then there is ω ∈ Sµ
∗,µ

definable over some A′ ⊇ A such that w′ = ψi−1,µ∗i
(ω) and |A′ \A| ≤ 2s.

Proof. We are going to use the identity (for a µ–tableaux t)

ψi−1,µ∗i
(eµ
∗,µ
t ) = eµ

∗,µRi
tRi

from [13, Lemma 17.12, p. 68]. We first need to discuss the encoding of
polytabloids eµ

∗,µ
t by indices. In particular, encode eµ

∗,µ
t by an index, denoted

by I(t, µ∗, µ),
ξ = ( ind({t}), ξ1, . . . , ξµ2)

where the tuple ind({t}) is extended by sets ξj , the sets of elements of t in
the jth column that are inside µ∗. This generalizes the encoding of both et
(= eµ,µt ) and {t} (= e0,µ

t ) with the following modification. Namely, all codes
ξ, as well as the codes for the et’s list the first µ2 elements of the first row
(which are all in µ∗ as µ∗1 = µ1), while j = ind({t}) does not. To remedy
this, let A′ ⊇ A be a set of 2s new constants not in A ∪ C. To get from j a
code ξ for e0,µ

t pick first (in some fixed ordering of A′) µ2 elements of A′ not
occurring in supp(j) ∪ A ∪ C and place these into the first row. As µ2 ≤ s

and | supp(j)| ≤ s, this is always possible. Clearly, ind(e0,µ
t ) = j.

Note that two tableaux t, t′ yield the same code ξ iff they differ only in the
ordering of the rows outside µ∗, i.e., iff eµ

∗,µ
t = eµ

∗,µ
t′ . We shall denote such

polytabloids eµ
∗,µ
ξ . Also, I(t, µ∗, µ) determines I(tRi, µ∗, µ). We denote these

codes sometimes by ξRi. Such ξ need not to be unique, but their number(µi−1−µ∗i−1+µi−µ∗i
µi−µ∗i

)
is non-zero modulo p (as s < p) and so we can take all ξ’s

with an appropriate weight in Fp.
Let T ′ be a µRi–tabloid with j′ = ind(T ′). Let ξ′ := ξRi be a code of a

(µ∗, µRi) - polytabloid eµ
∗,µRi
ξ′ . The coefficient of T ′ in eµ

∗,µRi
ξ′ depends only

on tpC(j′, ξ′). Hence, if w′ =
∑
T ′ a

′
T ′T

′ is from Sµ
∗,µRi with a′T ′ definable

over A, there are b′ξ′ definable over A′ such that w′ =
∑
ξ′ b
′
ξ′e

µ∗,µRi
ξ′ .

Using the identity mentioned earlier, we have

ψi−1,µ∗i
(
∑
ξ

bξe
µ∗,µ
ξ ) =

∑
ξ′

b′ξ′e
µ∗,µRi
ξ′ = w′

with bξ := b′ξRi . It remains to show that aT , with T ranging over µ - tabloids

such that
∑
T atT =

∑
ξ bξe

µ∗,µ
ξ , is definable over A′. The value bξ depends

only on tpC(ξ/A′) and the coefficient of T in eµ
∗,µ
ξ only on tpC( ind(T ), ξ/A′).

Moreover, by Lemma 1.7, the number of ξ with a given type over A′ depends
only on |M | mod pν , for some ν ≥ 1, provided M is at least as large as
the support-size of the type tpC(ξ/A′) (which is the case, by the hypothesis
|M | ≥ |A∪C|+ 2s2 of the lemma). Thus the aT are definable over A′ as well,
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with possibly different definitions for each remainder class of |M | mod pν .
(This argument is similar to Part 3 of the proof of the lemma.) This yields
the claim. �

Let µ1, . . . , µk be the sequence of proper partitions

(µ1, 0, . . . , 0), (µ1, 1, 0, . . . , 0), . . . , (µ1, µ2, 0, . . . , 0),

(µ1, µ2, 1, 0, . . . , 0), . . . , (µ1, µ2, . . . , µ2r )
obtained by filling (µ1, 0, . . . , 0) to µ first in the 2nd row, then in the 3rd row,
etc. Note that k ≤ s.

Let ψ1, ψ2, . . . be the sequence of maps

ψ1,0, ψ1,1, . . . , ψ1,µ2−1, ψ2,0, ψ2,1, . . . , ψ2,µ3−1, . . . , ψ2r−1,µ2r−1,

up to ψj0,0, . . . , ψj0,µj0+1−1, where j0 is the last row j such that µj+1 > 0.
Fix any u ∈Mµ = S0,µ such that η(u) = w. Assume that w is defined over

A. We are going to modify u suitably.
Claim 2: For any j ≥ 1 there is vj ∈Mµ with the following properties:
(1) vj is definable over some Aj ⊇ A such that |Aj \A| ≤ j · 2s.
(2) For all i ≤ j we have ψi(u) = ψi(vj).

Proof. The claim is proved by induction on j. If j = 1 take w′ to be the
projection of w on Mλ1,0

. So

w′ = ψ1,0(u) = ψ1(u) ∈Mλ1,0

is also definable from A. Apply Claim 1 with u′ := u and w′ := ψ1,0(u) and
let v1 be the ω provided by this claim.

Assume the claim holds for j. To prove that it holds for j + 1 take uj :=
u−vj and note that as ψi(u) = ψi(vj) for all i ≤ j, we have uj ∈

⋂
i≤j Ker(ψi).

By the definition of the sequences µ1, µ2, . . . and ψ1, ψ2, . . . and by the the-
orem mentioned earlier ([13, Theorem 17.13]),

⋂
i≤j Ker(ψi) = Sµ

j+1,µ.

We want vj+1 ∈Mµ such that δ := vj+1− vj ∈ Sµ
j+1,µ, and ψj+1(vj+1) =

ψj+1(u) (as then also, for all i ≤ j, ψi(vj+1) = ψi(vj + δ) = ψi(vj) = ψi(u)).
Note that ψj+1(u) and ψj+1(vj) are defined over Aj (analogous to Part 3),

so the same holds for w′ := ψj+1(u − vj). Apply Claim 1 with u′ := uj ∈
Sµ

j+1,µ. The claim gives δ ∈ Sµj+1,µ definable over some suitable A′ ⊇ Aj .
Hence vj+1 := vj +δ is definable over Aj+1 := A′ as well and has the required
properties. �

Now take vk ∈Mµ, where k is the length of the sequence of ψ’s. By Claim
2, ψi(vk) = ψi(u) for all i, so

η(vk) = η(u) = w

and vk is defined over Ak with |Ak \A| ≤ k · 2s ≤ 2s2. This proves Part 2 of
the lemma. �
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Proof of Part 3. The maps ϕi,v : Mλi,v → Mµ are defined as follows. (In
[12] these maps are denoted by ψi,−v; we use the other notation to avoid
confusion with the ψ’s from Part 2.) The map ϕi,v maps a λi,v–tabloid T
to
∑
T ′∈XT T

′, where XT is the set of all µ–tabloids agreeing with T in all
except the ith and the (i + 1)st rows, with the (i + 1)st row of T ′ being the
(i+ 1)st row of T together with some µi+1 − v elements of the ith row of T .

Assume now that w ∈
⊕

i,vM
λi,v is a vector defined over A. Write w as

the sum of its Mλi,v–parts,

w =
∑
i,v

wi,v

and write a particular wi,v as

wi,v =
∑
T

cTT

with T running over λi,v–tabloids. Then

ϕi,v(wi,v) =
∑
T

cT ϕi,v(T ) =
∑
T

cT (
∑

T ′∈XT

T ′),

where XT are the µ–tabloids occurring in the definition of ϕi,v(T ), and this
equals to ∑

T ′

[
∑

T :T ′∈XT

cT ] · T ′.

The possible sets XT depend on T ′ and the types of some suitable T (and their
multiplicities) depend on the type of T ′. Thus the Fp–value in [. . . ] depends
only on tpC(T ′/A), by Lemma 1.7, for any particular remainder class of N
modulo pν . To apply Lemma 1.7 we need |M | to be at least equal to the
support-size of tpC(T/A), i.e., at least |C ∪ A| + s. (Note that this gives
different definitions for ϕi,v(wi,v) for different remainder classes.) This proves
Part 3 of the lemma. �

We now derive an effective version of Ajtai’s theorem (see Theorem 2.3)
from Theorem 3.3. (It is clear that the generating set H ′ constructed in the
proof of Theorem 3.3 satisfies the conditions imposed on G in Theorem 3.1,
so we obtain this theorem as well.) We restate the theorem (the equivalence
of its parts 1 and 3) as we incorporate the bounds. The proof follows the
original proof of [2] except that we use our Theorem 3.3 in place of Theorem
3.1.

Theorem 3.5. Let L(C) and k, `, s, z ≥ 1 be given. Assume that a family
F is a uniform family indexed by `–indices i of support-size ≤ z of linear
polynomials Fi with variables indexed by k–indices of support-size ≤ s. Then
there exists ν ≥ 1 (depending only on |C|, z, s and tacitly on p) and a set
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Q ⊆ {0, . . . , pν−1} such that for every M such that |M | ≥ |C|+2z+2s+1s2+s
the following two statements are equivalent:

(1) The system {FMi = 0}i is solvable in Fp.
(2) |M | ≡ r mod pν for some r ∈ Q.

Proof. Let F be a family of linear equations satisfying the hypothesis of the
theorem. Let i0 be an index such that Fi0 has a non-zero absolute coefficient
ci0 . (If all Fi are homogeneous there is nothing to prove as F = 0 has the
trivial solution.) By replacing any Fi by Fi − ciFi0c

(−1)
i0

, where ci is the
absolute coefficient of Fi, we may assume without loss of generality that all
equations of F are homogeneous, except for Fi0 . To maintain the uniformity
of the system, we add supp(i0) to C.

Now consider two homogeneous systems F 1 and F 2. System F 1 is obtained
from F by deleting the equation Fi0 = 0; system F 2 is obtained by changing its
absolute coefficient to zero. Denote by V (F 1), V (F 2) the sets of Fp–solutions
of these systems. As both systems are homogeneous, the sets are vector
spaces. As both systems are uniform, the sets are symmetric with respect to
SymC(M/ supp(i0)), and thus are FpSymC(M/ supp(i0))–moduli.

Clearly, F has a solution iff V (F 2) 6⊆ V (F 1). By Theorem 3.3, for |M | ≥
|C|+ z+ 2s+1s2 ≥ |C ∪ supp(i0)|+ 2s+1s2, this is equivalent to the statement
that there is a vector v ∈M (k) such that

(1) v is a solution of F 1 = 0.
(2) v is not a solution of F 2 = 0.
(3) v is definable from a 2s+1s2–tuple.

To prove this, we first note that there are only finitely many v satisfying
the last condition, so the entire statement is finite. It is enough to show that
for any particular definition of a vector v satisfying 3, whether or not the
vector defined by the definition also satisfies the first two conditions depends
only on |M | mod pν , for some suitable pν .

This is verified via Lemma 1.8. Let f ∈ F 1 be a linear polynomial defined
from an `–index of support-size ≤ z (over supp(i0)). By Lemma 1.8, whether
or not v satisfies f = 0 depends only on pν , provided |M | ≥ |C| + z + z +
2s+1s2 + s (where |C| + z is the bound for |C ∪ supp(i0)|, z for parameters
of f , 2s+1s2 for the parameters of v, and s for the indices of the variables).
This proves Theorem 3.5. �

Note that the same argument yields also an upper bound for ν; however,
we do not need this bound.

4. Moduli of polynomials with bounded degree PC–proofs

In the remainder of this paper let F be a fixed uniform family of polynomials
of degree at most d with variables indexed by k–ary indices, k ≥ 1, which is
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indexed by indices of support-size at most 2k
2d+1(k2d)2, and which contains

the family COMMk.

Definition 4.1. For t ≥ d, PCt(M,F ) is the vector space over Fp con-
sisting of polynomials from Poly(M,k, t) that have a PC–proof from FM of
degree at most t.

We are going to show (in the proof of Theorem 5.1) that the property of M
that gM ∈ PCt(M,F ), where g is a uniformly defined polynomial, depends
only on the cardinality of M modulo some other fixed power pν

′
, provided M

is large enough.

Lemma 4.2. Let H and H ′ be uniform families of vectors indexed by r–
indices of support-size at most s and such that both H and H ′ are indexed by
indices of support-size at most z. Then there exists ν ≥ 1 (depending only on
|C|, z, s and tacitly on p) and a set Q ⊆ {0, . . . , pν − 1} such that for every
M such that |M | ≥ |C|+ 2(z + s) + 2z+1z2 + z the following two statements
are equivalent:

(1) H ′
M ⊆ SpanFp(HM ).

(2) |M | ≡ r mod pν for some r ∈ Q.

Proof. For uniform families H and H ′ there is a uniform family of linear
equations which has a solution in Fp for a finite M iff H ′

M ⊆ SpanFp(HM ).
The system contains for any pair (i′, j) of an index i′ of H ′ and an index j of
a coordinate of a vector, an equation with variables yi indexed by indices i of
H, such that H ′(i′, j) =

∑
i yiH(i, j).

By Theorem 3.5, whether or not the system has a solution over M , for
M of size at least |C| + 2(z + s) + 2z+1z2 + z (with the parameter z in
Theorem 3.5 being z := z + s and s := z) depends only on r < pν such that
|M | ≡ r mod pν . �

The following theorem is the only part of the lower bound proof for PC
using the specific definition of PCt(M,F ).

Theorem 4.3. There exists a number ν ≥ 1 (depending only on k and
t) and uniform families Hr, r = 0, 1, . . . , pν − 1, of polynomials of degree at
most t, with variables indexed by k–ary indices, indexed by indices of support-
size ≤ 2k

2t+1(k2t)2, such that the following holds: For every finite M , if

|M | ≡ r mod pν and |M | ≥ |C| + 66k
2t

, the system (Hr)M generates as a
vector space the space PCt(M,F ).

Proof. A submodule W of Poly(M,k, t) is equal to PCt(M,F ) iff W is the
smallest subspace containing FM and closed under the multiplication rule of
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PC. In particular, the latter condition can be formulated as follows: if g ∈W
and deg(g) < t then x · g ∈W , for all variables x.

Since of COMMk is contained in F , this reflects PC in commutative poly-
nomial rings.

Monomials of degree ≤ t in Var(M,k) are indexed by indices of support-
size ≤ k2t. By Theorem 3.3 there is c ≥ 1 such that any submodule of
Poly(M,k, t) is generated as a vector space by one of the uniform fami-
lies (Ht)M , for some t ≤ c, with Ht indexed by indices of support-size
≤ 2k

2t+1(k2t)2.
For a pair of uniform families H ′ and H from this finite list consider the

following conditions:

(1) F ⊆ SpanFp(H).
(2) H ′ consists only of polynomials of degree less than t.
(3) H ′ ⊆ SpanFp(H).
(4) H consists only of polynomials of degree at most t.
(5) xi ·H ′ := {xig | g ∈ H ′} ⊆ SpanFp(H), for all variables xi.

(6) SpanFp(HM ) ∩ Poly(M,k, t− 1) ⊆ SpanFp(H ′M )
(7) SpanFp(HM ) is the smallest subspace of Poly(M,k, t) among all

spaces SpanFp(H ′′M ), for all pairs of uniform families generating sets
H ′′′, H ′′ satisfying the above six conditions.

Denote the condition that H ′M ⊆ Span(HM ) by ΨH′,H . By Lemma 4.2
(with z := 2k

2t+1(k2t)2 and s := k2t), whether or not ΨH′,H is true in M
depends only on M mod pν , for some fixed ν ≥ 1, provided M ≥ |C|+ 2(z +

s) + 2z+1z2 + z. (Hence M ≥ |C|+ 66k
2t

suffices.)
Let � be a partial quasi-ordering of uniform families H. There are finitely

many such orderings as there are only finitely many uniform families. For �
let Λ� be the conjunction of all conditions ΨH′,H for H ′ � H together with
all ¬ΨH′,H for H ′ 6� H.

Let ΘH′,H be the disjunction of those Λ�, where the inclusions of the
families according to � satisfy all seven conditions for H ′ and H, and let ΦH
be the disjunction of ΘH′,H over all H ′.

Clearly HM generates as a vector space PCt(M,k, t) iff M satisfies ΦH ,
because FM ⊆ HM ⊆ Poly(M,k, t) by conditions 1 and 4, HM is closed
under the multiplication rule of PC by conditions 2, 3, 5 and 6, and HM is
the smallest such space by condition 7.

For M ≥ |C|+66k
2t

, whether or not M satisfies ΦH depends only on r < pν

such that |M | ≡ r mod pν . By Theorem 3.3, for every r there is at least one
Hr such that ΦHr is true in M if |M | ≡ r mod pν and |M | ≥ |C| + 6k

2t ≥
|C|+ 2k

2t+1(k2t)2, i.e., (Hr)M generates as a vector space PCt(M,F ) for all
such M . �
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Note that we cannot expect to find one uniform family generating as a
vector space PCt(M,F ) for all M . Indeed, the example of a linear system
F consisting of the equations {xi − 1 = 0}i∈M together with the equation∑
i∈M xi = 0 demonstrates this, as solvability of FM is equivalent to 1 /∈

PC1(F,M).

5. Degree lower bounds

For a uniform system F denote by F (−) the system without the polynomial
F∅. It is also uniform. We continue to assume that F satisfies the conditions
stated at the beginning of Section 4.

Theorem 5.1. Let F be a uniform family as above. Then for every t ≥ d
there is ν ≥ 1 such that the following holds for every r < pν :

If there is at least one M with |M | ≥ |C|+ 66k
2t

such that |M | ≡ r mod pν

and
FM∅ /∈ PCt(M,F (−)),

then for no M , |M | ≥ |C| + 66k
2t

and |M | ≡ r mod pν , is there a PC–proof
of degree at most t of FM

∅
from F (−),M .

Proof. Let Hr be the uniform families of generating sets for PCt(M,F (−))
(generating this space as a vector space) guaranteed by Theorem 4.3 if |M | ≥
|C| + 66k

2t
. The systems Hr are indexed by indices i of support-size ≤

2k
2t+1(k2t)2, and let the monomials correspond to indices j. Hence we may

write
Hr
i =

∑
j

Hr(i, j)xj .

Now take variables yi indexed by the i’s and consider the system of linear
equations

F (∅, j) −
∑
i

Hr(i, j)yi = 0

This system, say Kr, is obviously also uniform. It is indexed by j’s of
support-size z ≤ k2t, and the variables are indexed by i’s of support-size
s ≤ 2k

2t+1(k2t)2. Moreover, for any M such that |M | ≡ r mod pν , we have
F∅ ∈ PCt(M,F (−)) iff KM

r has a solution in Fp.
Thus Theorem 3.5 completes the proof, provided

|M | ≥ |C|+ 66k
2t
≥ |C|+ 2z + 2s+1s2 + s.

�

The following corollary is immediate.
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Corollary 5.2. Let F be a uniform family as above. Assume that for
every ν ≥ 1 and every r < pν there is an arbitrarily large M such that
|M | ≡ r mod pν and such that there is a solution in Fp of the system F (−),M

not satisfying F∅ = 0.
Then FM

∅
does not admit a PC–proof of degree t ≤ log6(log6(|M \ C|))/k2

from F (−),M .

This yields a lower bound for (N,m)–systems.

Corollary 5.3. Let p be fixed, and let m ≥ 1 be not divisible by p. Then,
for any N not divisible by m, there is no PC–refutation of the (N,m)–system
of degree t ≤ log6(log6(N))/m.

Proof. Take any ν ≥ 1 and r < pν . As p does not divide m, there are
arbitrarily large N divisible by m such that N ≡ r mod pν . The (N,m)–
system has a solution for such N , however. Hence the ideal generated by
it is non-trivial, i.e., 1 is not derivable from the system, and Corollary 5.2
applies. �

We show now that a merely non-constant degree lower bound for PC–proofs
of the (N,m)–systems follows already from Corollary 3.2 and the non-constant
degree lower bound for NS–proofs of the same system proved in [4]. In fact,
such a reduction applies in general.

Definition 5.4. For t ≥ d, NSt(M,F ) is the vector space over Fp con-
sisting of polynomials g of degree ≤ t with variables from Var(M,k) that have
an NS–proof from FM of degree at most t, i.e., such that there are polynomials
Gi with variables from Var(M,k), for which

g =
∑
i

GiF
M
i

and deg(GiFMi ) ≤ t for all i.

Theorem 5.5. For every k, t there is t′ such that for any F as in Theorem
5.1 the following holds for all M :

If FM
∅
∈ PCt(M,F (−)) then FM

∅
∈ NSt′(M,F (−)).

In particular, if the FM
∅

(where M is a parameter) do not admit constant-
degree NS–proofs from (F (−))M , they do not admit constant-degree PC–proofs
either.

Proof. Consider the Fp[SymC(M)]–module Poly(M,k, t), which is a sub-
module of some M (kt). Take the constant c ≥ 1 guaranteed by Corollary 3.2
for r := kt.
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Let Wu for u = t, t+ 1, . . . be the module of polynomials from NSu(M,F )
that have degrees ≤ t. As u increases, Wu does not decrease. We claim that
if for some t′

Wt′ = Wt′+1,

then PCt(M,F ) ⊆ Wt′ . To see this, take f ∈ Wt′ of degree < t. Then its
multiple xf by a variable x is in Wt′+1 = Wt′ . Hence Wt′ is closed under the
PC–rules, and as it contains FM the claim follows.

Now note that, since there are at most c different submodules of
Poly(M,k, t), some t′ < t+ c has the above property. �

Note that the theorem yields also non-constant PC-lower bounds for the
systems encoding the pigeonhole principle (see, e.g., [3, 21]). A linear lower
bound was proved in [21]. (Another proof of non-constant lower bound is in
[18].)

Finally we note that the same method yields Ω(log(N)) lower bounds for
Nullstellensatz proofs. The difference allowing to save one log is the following.
The space PCt(M,F ) is a span of one of the systems Hr, each indexed by
indices of support-size O(2t). The space NSt(M,F ) is, however, described as
a span of one system H indexed by indices of support - size O(t) only. Namely,
for every Fi and every monomial xj such that deg(xjFi) ≤ t the family H
contains the polynomial Hj,i := xjFi indexed by (j, i) of support-size O(t).
Hence in the proof of Theorem 5.1 the parameter s is O(t) and the assumption
M ≥ |C| + 6k

2t suffices, and we have the following theorem (after Corollary
5.2).

Theorem 5.6. Let F be a uniform family as above. Assume that for
every ν ≥ 1 and every r < pν there is an arbitrarily large M such that
|M | ≡ r mod pν and such that there is a solution in Fp of the system F (−),M

that does not satisfy F∅ = 0.
Then FM

∅
does not admit an NS–proof of degree t ≤ log6(|M \ C|)/k2 from

F (−),M .

6. An example with primality

The question about the length of proofs of propositionally encoded primal-
ity of a number was raised in [19] (in connection with effective interpolation).
This is an important problem as such tautologies are currently the only reason-
able candidates for tautologies hard for the usual Hilbert-style systems (the so
called Frege systems, or even for Extended Frege systems). The numbers are
encoded in binary there rather than in unary as is done here. However, un-
til now, no lower bounds (even conditional bounds, assuming some unproven
complexity-theoretic conjecture of a general nature) for any proof system were
known for either formulation.
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We define a uniform system of polynomials Π such that ΠM is solvable only
if the cardinality |M | is composite.

Definition 6.1. Let M be an L(C)–structure, C = {c}. The variables
of the system ΠM are xi, yj for i, j ∈ M \ C and zijk for i, j ∈ M \ C and
k ∈M . The polynomials of ΠM are

(1) w2 − w for all variables w = xi, yj , zijk.
(2) xiyj(1−

∑
k zijk) for all possible i, j.

(3) 1−
∑
i,j xiyjzijk for all possible k.

(4) xi1xi2yj1yj2zi1j1kzi2j2k for all possible i, i1, i2, j, j1, j2, k if i1 6= i2 or
j1 6= j2.

(5) xiyjzijk1zijk2 for all possible i, j, k1, k2 if k1 6= k2.

If xi := ai, yj := bj and zijk := cijk is a solution of ΠM , then the set
{((i, j), k) | cijk = 1} defines a bijection between A × B and M , where A :=
{i ∈M \C | ai = 1}, and B := {j ∈M \C | bj = 1}. As |A|, |B| < |M |, such
a solution exists only if |M | is a composite number.

Theorem 6.2. For any prime N there is no PC- refutation (resp. NS–
refutation) of the system ΠM , |M | = N , of degree t ≤ log6(log6(N − 1))/3
(resp. of degree t ≤ log6(N − 1)/3).

Proof. Take M to be of prime cardinality N , any pν , and r < pν . Take
N ′ := npν + r for some suitable n large enough such that N ′ is compos-
ite. Then ΠN ′ is solvable, i.e., non-refutable, while N ≡ N ′ mod pν . Hence
Corollary 5.2 applies. �
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