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A WEAK L2 ESTIMATE FOR A MAXIMAL DYADIC SUM
OPERATOR ON R

n

MALABIKA PRAMANIK AND ERIN TERWILLEGER

Abstract. Lacey and Thiele recently obtained a new proof of Car-
leson’s theorem on almost everywhere convergence of Fourier series.

This paper is a generalization of their techniques (known broadly as
time-frequency analysis) to higher dimensions. In particular, a weak-
type (2,2) estimate is derived for a maximal dyadic sum operator on Rn,
n > 1. As an application one obtains a new proof of Sjölin’s theorem
on weak L2 estimates for the maximal conjugated Calderón-Zygmund

operator on Rn.

1. Introduction

In 1966, Carleson [1] proved his celebrated theorem on almost everywhere
convergence of Fourier series of square integrable functions on R. This was
followed by a new proof given by C. Fefferman [2] in 1973. The techniques
used by C. Fefferman have become known as time-frequency analysis and
have found wide application in harmonic analysis in recent years. In partic-
ular, Lacey and Thiele [3], [4] have refined and extended these ideas in their
pioneering work on the bilinear Hilbert transform on R. In 2000, they ob-
tained a new proof of Carleson’s theorem [5] in which these techniques play
a crucial role. These powerful techniques stem from interaction of extremely
deep ideas which include delicate orthogonality estimates, combinatorics, and
quasi-orthogonal decompositions well-localized in both time and space. It is
the goal of this paper to extend the techniques of time-frequency analysis of
[5] to higher dimensions.

The main result of this paper is a weak-type L2 estimate for a maximal
dyadic sum operator in Rn, n > 1. In dimension one, this operator may be
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thought of as a linearized and discretized version of the Carleson operator C,

Cf(x) := sup
N

∣∣∣∣∣∣
N∫

−∞

f̂(ξ)e2πixξ dξ

∣∣∣∣∣∣ .
The main point of Lacey and Thiele’s proof [5] is to show that the discretized
operator satisfies a weak-type (2,2) estimate. This in turn implies a similar
estimate for C, which is a key ingredient in proving that the Fourier series of
a square-integrable function on the circle converges almost everywhere.

We introduce a higher dimensional analogue of the linearized and dis-
cretized Carleson operator and adapt the methodology of Lacey and Thiele to
prove that this operator maps L2(Rn) to L2,∞(Rn). One of the distinguishing
aspects of our proof is the introduction of an ordering of points in Rn which
allows us to organize the higher dimensional rectangles and thus control the
large sums that appear in the operator. Unlike the situation in dimension one,
the mapping property above does not lead to an almost everywhere conver-
gence result in higher dimensions. However, it gives as a corollary a result of
Sjölin [6] on the weak L2 boundedness of the maximal conjugated Calderón-
Zygmund operator on Rn.

The proof is divided into seven sections. The first section explains the
notation and terminology and gives the statement of the main theorem. The
second section lists the main ingredients of the proof and the argument that
binds them together. The subsequent four sections are devoted to proving the
different lemmas needed in the main argument. The final section provides a
new proof of Sjölin’s theorem as an application of our main result.

2. Main Theorem

Time-frequency analysis provides the crucial set of ideas in the recent
progress made in the understanding of Carleson’s theorem. In this type of
analysis one heavily uses the structure of dyadic intervals. A dyadic interval
has the form [m2k, (m+ 1)2k), where k and m are integers and k is called the
scale. A dyadic cube I ⊂ Rn is of the form

n∏
j=1

Ij =
n∏
j=1

[mj2k, (mj + 1)2k),

where k and mj are integers for all j = 1, 2, . . . , n. We easily see that the
n-dimensional volume is given by |I| = 2nk. Let c(I) = (c(I1), . . . , c(In))
denote the center of I, and for a > 0, aI will denote the cube with the same
center as I and whose volume is an|I|.

Consider the time-frequency plane in 2n dimensional space with points
(x, ξξξ), where x denotes the time coordinate in Rn and ξξξ denotes the frequency
coordinate in Rn. A “rectangle” in the time-frequency plane is the cross
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product of a dyadic cube from the time plane and a dyadic cube from the
frequency plane. To be more precise, for a rectangle, p, the projection onto
the time plane will be denoted by Ip, and its projection onto the frequency
plane will be denoted by ωp. We will denote by D the set of rectangles
p = Ip × ωp such that |Ip||ωp| = 1. An element of D will be called a tile.

As mentioned earlier, it is important for the higher dimensional version of
our time-frequency analysis to introduce an ordering in Rn that will play a
role analogous to the linear ordering on R. This is especially relevant in a
certain selection scheme used in Section 5 in analogy with the work of Lacey
and Thiele. Although the choice of ordering is not unique (we will mention an
alternative in Section 5), we find it convenient to work with the lexicographical
order defined as follows. Given a = (a1, a2, · · · , an),b = (b1, b2, · · · , bn) ∈ Rn,

a < b ⇐⇒


a1 < b1

a1 = b1 , a2 < b2
...

a1 = b1 , a2 = b2 , . . . , an−1 = bn−1 , an < bn ,

where the right hand side above is to be read with Boolean “or” standard.
For a tile p with ωp = ω1

p×ω2
p×· · ·×ωnp , we can divide each dyadic interval

ωjp into two parts. In other words, for j = 1, 2, . . . , n, we get

ωjp = (ωjp ∩ (−∞, c(ωjp)) ∪ (ωjp ∩ [c(ωjp),∞)).

Then ωp can be decomposed into 2n subcubes formed from all combinations
of cross products of these half intervals. We number these subcubes using
the lexicographical order on the centers and denote the subcubes by ωp(i)
for i = 1, 2, . . . , 2n. A tile p is then the union of 2n semi-tiles given by
p(i) = Ip × ωp(i) for i = 1, 2, . . . , 2n.

Let us define translation, modulation, and dilation operators by

Tyf(x) := f(x− y),

Mηηηf(x) := f(x)e2πiηηη·x,

Dq
λf(x) := λ−n/qf(λ−1x), λ > 0.

Note that if we set q = 2, these operators are isometries on L2(Rn). We fix a
Schwartz function φ such that φ̂ is real, nonnegative, supported in the cube
[−1/10, 1/10]n and equal to 1 on the cube [−9/100, 9/100]n. For a tile p ∈ D
and x ∈ Rn we define

(2.1) φp(x) = Mc(ωp(1))Tc(Ip)D
2
|Ip|1/nφ(x).

Using the following definition of the Fourier transform

f̂(ξξξ) =
∫
Rn

f(x)e−2πix·ξξξ dx,
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one easily can see that

(2.2) φ̂p(ξξξ) = Tc(ωp(1))M−c(Ip)D
2
|ωp|1/n φ̂(ξξξ).

Equation (2.1) tells us that for each p the function φp is well localized in time
with most of its mass in Ip while equation (2.2) tells us that φ̂p is supported
in (1/5)ωp(1). Note also that the φp have the same L2(Rn) norm.

Let m be a multiplier in C∞(Rn \ {0}) which is homogeneous of degree 0,
and define (

ψζζζp

)̂(ξξξ) = m(ξξξ − ζζζ)φ̂p(ξξξ),

where ζζζ is contained in ωp(r) for some fixed r ∈ {2, 3, . . . , 2n}. Note that we
have the following fact for all ζζζ ∈ ωp(r):

|ψζζζp(x)| ≤ Cν |Ip|−1/2

(
1 +
|x− c(Ip)|
|Ip|1/n

)−ν
,

where ν is a large integer whose value may vary at different places in the
proof. To see this fact we write

ψζζζp(x) =
∫
Rn

e2πiξξξ·xφ̂p(ξξξ)m(ξξξ − ζζζ) dξξξ

=
∫
Rn

e2πiξξξ·xTc(ωp(1))M−c(Ip)D
2
|ωp|1/n φ̂(ξξξ)m(ξξξ − ζζζ) dξξξ

= e2πic(Ip)·c(ωp(1))

×
∫
Rn

e2πiξξξ·(x−c(Ip))|Ip|1/2φ̂
(
|Ip|1/n(ξξξ − c(ωp(1)))

)
m(ξξξ − ζζζ) dξξξ.

Making the change of variable

ξ′ξ′ξ′ = |Ip|1/n(ξξξ − c(ωp(1)))

in the above integral, we obtain

ψζζζp(x) = e2πic(Ip)·c(ωp(1))

∫
Rn

e2πi(ξ′ξ′ξ′|Ip|−1/n+c(ωp(1)))·(x−c(Ip))|Ip|−1/2φ̂(ξ′ξ′ξ′)

×m
(
ξ′ξ′ξ′|Ip|−1/n + c(ωp(1))− ζζζ

)
dξ′ξ′ξ′

= e2πix·c(ωp(1))

∫
Rn

e2πiξ′ξ′ξ′·(x−c(Ip))|Ip|−1/n
|Ip|−1/2φ̂(ξ′ξ′ξ′)

×m
(
ξ′ξ′ξ′ + |Ip|1/n(c(ωp(1))− ζζζ)

)
dξ′ξ′ξ′,
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where the second equality is obtained using the fact that m is homogeneous
of degree 0. Since ζζζ ∈ ωp(r) and ξξξ ∈ 1

2ωp(1), we have

|ζζζ − ξξξ| & |ωp|1/n,

from which it follows that

ξ′ξ′ξ′ + |Ip|1/n(c(ωp(1))− ζζζ)) & 1.

Thus all the derivatives of m(ξ′ξ′ξ′ + |Ip|1/n(c(ωp(1))− ζζζ)) are bounded. A stan-
dard integration by parts argument finishes the proof.

Using the following definition for the inner product

〈f, g〉 =
∫
Rn

f(x)g(x) dx ,

given ζζζ ∈ Rn and f ∈ L2(Rn), we define an operator

Brζζζf(·) =
∑
p∈D

〈f, φp〉ψζζζp(·)1ωp(r)(ζζζ).

Theorem 1. There exists a constant C, depending only on dimension, so
that for all f ∈ L2(Rn) and r ∈ {2, 3, . . . , 2n}

(2.3)

∥∥∥∥∥ sup
ζζζ∈Rn

|Brζζζf |

∥∥∥∥∥
L2,∞(Rn)

≤ C‖f‖L2(Rn).

To prove the theorem, we will work with a linearized version of the operator.
Consider a measurable function x→ N(x) = (N1(x), N2(x), . . . , Nn(x)) from
R
n to Rn and define a linear operator

BrN(x) := BrN(x)(x) =
∑
p∈D

〈f, φp〉ψN(x)
p (x)(1ωp(r) ◦N)(x).

To prove (2.3) it will suffice to show that there exists a constant C > 0 such
that for all f ∈ L2(Rn)

(2.4) sup
N:Rn→Rn

‖BrNf‖L2,∞(Rn) ≤ C‖f‖L2(Rn),

where the supremum is taken over all measurable functions N on Rn.
By duality we will show that the adjoint operator

g →
∑
p∈D

〈(1ωp(r) ◦N)ψN
p , g〉φp

maps L2,1(Rn) into L2(Rn) with bounds independent of the measurable func-
tion N. Since L2,1(Rn) is a Lorentz space, it suffices to show that the dual op-
erator maps L2,1(Rn) ∩ {1E : E ⊂ Rn, E measurable, |E| <∞} into L2(Rn).
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Hence, we need to show

(2.5)

∥∥∥∥∥∥
∑
p∈D

〈(1ωp(r) ◦N)ψN
p , 1E〉φp

∥∥∥∥∥∥
L2(Rn)

≤ C|E|1/2.

By duality, (2.5) is equivalent to

(2.6)

∣∣∣∣∣∣
∑
p∈D

〈(1ωp(r) ◦N)ψN
p , 1E〉〈φp, f〉

∣∣∣∣∣∣ ≤ C|E|1/2,
for all Schwartz functions f with L2 norm one. We will further restrict the
sum to an arbitrary finite subset P of D.

Now for all integers j we have the identity∑
p∈P

∣∣〈(1ωp(r) ◦N)ψN
p , 1E〉〈φp, f〉

∣∣
= 2−jn/2

∑
u∈P (j)

∣∣∣〈(1ωu(r) ◦Nj)ψNj
u , 12j⊗E〉〈φu, 2−jn/2f(2−j(·))〉

∣∣∣ ,
where for any set A we define 2j⊗A = {2jy = (2jy1, 2jy2, . . . , 2jyn) : y ∈ A},
Nj(x) = 2−jN(2−jx), and P(j) = {(2j⊗Ip)×(2−j⊗ωp) : p ∈ P}. By picking
j so that 1 ≤ 2jn|E| ≤ 2, we can absorb |E| into the constant on the right
hand side of (2.6). Finally we note that the left hand side of (2.6) can be
rewritten so that the estimate we need to show now becomes

(2.7)
∑
p∈P

∣∣∣〈1E∩N−1[ωp(r)], ψ
N
p 〉〈φp, f〉

∣∣∣ ≤ C,
for all Schwartz functions f with L2 norm one, measurable functions N, mea-
surable sets E with |E| ≤ 1, and all finite subsets P of D. For the rest
of the paper we fix f , N, and E in this manner. By N−1[ωp(r)] we mean
{x : N(x) ∈ ωp(r)}.

3. Main argument

We now set up some tools that we will use throughout the rest of the paper.
Define a partial order < on the set of tiles D by setting

p < p′ ⇐⇒ Ip ⊂ Ip′ and ωp′ ⊂ ωp.
We have the property that if two tiles p, p′ ∈ D intersect, then either p < p′

or p′ < p. To see this, observe that dyadic cubes have the property that if
two of them intersect, then one is contained in the other. This extends from
the same property for dyadic intervals in dimension one. Now, suppose two
tiles p and p′ in D intersect, and without loss of generality let |Ip| ≤ |Ip′ |.
Then p and p′ intersect in both the time and frequency components, i.e.,
Ip ∩ Ip′ 6= ∅, ωp ∩ωp′ 6= ∅. From size considerations, one obtains that Ip ⊂ Ip′
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and ωp′ ⊂ ωp, and hence p < p′. A consequence of this property is that for a
finite set of tiles P, all maximal elements of P under < must be disjoint sets.

A finite set of tiles T is called a tree if there exists a tile t ∈ D such
that p < t for all p ∈ T. We call t the top of the tree T and denote it by
pT = IT × ωT. Note that the top is unique but not necessarily an element
of the tree. Another useful observation is that any finite set of tiles P can be
written as a union of trees. Consider all maximal elements of P under<. Then
a nonmaximal element p ∈ P must be less than, under “<”, some maximal
element t ∈ P which places p in the tree with top t. For i ∈ {1, 2, . . . , 2n}, we
call a tree an i-tree, denoted by Ti, if ωT(i) ⊂ ωp(i) for all p ∈ Ti. Observe
that any tree can be written as the disjoint union of i-trees. Also for fixed i0,
and p, p′ ∈ Ti0 , the subcubes ωp(i) and ωp′(i) are pairwise disjoint and disjoint
from ωT(i) for all i ∈ {1, 2, . . . , 2n} \ {i0}.

For p ∈ D, define the mass of {p} as

M({p}) = sup
u∈D
p<u

∫
E∩N−1[ωu]

|Iu|−1(
1 + |x−c(Iu)|

|Iu|1/n

)10n dx.

We can then define the mass of a finite set of tiles P to be

M(P) = sup
p∈P
M({p}).

Note that the mass of any set of tiles is at most one since by a change of
variables

M(P) ≤
∫
Rn

1
(1 + |x|)10n

dx ≤ 1.

The energy, depending on r, of a finite set of tiles P is defined as

E(P) = sup
Tr∈P

|ITr |−1
∑
p∈Tr

|〈f, φp〉|2
1/2

.

Recall that r ∈ {2, 3, . . . , 2n} is fixed and f is a fixed Schwartz function of
L2(Rn) norm one. The following three lemmas will provide the main steps in
proving the theorem, and their proofs will be shown in the next four sections
of the paper.

Lemma 1. There exists a constant C1 such that for any finite set of tiles
P there is a subset P′ of P such that

(3.1) M(P \P′) ≤ 1
4
M(P)

and P′ is the union of trees Tj satisfying

(3.2)
∑
j

|ITj | ≤
C1

M(P)
.
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Lemma 2. There exists a constant C2 such that for any finite set of tiles
P there is a subset P′′ of P such that

(3.3) E(P \P′′) ≤ 1
2
E(P)

and P′′ is the union of trees Tj satisfying

(3.4)
∑
j

|ITj | ≤
C2

E(P)2
.

Lemma 3 (The Tree Inequality). There exists a constant C3 such that for
all trees T

(3.5)
∑
p∈T

|〈1E∩N−1[ωp(r)], ψ
N
p 〉〈φp, f〉| ≤ C3|IT|E(T)M(T).

We will now prove (2.7), and hence Theorem 1, assuming the three lemmas.
In the argument below set

C0 = C1 + C2.

Given a finite set of tiles P, find a very large integer m0 such that E(P) ≤ 2m0n

and M(P) ≤ 22m0n. We construct by decreasing induction a sequence of
pairwise disjoint sets Pm0 , Pm0−1, Pm0−2, Pm0−3, ... such that

m0⋃
j=−∞

Pj = P

and such that the following properties are satisfied:
(1) E(Pj) ≤ 2(j+1)n for all j ≤ m0.
(2) M(Pj) ≤ 2(2j+2)n for all j ≤ m0.
(3) E

(
P \ (Pm0 ∪ · · · ∪Pj)

)
≤ 2jn for all j ≤ m0.

(4) M
(
P \ (Pm0 ∪ · · · ∪Pj)

)
≤ 22jn for all j ≤ m0.

(5) Pj is a union of trees Tjk such that
∑
k |ITjk | ≤ C02−2jn for all

j ≤ m0.
Assume momentarily that we have constructed a sequence Pj as above.

Then to obtain estimate (2.7) we use (1), (2), (5), the observation that the
mass is always bounded by 1, and Lemma 3 to obtain∑

s∈P

∣∣〈1E∩N−1[ωp(r)],ψ
N
p 〉〈f, φp〉

∣∣
≤
∑
j

∑
p∈Pj

∣∣〈1E∩N−1[ωp(r)], ψ
N
p 〉〈f, φp〉

∣∣
≤
∑
j

∑
k

∑
p∈Tjk

∣∣〈1E∩N−1[ωp(r)], ψ
N
p 〉〈f, φp〉

∣∣
≤ C3

∑
j

∑
k

|ITjk | E(Tjk)M(Tjk)
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≤ C3

∑
j

∑
k

|ITjk | 2(j+1)n min(1, 2(2j+2)n)

≤ C3

∑
j

C02−2jn2(j+1)n min(1, 2(2j+2)n)

≤ 23nC0C3

∑
j

min(2jn, 2−jn) ≤ Cn .

This proves estimate (2.7).
It remains to construct a sequence of disjoint sets Pj satisfying (1)–(5).

We start our induction at j = m0 by setting Pm0 = ∅. Then (1), (2), and (5)
are clearly satisfied, while

E(P \Pm0) = E(P) ≤ 2m0n,

M(P \Pm0) =M(P) ≤ 22m0n ,

and hence (3) and (4) are also satisfied for Pm0 .
Suppose we have selected pairwise disjoint sets Pm0 , Pm0−1, . . . ,Pm for

some m < m0 such that (1)–(5) are satisfied for all j ∈ {m0,m0 − 1, . . . ,m}.
We will construct a set of tiles Pm−1 disjoint from all the sets already con-
structed such that (1)–(5) are satisfied for j = m− 1. This procedure is given
by decreasing induction. We will need to consider the following four cases.

Case 1. E
(
P\(Pm0∪· · ·∪Pm)

)
≤ 2(m−1)n andM

(
P\(Pm0∪· · ·∪Pm)

)
≤

22(m−1)n.

In this case set Pm−1 = ∅ and observe that (1)–(5) trivially hold.

Case 2. E
(
P\(Pm0∪· · ·∪Pm)

)
> 2(m−1)n andM

(
P\(Pm0∪· · ·∪Pm)

)
≤

22(m−1)n.

Use Lemma 2 to find a subset Pm−1 of P \ (Pm0 ∪ · · · ∪Pm) such that

(3.6) E
(
P \ (Pm0 ∪ · · · ∪Pm ∪Pm−1)

)
≤ 1

2
E
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 1

2
2mn

and Pm−1 is a union of trees (whose set of tops we denote by P∗m−1) such
that

(3.7)
∑

t∈P∗m−1

|It| ≤ C2E
(
P \ (Pm0 ∪ · · · ∪Pm)

)−2 ≤ C22−2(m−1)n.

Then (3.6) gives (3) and (3.7) gives (5) for j = m−1. Since

E(Pm−1) ≤ E
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 2mn = 2((m−1)+1)n ,

estimate (1) is satisfied for j = m−1. Also by our induction hypothesis we
have

M
(
P \ (Pm0 ∪ · · · ∪Pm ∪Pm−1)

)
≤M

(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 22(m−1)n ,
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and hence (4) is satisfied for j = m−1. Finally

Pm−1 ⊂ P \ (Pm0 ∪ · · · ∪Pm),

and hence its mass is at most the mass of the latter which is trivially bounded
by 2(2(m−1)+2)n. Thus (2) is also satisfied for j = m−1.

Case 3. E
(
P\(Pm0∪· · ·∪Pm)

)
≤ 2(m−1)n andM

(
P\(Pm0∪· · ·∪Pm)

)
>

22(m−1)n.

In this case we repeat the argument in Case 2 with the roles of the mass
and energy reversed. Precisely, use Lemma 1 to find a subset Pm−1 of the set
P \ (Pm0 ∪ · · · ∪Pm) such that

(3.8) M
(
P\(Pm0∪· · ·∪Pn∪Pm−1)

)
≤ 1

4
M
(
P\(Pm0∪· · ·∪Pm)

)
≤ 1

4
22mn

and Pm−1 is a union of trees (whose set of tops we denote by P∗m−1) such
that

(3.9)
∑

t∈P∗m−1

|It| ≤ C1M
(
P \ (Pm0 ∪ · · · ∪Pm)

)−1 ≤ C12−2(m−1)n.

Then (3.8) gives (4) and (3.9) gives (5) for j = m−1. By induction we have

M(Pm−1) ≤M
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 22mn = 2(2(m−1)+2)n ,

and thus (2) is satisfied for j = m−1. Finally (1) and (3) follow from the
inclusion Pm−1 ⊂ P \ (Pm0 ∪ · · · ∪ Pm) and the assumption E

(
P \ (Pm0 ∪

· · · ∪Pm)
)
≤ 2(m−1)n. This concludes the proof of (1)–(5) for j = m−1.

Case 4. E
(
P\(Pm0∪· · ·∪Pm)

)
> 2(m−1)n andM

(
P\(Pm0∪· · ·∪Pm)

)
>

22(m−1)n.

This is the most difficult case since it involves elements from both of the
previous cases. We start by using Lemma 1 to find a subset P′m−1 of the set
P \ (Pm0 ∪ · · · ∪Pm) such that

(3.10) M
(
P\(Pm0∪· · ·∪Pm∪P′m−1)

)
≤ 1

4
M
(
P\(Pm0∪· · ·∪Pm)

)
≤ 1

4
22mn

and P′m−1 is a union of trees (whose set of tops we denote by (P′m−1)∗) such
that

(3.11)
∑

t∈(P′m−1)∗

|It| ≤ C1M
(
P \ (Pm0 ∪ · · · ∪Pm)

)−1 ≤ C12−2(m−1)n.

We now consider the following two subcases of Case 4.

Subcase 4(a). E
(
P \ (Pm0 ∪ · · · ∪Pm ∪P′m−1)

)
≤ 2(m−1)n.
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In this subcase, we set Pm−1 = P′m−1. Then (3) is automatically satisfied
for j = m−1 and also (5) is satisfied in view of (3.11). By the inductive
hypothesis we have E

(
P \ (Pm0 ∪ · · · ∪ Pm)

)
≤ 2mn = 2((m−1)+1)n and also

M
(
P\ (Pm0 ∪· · ·∪Pm)

)
≤ 22mn = 2(2(m−1)+2)n. Since Pm−1 is contained in

P \ (Pm0 ∪ · · · ∪Pm), the same estimates hold for E(Pm−1) and M(Pm−1).
Thus (1) and (2) also hold for j = m − 1. Finally (4) for j = m − 1 follows
from (3.5) since P′m−1 = Pm−1.

Subcase 4(b). E
(
P \ (Pm0 ∪ · · · ∪Pm ∪P′m−1)

)
> 2(m−1)n.

Here we use Lemma 2 one more time to find a subset P′′m−1 of the set
P \ (Pm0 ∪ · · · ∪Pm ∪P′m−1) such that

E
(
P \ (Pm0 ∪ . . . ∪Pm ∪P′m−1 ∪P′′m−1)

)
(3.12)

≤ 1
2
E
(
P \ (Pm0 ∪ · · · ∪Pm ∪P′m−1)

)
and P′′m−1 is a union of trees (whose set of tops we denote by (P′′m−1)∗) such
that

(3.13)
∑

t∈(P′′m−1)∗

|It| ≤ C2E
(
P\(Pm0 ∪· · ·∪Pm∪P′m−1)

)−2 ≤ C22−2(m−1)n.

We set Pm−1 = P′m−1 ∪P′′m−1 and we observe that Pm−1 is disjoint from all
the previously selected Pj ’s. Since by the induction hypothesis the last term
in (3.12) is bounded by 1

2E
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 1

22mn, the first term in
(3.12) is also bounded by 2(m−1)n. Thus (3) holds for j = m−1. Likewise,
since

E(Pm−1) ≤ E
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 2mn = 2((m−1)+1)n,

M(Pm−1) ≤M
(
P \ (Pm0 ∪ · · · ∪Pm)

)
≤ 22mn = 2(2(m−1)+2)n ,

(1) and (2) are satisfied for j = m−1. Since

M
(
P \ (Pm0 ∪ · · · ∪Pm ∪Pm−1)

)
≤M

(
P \ (Pm0 ∪ · · · ∪Pm ∪P′m−1)

)
,

(3.10) implies that (4) is satisfied for j = m−1. Now each of P′m−1 and P′′m−1

is given as a union of trees. Thus the same is true for Pm−1. The set of tops
of all of these trees, call it (Pm−1)∗, is contained in the union of the set of
tops of the trees in P′m−1 and the trees in P′′m−1, i.e., in (P′m−1)∗ ∪ (P′′m−1)∗.
This implies that∑

t∈(Pm−1)∗

|It| ≤
∑

t∈(P′m−1)∗

|It|+
∑

t∈(P′′m−1)∗

|It|

≤ (C1 + C2)2−2(m−1)n = C02−2(m−1)n

in view of (3.11) and (3.13). This proves (5) for j = m−1 and concludes the
inductive step. The construction of the Pj ’s is now complete.
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4. Proof of Lemma 1

Given a finite set of tiles P, set µ =M(P) and define

P′ =
{
p ∈ P :M({p}) > 1

4
µ

}
.

Clearly M(P \P′) ≤ 1
4µ. Thus it remains to show that P′ satisfies (3.2). By

definition of the mass, for each p ∈ P′ there is a tile u(p) = u ∈ D such that

(4.1)
∫

E∩N−1[ωu]

|Iu|−1(
1 + |x−c(Iu)|

|Iu|1/n

)10n dx >
µ

4
.

Set U = {u(p) : p ∈ P′}, and let Umax be the subset of U containing all
maximal elements of U under the partial order on tiles. As observed earlier,
the tiles in U can be grouped into trees with tops in Umax. Now U is not
necessarily a subset of P′, but each u ∈ U is associated to a p ∈ P′ as
described above. In particular, if p is a maximal element in P′, then there
exists a u ∈ U with p < u such that (4.1) holds. If this u is not in Umax

then there exists u′ ∈ Umax with u < u′. We must then have u′ associated
to another p′ ∈ P′ which implies, by maximality of p, that p′ < p. Hence for
each maximal element p ∈ P′ there exists a unique element u ∈ Umax with
p < u, and there is at most one such maximal element for each u ∈ Umax.
Therefore, we will show

(4.2)
∑

u∈Umax

|Iu| ≤ C1µ
−1,

which implies (3.2). Now we will rewrite (4.1) as

2n − 1
2n+2

µ
∞∑
k=0

2−kn <
∞∑
k=0

∫
E∩N−1[ωu]

∩(2kIu\2k−1Iu)

|Iu|−1(
1 + |x−c(Iu)|

|Iu|1/n

)10n dx,

where we set 1
2Iu = ∅. This estimate holds for all u ∈ U, so in particular for

every u ∈ Umax there exists a k ≥ 0 such that

2n − 1
2n+2

µ|Iu|2−kn <
∫

E∩N−1[ωu]

∩(2kIu\2k−1Iu)

1(
1 + |x−c(Iu)|

|Iu|1/n

)10n dx

≤ |E ∩N−1[ωu] ∩ (2kIu \ 2k−1Iu)|
C(
√
n)10n210kn

,

where the second inequality above follows from the fact that

|Iu|−1/n|x− c(Iu)| ∼
√
n2k
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for x ∈ (2kIu \ 2k−1Iu). Here and throughout the paper C denotes a constant
depending only on dimension and whose value may change at different places
in the proof. Now we define for k ≥ 0

Uk =
{
u ∈ Umax : Cµ|Iu|29kn < |E ∩N−1[ωu] ∩ 2kIu|

}
.

Since Umax =
⋃∞
k=0 Uk, if we show that

(4.3)
∑
u∈Uk

|Iu| ≤ C2−8knµ−1,

summing over k ∈ Z+ gives us estimate (4.2).
We now concentrate on showing estimate (4.3). Fix k ≥ 0 and select an

element v0 ∈ Uk so that |Iv0 | is largest possible. Then select an element
v1 ∈ Uk \ {v0} such that the enlarged rectangle (2kIv1)× ωv1 is disjoint from
(2kIv0) × ωv0 and |Iv1 | is largest possible. Continuing by induction, at the
j-th step we select an element vj ∈ Uk \ {v0, . . . , vj−1} so that (2kIvj )× ωvj
is disjoint from the enlarged rectangles of previously selected tiles and |Ivj | is
largest possible. Since we have a finite set of tiles, this process will terminate,
and we will have the set of selected tiles in Uk, which we will call Vk.

Next we make some key observations about the tiles. First, note that
elements of Uk are maximal in U and therefore disjoint. Second, for any
u ∈ Uk there exists a selected tile v ∈ Vk with |Iu| ≤ |Iv| and such that the
enlarged rectangles of u and v intersect. We will associate u to this v. Third,
if u and u′ are both associated to the same v, then Iu and Iu′ are disjoint.
Indeed, (2kIu) × ωu intersects (2kIv) × ωv, which means 2kIu ∩ 2kIv 6= ∅
and ωu ∩ ωv 6= ∅. This implies, together with the fact that |Iu| ≤ |Iv|, that
ωu ⊃ ωv. Similarly ωu′ ⊃ ωv. Therefore, one of ωu and ωu′ contains the
other. But u and u′ are disjoint. Thus Iu is disjoint from Iu′ . Finally, all tiles
u ∈ Uk associated to a particular v ∈ Vk satisfy Iu ⊂ 2k+2Iv.

From the observations above and the definition of Uk we have∑
u∈Uk

|Iu| ≤
∑
v∈Vk

∑
u∈Uk
u assoc v

|Iu|

=
∑
v∈Vk

∣∣∣∣∣∣∣
⋃
u∈Uk
u assoc v

Iu

∣∣∣∣∣∣∣ ≤
∑
v∈Vk

2(k+2)n|Iv|

≤ Cµ−12−9kn2(k+2)n
∑
v∈Vk

|E ∩N−1[ωv] ∩ 2kIv|

≤ C22nµ−12−8kn|E| ≤ C22nµ−12−8kn,

where we have used that for v ∈ Vk the enlarged rectangles are disjoint, and
therefore so are the subsets E ∩N−1[ωv] ∩ 2kIv of E.
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5. Proof of Lemma 2

We begin by fixing a finite set of tiles P and r = 2n. This choice of r ensures
that ηηη < ξξξ in the lexicographical order for all ηηη ∈ ωp(1) and ξξξ ∈ ωp(r). For
r 6= 2n the proof goes through by a suitable permutation of the coordinates of
R
n which changes the coordinate that takes precedence in the lexicographical

order. Here we note that we can be less precise by taking any linear functional
L that separates ωp(1) and ωp(r) in any given cube ωp. Then we let ηηη < ξξξ
if L(ηηη) < L(ξξξ). In particular, we can take L to be the projection onto the
appropriate axis so that the usual linear ordering on R is relevant. Let ε
denote E(P). Define for T′ a 2n-tree

∆(T′) =

|IT′ |−1
∑
p∈T′

|〈f, φp〉|2
1/2

.

Consider all 2n-trees T′ contained in P which satisfy

(5.1) ∆(T′) ≥ 1
2
ε.

Among these select a 2n-tree T′1 such that c(ωT′1
) is minimal in the lexico-

graphical order. Let T1 be the set of all p ∈ P such that p < pT′1
= pT1 .

In other words, T1 is the maximal tree containing T′1 with the same top as
T′1. Now consider all 2n-trees contained in P \ T1 and select a 2n-tree T2,
such that c(ωT′2

) is minimal. Let T2 be the set of all p ∈ P such that p <
pT′2

= pT2 . Continue inductively to obtain a finite sequence of pairwise dis-
joint 2n-trees T′1 , T′2 , . . . , T′q and pairwise disjoint trees T1 , T2 , . . . , Tq,
where pT′j

= pTj , T′j ⊂ Tj , and the T′j satisfy (5.1). Let

P′′ =
q⋃
j=1

Tj .

Then clearly

E(P \P′′) ≤ 1
2
ε .

Thus we need to show that P′′ satisfies condition (3.4) of Lemma 2, i.e.,

(5.2)
q∑
j=1

|ITj | ≤
C2

ε2
.

Since the trees T′j satisfy (5.1) and ‖f‖L2(Rn) = 1,

1
4
ε2
∑
j

|ITj | ≤
∑
j

∑
p∈T′j

|〈f, φp〉|2(5.3)

=
∑
j

∑
p∈T′j

〈f, φp〉〈f, φp〉
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= 〈f,
∑
j

∑
p∈T′j

〈f, φp〉φp〉

≤

∥∥∥∥∥∥
∑
j

∑
p∈T′j

〈f, φp〉φp

∥∥∥∥∥∥
L2(Rn)

.

Letting U =
⋃
j T′j , we will show that

(5.4)

∥∥∥∥∥∥
∑
p∈U

〈f, φp〉φp

∥∥∥∥∥∥
L2(Rn)

≤ C

ε2∑
j

|ITj |

1/2

,

which, together with (5.3), will give us (5.2). The square of the left hand side
of (5.4) can be estimated by

(5.5)
∑
p,u∈U
ωp=ωu

|〈f, φp〉〈f, φu〉〈φp, φu〉|+ 2
∑
p,u∈U
ωp⊂ωu(1)

|〈f, φp〉〈f, φu〉〈φp, φu〉|.

Here we have used that 〈φp, φu〉 = 0 unless ωp(1) intersects ωu(1), which implies
that either ωp = ωu or ωu(1) contains ωp or ωp(1) contains ωu. We are then
able to utilize the symmetry in p and u to combine the off diagonal terms.
We estimate |〈f, φp〉| and |〈f, φu〉| by the larger one and bound the first term
in (5.5) by∑

p∈U

|〈f, φp〉|2
∑
u∈U
ωp=ωu

|〈φp, φu〉|

≤
∑
p∈U

|〈f, φp〉|2
∑
u∈U
ωp=ωu

C
min

(
|Iu|
|Ip| ,

|Ip|
|Iu|

)1/2

(
1 + |c(Ip)−c(Iu)|

max(|Ip|,|Iu|)1/n

)10n

≤
∑
p∈U

|〈f, φs〉|2
∑
u∈U
ωp=ωu

C

∫
Iu

1
|Ip|

(
1 +
|x− c(Ip)|
|Ip|1/n

)−10n

dx

≤ C
∑
p∈U

|〈f, φp〉|2

= C
∑
j

∑
p∈T′j

|ITj ||ITj |−1|〈f, φp〉|2

≤ C
∑
j

|ITj |ε2,

where we have used that for p ∈ U the Iu for which ωp = ωu are pairwise
disjoint.
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Using Cauchy-Schwarz, the second term in (5.5) can be estimated by

2
∑
j

∑
p∈T′j

|〈f, φp〉|
∑
u∈U

ωp⊂ωu(1)

|〈f, φu〉||〈φp, φu〉|

≤ 2
∑
j

∑
p∈T′j

|〈f, φp〉|2


1/2

∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|〈f, φu〉||〈φp, φu〉|


2

1/2

≤ 2
∑
j

|ITj |1/2∆(T′j)


∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|〈f, φu〉||〈φo, φu〉|


2

1/2

≤ 2ε
∑
j

|ITj |1/2


∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|〈f, φu〉||〈φp, φu〉|


2

1/2

.

To complete the proof, we need to show that the expression inside the curly
brackets is bounded by Cε2|ITj |. Since for a single tile u

E({u}) =
(
|Iu|−1|〈f, φu〉|2

)1/2
= |Iu|−1/2|〈f, φu〉| ≤ ε,

we get that

∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|〈f, φu〉||〈φp, φu〉|


2

≤ ε2
∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|Iu|1/2|〈φp, φu〉|


2

.

Thus we now need to show that

(5.6)
∑
p∈Trj

 ∑
u∈U

ωp⊂ωu(1)

|Iu|1/2|〈φp, φu〉|


2

≤ C|ITj |.

To prove this, we will need the following lemma.

Lemma 4. Let p ∈ T′j and u ∈ T′k. Then if ωp ⊂ ωu(1), we have Iu∩ITj =
∅. If u ∈ T′k, v ∈ T′l, u 6= v, ωp ⊂ ωu(1), and ωp ⊂ ωv(1) for some fixed p ∈ T′j,
then Iu ∩ Iv = ∅.

Proof. Since ωp ⊂ ωu(1) and T′j and T′k are 2n-trees, T′j and T′k are not
the same tree. Otherwise ωp ⊂ ωu(2n). We know that ωT′j

⊂ ωp ⊂ ωu(1),
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which implies that c(ωT′j
) is contained in ωu(1). We also have ωT′k

⊂ ωu(2n),
which implies that c(ωT′k

)is contained in ωu(2n). Therefore c(ωT′j
) ≤ c(ωT′k

)
in the lexicographical order, which means that T′j was chosen before T′k in the
original selection process. Now suppose Iu∩ITj 6= ∅. Then either Iu ⊂ ITj or
Iu ⊃ ITj . However, ωTj ⊂ ωu implies that Iu ⊂ ITj . Thus we have ωTj ⊂ ωu
and Iu ⊂ ITj , which says that u belongs to the tree Tj . However, u ∈ Tk and
thus was chosen from P \Tj , which gives a contradiction. Thus Iu ∩ ITj = ∅.

Next suppose that u ∈ T′k, v ∈ T′l, u 6= v, and ωp ⊂ (ωu(1)∩ωv(1)) for some
fixed p ∈ T′j . We have three cases to consider: (a) ωu ⊂ ωv(1), which means
Iv ∩ ITk = ∅ and thus Iv ∩ Iu = ∅, (b) ωv ⊂ ωu(1), which means Iu ∩ ITl = ∅
and thus Iv ∩ Iu = ∅, and (c) ωv = ωu, which tells us that |Iu| = |Iv| and thus
Iu and Iv are disjoint since u and v do not coincide. �

We now return to estimate (5.6). Observe that Lemma 4 tells us that for
the tiles u ∈ U appearing in the interior sum of (5.6) the Iu are pairwise
disjoint and contained in (ITj )

c. Thus we have

∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|Iu|1/2|〈φp, φu〉|


2

≤ C
∑
p∈T′j

 ∑
u∈U

ωp⊂ωu(1)

|Iu|1/2
(
|Ip|
|Iu|

)1/2 ∫
Iu

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx


2

≤ C
∑
p∈T′j

|Ip|

 ∑
u∈U

ωp⊂ωu(1)

∫
Iu

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx


2

≤ C
∑
p∈T′j

|Ip|

 ∫
(ITj )c

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx


2

≤ C
∑
p∈T′j

|Ip|
∫

(ITj )c

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx

≤ C
∞∑
k=0

2−kn|ITj |
∑
p∈T′j

|Ip|=2−kn|ITj |

∫
(ITj )c

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx.
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The proof of Lemma 2 will be complete if we can show that∑
p∈T′j

|Ip|=2−kn|ITj |

∫
(ITj )c

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx . 2k(n−1),

thus allowing the sum in k to converge. Throughout the paper, A . B means
that A is less than or equal to B up to a constant depending only on dimension.
The first observation we have is that∫

(ITj )c

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)10n dx .

(
dist((ITj )

c, Ip)
|Ip|1/n

)−9n

.

To see this, note that by a change of variables, it suffices to let the center of
ITj be at the origin. Also note that we have the inequality(

1 +
|x− c(Ip)|
|Ip|1/n

)10n

≥
n∏
i=1

(
1 +
|xi − c(Ip)i|
|Ip|1/n

)10

.

Therefore, the integral above is bounded by a constant times

n∏
i=1

 ∫
|xi|> 1

2 |ITj |

|Ip|−1/n(
1 + |xi−c(Ip)i|

|Ip|1/n

)10 dxi


.

n∏
i=1

(
dist((ITj )

c, Ip)
|Ip|1/n

)−9

.

(
dist((ITj )

c, Ip)
|Ip|1/n

)−9n

,

where we have used that |xi − c(Ip)i| ≥ dist((ITj )
c, Ip) for all i = 1, 2, . . . , n.

Now we need to sum over p for a fixed scale k. Consider an n− 1 dimensional
face of ITj and fix a cube Ip whose face is contained in the face of ITj .
We allow the remaining coordinate to vary and sum over those Ip in this
“column”. In a fixed column, the distances from (ITj )

c to each Ip sum as
additive multiples of |Ip|1/n. For each face, there are 2k(n−1) such columns.
Thus, ∑

p∈T′j
|Ip|=2−kn|ITj |

(
dist((ITj )

c, Ip)
|Ip|1/n

)−9n

. 2k(n−1) × (#of faces)
∞∑
m=1

1
m9n

. 2k(n−1).

6. Proof of Lemma 3—the tree inequality

Let J be the collection of all maximal dyadic cubes J such that 3J does
not contain any Ip with p ∈ T. Then J is a partition of Rn.



WEAK L2 ESTIMATE FOR A MAXIMAL DYADIC SUM OPERATOR ON R
n 793

We can write the left hand side of (3.5) as follows, where the terms αp
are phase factors of modulus 1 which make up for the absolute value signs in
(3.5): ∥∥∥∥∥∥

∑
p∈T

αp〈f, φp〉ψN
p 1E2p

∥∥∥∥∥∥
1

≤ K1 +K2,

where

E2p := E ∩N−1[ωp(2n)],(6.1)

K1 :=
∑
J∈J

∑
p∈T ; |Ip|≤2n|J|

∥∥〈f, φp〉ψN
p 1E2p

∥∥
L1(J)

,(6.2)

K2 :=
∑
J∈J

∥∥∥∥∥∥
∑

p∈T ; |Ip|>2n|J|

αp〈f, φp〉ψN
p 1E2p

∥∥∥∥∥∥
L1(J)

.(6.3)

Let

ε = E(T) and µ =M(T).

We begin with K1. For every p ∈ T, {p} is a 2n-tree contained in T, and
therefore

|〈f, φp〉| ≤ ε|Ip|1/2.

Thus,

K1 ≤ Cε
∑
J∈J

∑
p∈T

|Ip|≤2n|J|

|Ip|
∫

J∩E∩N−1[ωp]

|Ip|−1(
1 + |x−c(Ip)|

|Ip|1/n

)20n dx

≤ Cεµ
∑
J∈J

∑
p∈T

|Ip|≤2n|J|

|Ip| sup
x∈J

(
1 +
|x− c (Ip)|
|Ip|1/n

)−10n

≤ Cεµ
∑
J∈J

∑
k : 2kn≤2n|J|

2kn
∑
p∈T

|Ip|=2kn

(
1 +

dist (J, Ip)
2k

)−10n

,

where we have used that for x ∈ J ,

|x− c(Ip)| ≥ dist(J, c(Ip)) ≥ dist(J, Ip) +
2k

2
,

and hence
|x− c(Ip)|

2k
≥ dist(J, c(Ip))

2k
≥ dist(J, Ip)

2k
+

1
2
.
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For all p ∈ T with |Ip| = 2kn the Ip are pairwise disjoint and contained in IT.
Therefore dist(J, Ip) ≥ dist(J, IT) and |IT|−1/n ≤ 2−k, which gives

(6.4)
(

1 +
dist (J, Ip)

2k

)−5n

≤

(
1 +

dist (J, IT)

|IT|1/n

)−5n

.

We will treat the remaining powers with the following lemma.

Lemma 5. For J ∈ J such that 2kn ≤ 2n|J |,∑
p∈T

|Ip|=2kn

(
1 +

dist (J, Ip)
2k

)−5n

≤ C(n),

where C(n) is independent of J, k and T.

Proof. We first observe that dist(J, Ip) and dist(c(J), Ip) are of comparable
size. The inequality dist(J, Ip) ≤ dist(c(J), Ip) is clear. To see the other
inequality, note that |Ip| ≤ 2n|J | = |2J | implies that Ip is disjoint from 3J ,
since 3J does not contain any Ip. Thus we have

dist(Ip, c(J)) ≤ dist(Ip, J) + dist(∂J, c(J))

≤ dist(Ip, J) +
√
n

2
dist(Ip, J)

=
(

1 +
√
n

2

)
dist(Ip, J).

Hence it suffices to replace dist(J, Ip) by dist(c(J), Ip). Let x0 = c(J) and
decompose Rn as follows:

R
n =

∞⋃
m=1

Om,

where

O1 := B(x0, 3
√
n2k),

Om := B(x0, 3m
√
n2k)\B(x0, 3(m− 1)

√
n2k).

Let

S1 :=
{
p ∈ T : |Ip| = 2kn, Ip ∩B

(
x0, 3
√
n2k

)
6= ∅
}
,

Sm :=
{
p ∈ T : |Ip| = 2kn, Ip ∩ Om 6= ∅, Ip ∩

(
∪m−1
i=1 Oi

)
= ∅
}
, m ≥ 2.

Since the diameter of Ip is
√
n2k, Ip will not intersect three annuli, so each p

in the sum is contained in exactly one Sm. In order to estimate the number of
tiles in Sm, we consider the volume of the corresponding annulus Om. Now,

volume(Om) = (3
√
n)n2kn (mn − (m− 1)n) = Cn2knmn−1.
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Since the Ip’s are disjoint, there are Cnmn−1 cubes Ip of size 2kn in the set
Sm. Also for p ∈ Sm,

3(m− 1)
√
n2k ≤ dist(x0, Ip) ≤ 3m

√
n2k.

Thus, ∑
p∈T

|Ip|=2kn

1(
1 + dist(x0,Ip)

2k

)5n ≤
∞∑
m=1

mn−1

(1 +m)5n
≤
∞∑
m=1

1
m6

<∞. �

Using (6.4) and the lemma, we have that K1 is bounded by

Cεµ
∑
J∈J

log2 2n|J|∑
kn=−∞

2kn
(

1 +
dist (J, IT)

|IT|1/n

)−5n

≤ Cεµ
∑
J∈J
|J |

(
1 +

dist (J, IT)

|IT|1/n

)−5n

≤ Cεµ
∑
J∈J

∫
J

(
1 +
|x− c(IT)|
|IT|1/n

)−5n

dx

≤ Cεµ|IT|.

This completes the estimate of K1.
Now we consider K2 defined by (6.3). We can assume that the summation

runs only over those J ∈ J for which there exists a p ∈ T with 2n|J | < |Ip|.
Then we have J ⊂ 3IT and 2n|J | < |IT| for all J occurring in the sum.

Let us fix a dyadic cube J ∈ J and observe that the set

GJ = J ∩
⋃

p∈T : |Ip|>2n|J|

E2p

has measure at most Cµ|J |. To see this, let J ′ be the unique dyadic cube
which contains J and satisfies |J ′| = 2n|J | < |IT|. By the maximality of J ,
3J ′ contains Ip0 for some p0 ∈ T. There are two cases to consider. Case
(a): Ip0 is the dyadic cube that is formed from taking the unique double of
each side of J ′ which is also dyadic. In this case |Ip0 | = 2n|J ′| and we set
p0 = p′ < IT × ωT. Case (b): Ip0 is contained in one of the dyadic cubes
of size |J ′| contained in 3J ′. Since |J ′| = 2n|J | < |IT|, the dyadic cube
which contains Ip0 is contained in IT. In this case there exists a tile p′ with
|Ip′ | = |J ′| so that Ip0 ⊂ Ip′ ⊂ IT. In both cases we have a tile p′ such that
p0 < p′ < IT × ωT and |ωp′ | is either 2−n|J |−1 or 2−2n|J |−1. We claim that⋃

p∈T : |Ip|>2n|J|

E2p ⊂ E ∩N−1[ωp′ ].
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To see this, let us choose p ∈ T such that |Ip| > 2n|J |. Then |ωp| < 2−n|J |−1,
which means |ωp| < |ωp′ |. But ωT ⊂ ωp ∩ ωp′ , which leads us to conclude
ωp ⊂ ωp′ . Recalling that

E2p =
{
x : N(x) ∈ ωp(2n)

}
∩ E

now completes the proof of the claim.
The above claim implies that GJ ⊂ J ′ ∩ E ∩N−1[ωp′ ]. Therefore,

|GJ | ≤ |J ′ ∩ E ∩N−1 [ωp′ ] | =
∫

E∩N−1[ωp′ ]

1J′(x) dx.

Since

1J′(x) ≤ C

(
1 +
|x− c(Ip′)|
|Ip′ |1/n

)−ν
,

and mass({p}) ≤ µ, we get |GJ | ≤ Cµ|J |.
Let T2 be the 2n-tree of all p ∈ T such that ωT(2n) ⊂ ωp(2n) and let

T1 = T\T2. Define for j = 1, 2,

FjJ :=
∑

p∈Tj : |IP |>2n|J|

αP 〈f, φp〉ψN
p 1E2p .

First we consider F1J . We have

|F1J(x)| ≤
∑

p∈T1 : |Ip|>2n|J|

|〈f, φp〉||ψN
p (x)|1E2p(x)

≤ Cε
∑

p∈T1 : |Ip|>2n|J|

(
1 +
|x− c(Ip)|
|Ip|1/n

)−ν
1E2p(x).

We will sum the expression on the right hand side of the above inequality in
two steps. First let us construct

I :=
{
ω : there exists p ∈ T1 such that |Ip| > 2n|J | and ωp(2n) = ω

}
,

Pω :=
{
p ∈ T1 : |Ip| > 2n|J |, ωp(2n) = ω

}
, for ω ∈ I.

This means that the sum estimating F1J may be written as∑
ω∈I

∑
p∈Pω

(
1 +
|x− c(Ip)|
|Ip|1/n

)−ν
1Eω (x),

where
Eω := E ∩ {x : N(x) ∈ ω} .

Now note that for p ∈ T1, the semitiles Ip×ωp(2n) are disjoint. In particular,
for p, p′ ∈ Pω, p 6= p′, one has Ip ∩ Ip′ = ∅. Therefore,∑

p∈Pω

(
1 +
|x− c(Ip)|
|Ip|1/n

)−ν
≤ C.
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The proof of this fact is similar to that of Lemma 5. This implies that

|F1J(x)| ≤ Cε
∑
ω∈I

1Eω (x) = Cε1⋃Eω (x).

Here we have used the fact that the ω’s in I are disjoint. This yields

‖F1J(x)‖L1(J) ≤ Cε
∫
J

1⋃Eω (x) dx = Cε|GJ | ≤ Cεµ|J |,

This estimate, summed over the disjoint J ⊂ 3IT, yields the desired bound.
To complete the proof of (3.5) we estimate F2J(x). Fix x and assume

that F2J(x) is not zero. Since the cubes ωp(2n) with p ∈ T2 are all nested and
E2p =

{
x : N(x) ∈ ωp(2n)

}
∩E, there is a largest cube ω+ of the form ωp with

p ∈ T2, x ∈ E2p and |Ip| > 2n|J |. Similarly there is a smallest cube which
we call ωs satisfying the above properties. Let us define ω− = ωs(2n). Then
x ∈ E2p for some p ∈ T with |Ip| > 2n|J | if and only if |ω−| < |ωp| ≤ |ω+|.
Fix ξξξ0 ∈ ωT. We can now write F2J(x) as

F2J(x) =
∑
p∈T2

|ω−|<|ωp|≤|ω+|

αp〈f, φp〉ψN
p (x),

which may be decomposed as∑
p∈T2

|ω−|<|ωp|≤|ω+|

αp〈f, φp〉
(
e2πiξξξ0·(·)K(·) ∗ φp(·)

)
(x)

+

[(e2πiN(x)·(·) − e2πiξξξ0·(·)
)
K(·)

]
∗

∑
p∈T2

|ω−|<|ωp|≤|ω+|

αp〈f, φp〉φp(·)

 (x)

=
∑
p∈T2

αp〈f, φp〉
(
ψξξξ0
p ∗

(
Mc(ω+)D

1
1
6 |ω+|−1/nφ−Mc(ω−)D

1
1
6 |ω−|−1/nφ

))
(x)

+

{[(
e2πiN(x)·(·) − e2πiξξξ0·(·)

)
K(·)

]
∗

[∑
p∈T2

αp〈f, φp〉
(
φp ∗

(
Mc(ω+)D

1
1
6 |ω+|−1/nφ−Mc(ω−)D

1
1
6 |ω−|−1/nφ

))]}
(x).

We claim that the last equality follows from the geometry of the supports of
the Fourier transforms of the two convolving functions. More specifically, φ̂p
is supported on (1/5)ωp(1), while(

Mc(ω±)D
1
1
6 |ω±|−1/nφ

)̂
(ξξξ) =

{
1 if ξξξ ∈ ω±,
0 if ξξξ /∈

(
1 + 1

5

)
ω±.
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Therefore(
Mc(ω+)D

1
1
6 |ω+|−1/nφ−Mc(ω−)D

1
1
6 |ω−|−1/nφ

)̂
(ξξξ)

=

{
1 if ξξξ ∈ ω+ \

(
1 + 1

5

)
ω− ,

0 if ξξξ ∈ ω− ∪
((

1 + 1
5

)
ω+

)c
.

For those p ∈ T2 such that |ω−| < |ωp| ≤ |ω+| we have

1
5
ωp(1) ⊂ ω+ \

(
1 +

1
5

)
ω−.

Conversely, for p ∈ T2 such that |ωp| > |ω+| or |ωp| ≤ |ω−| we have

1
5
ωp(1) ⊂ ω− ∪

((
1 +

1
5

)
ω+

)c
.

This concludes the proof of the claim.
The expression for F2J may therefore be written as

(6.5)
(
G1 ∗

(
Mc(ω+)D

1
1
6 |ω+|−1/nφ−Mc(ω−)D

1
1
6ω−|−1/nφ

))
(x)

+

[(
e2πiN(x)·(·) − e2πiξξξ0·(·)

)
K(·) ∗G2(·)

∗
(
Mc(ω+)D

1
1
6 |ω+|−1/nφ−Mc(ω−)D

1
1
6 |ω−|−1/nφ

)]
(x),

where

G1(x) =
∑
p∈T2

αp〈f, φp〉ψξξξ0
p (x)

=
∑
p∈T2

αp〈f, φp〉
(
e2πiξξξ0·(·)K(·) ∗ φp(·)

)
(x),

G2(x) =
∑
p∈T2

αp〈f, φp〉φp.

Claim 1.

(6.6) |F2J(x)| ≤ C

sup
J⊂I

1
|I|

∫
I

|G1(z)| dz + sup
J⊂I

1
|I|

∫
I

|G2(z)| dz

 ,

where the suprema above are taken over all cubes I containing J .

The proof of the claim is given in the next section. One should recognize
the claim as a slight variant of the classical inequality

T ∗f̄ .M(T f̄) +M(f̄),



WEAK L2 ESTIMATE FOR A MAXIMAL DYADIC SUM OPERATOR ON R
n 799

where

Tg =
(
e2πiξξξ0·(·)K(·)

)
∗ g, f̄ = G2(x),

T ∗ is the maximal operator corresponding to T , and M denotes the Hardy-
Littlewood maximal function. In the rest of this section we show how the
proof of Theorem 1 may be completed using (6.6).

We observe that the right hand side of the above expression is constant on
J and that F2J1J is supported on GJ , which is of measure less than or equal
to Cµ|J |. Hence,∑
J∈J
‖F2J‖L1(J)

≤ Cµ
∑

J∈J : J⊂3ITTT

|J |

sup
J⊂I

1
|I|

∫
I

|G1(z)| dz + sup
J⊂I

1
|I|

∫
I

|G2(z)| dz


≤ Cµ

(∥∥∥∥∥M
(∑
p∈T2

αp〈f, φp〉ψξξξ0
p

)∥∥∥∥∥
L1(3IT)

+

∥∥∥∥∥M
(∑
p∈T2

αp〈f, φp〉φp

)∥∥∥∥∥
L1(3IT)

)

≤ Cµ|IT|1/2
(∥∥∥∥∥∑

p∈T2

αp〈f, φp〉ψξξξ0
p

∥∥∥∥∥
L2(Rn)

+

∥∥∥∥∥∑
p∈T2

αp〈f, φp〉φp

∥∥∥∥∥
L2(Rn)

)
.

Here we have used the L2 boundedness of the Hardy-Littlewood maximal
function M . We now show that ‖G1‖L2 and ‖G2‖L2 are bounded above by a
constant multiple of ε|IT |1/2. We have

‖G1‖2L2 =
∑

p,p′∈T2

αpαp′〈f, φp〉 〈f, φp′〉 〈ψξξξ0
p , ψ

ξξξ0
p′ 〉

=
∑

p,p′∈T2
ωp 6=ω′p

αpαp′〈f, φp〉 〈f, φp′〉 〈m(· − ξξξ0)φ̂p,m(· − ξξξ0)φ̂p′〉

+
∑

p,p′∈T2
ωp=ω′p

αpαp′〈f, φp〉 〈f, φp′〉 〈ψξξξ0
p , ψ

ξξξ0
p′ 〉.

Similarly,

‖G2‖2L2 =
∑

p,p′∈T2

αpαp′〈f, φp〉 〈f, φp′〉 〈φp, φp′〉
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=
∑

p,p′∈T2
ωp 6=ω′p

αpαp′〈f, φp〉 〈f, φp′〉 〈φ̂p, φ̂p′〉

+
∑

p,p′∈T2
ωp=ω′p

αpαp′〈f, φp〉 〈f, φp′〉 〈φp, φp′〉.

But 〈φ̂p, φ̂p′〉 = 0 for p, p′ ∈ T2, ωp 6= ωp′ , since φ̂p and φ̂p′ have disjoint
supports in this case. Therefore we only need to consider the second sum in
the expressions for ‖G1‖2L2 and ‖G2‖2L2 . Our pointwise bounds imply that

〈φp, φp′〉, 〈ψξξξ0
p , ψ

ξξξ0
p′ 〉

. |Ip|−1/2|Ip′ |−1/2

∫ (
1 +
|x− c(Ip)|
|Ip|1/n

)−ν (
1 +
|x− c(Ip′)|
|Ip′ |1/n

)−ν
dx,

so it is enough to estimate the right hand side above for p, p′ satisfying ωp =
ω′p. Upon simplification this reduces to

|Ip|−1

∫
Rn

(
1 +
|x− c(Ip)|
|Ip|1/n

)−ν (
1 +
|x− c(Ip′)|
|Ip′ |1/n

)−ν
dx

=
∫
Rn

(1 + |y|)−ν
(

1 +
∣∣∣∣y +

c(Ip)− c(Ip)
|Ip|1/n

∣∣∣∣)−ν dy
.

(
1 +

∣∣∣∣c(Ip)− c(Ip′)|Ip|1/n

∣∣∣∣)−ν .
With this estimate, the proof that ‖G1‖L2 and ‖G2‖L2 are less than Cε|IT|1/2
is similar to an argument outlined in the proof of Lemma 2. One needs to
follow the proof of the estimate of the first term of (5.5) to complete the proof
of Lemma 3, given the claim.

7. Proof of Claim 1

Let us estimate the first term in the expression (6.5). We denote by c̃ any
one of the two constants 1

6 |ω+|−1/n or 1
6 |ω−|

−1/n. By translation invariance,
let I− and I+ be the unique dyadic cubes of the form

I± =
n∏
j=1

[0, |ω±|−1/n).

For a dyadic cube I =
∏n
j=1 [0, 2k) and r = (r1, r2, · · · , rn) ∈ Zn, I + r will

denote the unique dyadic cube of the form

[r12k, (r1 + 1)2k)× · · · × [rn2k, (rn + 1)2k).
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Now,∫
|G1(y)|c̃−n

∣∣∣∣φ(x− y
c̃

)∣∣∣∣ dy
≤ c̃−n

∫
|x−y|≤c̃

|G1(y)| dy + c̃−n
∑
j≥1

2−jν
∫

|x−y|∼c̃2j

|G1(y)| dy

≤ c̃−n
∫

|xi−yi|≤c̃
1≤i≤n

|G1(y)| dy +
∑
j≥1

2−j
1

(c̃2j)n

∫
|xi−yi|≤c̃2j

1≤i≤n

|G1(y)| dy

. sup
I : J⊂I

1
|I|

∫
I

|G1(z)| dz.

Here we have used the fact that since x ∈ J and |J | < |I+| < |I−|, we have
J ⊂ {y : |xi − yi| ≤ c̃ for all i, 1 ≤ i ≤ n}.

We denote by B the second term in (6.5).

B =
∫

(y,z)∈Rn×Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)

×

[
e2πic(ω+)·(z−y)

(
1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)

− e2πic(ω−)·(z−y)

(
1
6
|ω−|−1/n

)−n
φ

(
z− y

1
6 |ω−|−1/n

)]
G2(x− z) dydz.

To estimate B we write it as

B = B1 − B2 + B3 + B4,

where

B1 :=
∫

z∈I+

∫
y∈Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)e2πic(ω+)·(z−y)

×
(

1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)
G2(x− z) dy dz,

B2 :=
∫

z∈I−

∫
y∈Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)e2πic(ω−)·(z−y)

×
(

1
6
|ω−|−1/n

)−n
φ

(
z− y

1
6 |ω−|−1/n

)
G2(x− z) dy dz,
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B3 :=
∑

r∈Zn\{0}

∫
z∈I−+r

∫
y∈Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)

×

[
e2πic(ω+)·(z−y)

(
1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)

− e2πic(ω−)·(z−y)

(
1
6
|ω−|−1/n

)−n
φ

(
z− y

1
6 |ω−|−1/n

)]
G2(x− z) dydz,

and

B4 :=
∫

z∈I−\I+

∫
y∈Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)e2πic(ω+)·(z−y)

×
(

1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)
G2(x− z) dy dz.

We have the following bound for B1:

|B1| ≤

 ∫
z∈I+

∫
y∈I+

+
∑

m∈Zn\{0}

∫
z∈I+

∫
y∈I++m

 ∣∣∣(e2πiN(x)·y − e2πiξξξ0·y
)
K(y)

∣∣∣ |ω+|

×

∣∣∣∣∣φ
(

z− y
1
6 |ω+|−1/n

)∣∣∣∣∣ dy|G2(x− z)| dz

.
∫

z∈I+

|ω+|
∫

y∈I+

|N(x)− ξξξ0||y|1−ndy|G2(x− z)| dz

+
∑

m∈Zn\{0}

∫
z∈I+

|ω+|
∫

y∈I++m

|y|−n|m|−ν dy|G2(x− z)| dz

. |ω+||ω−|1/n|I+|1/n
∫

z∈I+

|G2(x− z)| dz

+
∑

m∈Zn\{0}

|ω+|
(
|m| |I+|1/n

)−n
|m|−ν |I+|

∫
z∈I+

|G2(x− z)| dz

.

( |ω−|
|ω+|

)1/n

+
∑

m∈Zn\{0}

|m|−n−ν
 sup
I : J⊂I

1
|I|

∫
I

|G2(z)| dz

. sup
I : J⊂I

1
|I|

∫
I

|G2(z)| dz,
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for large ν. The treatment for B2 is similar.

Next we estimate B3. Note that it suffices to consider |r| ≥ 2. The case
|r| < 2 follows with a similar argument as in the treatment of B1.

B3 =
∑

r∈Zn\{0}

∫
z∈I−+r

∫
ξξξ∈Rn

(m(ξξξ −N(x))−m(ξξξ − ξξξ0)) e2πiz·ξξξ

×
[
φ̂

(
1
6
|ω+|−1/n(ξξξ − c(ω+))

)
−φ̂

(
1
6
|ω−|−1/n(ξξξ − c(ω−))

)]
dξξξ|G2(x−z)|dz.

Let us write
e2πiz·ξξξ = |z|−2N (Lξξξ)N

(
e2πiz·ξξξ

)
,

where N is a large positive integer and Lξξξ is a suitably chosen differential
operator. Then we can see B3 as

∑
r∈Zn\{0}

∫
z∈I−+r

|z|−2N

∫
ξξξ∈Rn

e2πiz·ξξξLNξξξ

[
(m(ξξξ −N(x))−m(ξξξ − ξξξ0))

×
(
φ̂

(
1
6
|ω+|−1/n(ξξξ − c(ω+))

)
− φ̂

(
1
6
|ω−|−1/n(ξξξ − c(ω−))

))]
dξξξ|G2(x−z)|dz.

For simplicity, let us consider only those terms where (Lξξξ)
N is applied to

either one of the terms

(m(ξξξ −N(x))−m(ξξξ − ξξξ0))

or (
φ̂

(
1
6
|ω+|−1/n(ξξξ − c(ω+))

)
− φ̂

(
1
6
|ω−|−1/n(ξξξ − c(ω−))

))
.

The analysis for the other terms is similar. First let us look at the inner
integral

(7.1)
∫

ξξξ∈Rn

e2πiz·ξξξLNξξξ [(m(ξξξ −N(x))−m(ξξξ − ξξξ0))]

×
[(
φ̂

(
1
6
|ω+|−1/n(ξξξ − c(ω+))

)
− φ̂

(
1
6
|ω−|−1/n(ξξξ − c(ω−))

))]
dξξξ.

We observe that∣∣LNξξξ [(m(ξξξ −N(x))−m(ξξξ − ξξξ0))]
∣∣ . (|ξξξ −N(x)|−2N + |ξξξ − ξξξ0|−2N

)
,

and that the integrand is supported on (1 + 1
5 )ω+ \ ω−. Also, given ω+ and

ω−, there exists a unique sequence of nested intervals

ω− ⊂ ωp1 ⊂ ωp2 ⊂ · · · ⊂ ωpM = ω+, |ωpi+1 | = 2n|ωpi |.
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It is not difficult to see that if ξξξ ∈ (1+ 1
5 )ωpi+1 \ωpi and N(x), ξξξ0 ∈ ω− ⊂ ωpi ,

then
|N(x)− ξξξ|, |ξξξ − ξξξ0| & |ωpi |1/n, 1 ≤ i ≤M − 1.

This implies that the expression in (7.1) is bounded by a constant multiple of
M−1∑
i=1

|ωpi ||ωpi |−2N/n . |ω−|1−2N/n.

Next we consider the inner integral

(7.2)
∫

ξξξ∈Rn

e2πiz·ξξξ [(m(ξξξ −N(x))−m(ξξξ − ξξξ0))]

× LNξξξ
[(
φ̂

(
1
6
|ω+|−1/n(ξξξ − c(ω+))

)
− φ̂

(
1
6
|ω−|−1/n(ξξξ − c(ω−))

))]
dξξξ

=
∫

ξξξ∈Rn

e2πiz·ξξξ [(m(ξξξ −N(x))−m(ξξξ − ξξξ0))]

×

[
|ω+|−2N/n

(
1
6

)2N (
LNξξξ φ̂

)(1
6
|ω+|−1/n(ξξξ − c(ω+))

)

− |ω−|−2N/n

(
1
6

)2N (
LNξξξ φ̂

)(1
6
|ω−|−1/n(ξξξ − c(ω−))

)]
dξξξ.

Therefore the expression in (7.2) is bounded above by a constant multiple of

|ω+|1−2N/n + |ω−|1−2N/n . |ω−|1−2N/n.

All the other terms originating from the integration by parts yield the same
bound. Also note that for z ∈ I− + r, we have |z|−2N ∼ (|r‖I−|)−2N since
|r| ≥ 2. Therefore choosing N large enough, we obtain

|B3| .
∑

r∈Zn\{0}

∫
z∈I−+r

|z|−2N |ω−|1−2N/n |G2(x− z)| dz

.
∑

r∈Zn\{0}

|ω−|1−2N/n
(
|r||I−|1/n

)−2N
∫

z∈I−+r

|G2(x− z)| dz

.
∑

r∈Zn\{0}

|r|n−2N 1(
|r||I−|1/n

)n ∫
z∈C|r|I−

|G2(x− z)| dz

. sup
I : J⊂I

1
|I|

∫
I

|G2(z)| dz,

since J ⊂ C|r|I−.
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It therefore remains to analyze B4. Since z ∈ I− \ I+, there exists

r ∈ Zn \ {0} , 1 ≤ |r| .
(
|ω+|
|ω−|

)1/n

such that z ∈ I+ + r. Let us first analyze the integral in y. Now,∣∣∣∣∣
∫

y∈Rn

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)e2πic(ω+)·(z−y)

×
(

1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)
dy

∣∣∣∣∣
≤
∑

m∈Zn

∣∣∣∣∣
∫

y∈I++m

(
e2πiN(x)·y − e2πiξξξ0·y

)
K(y)e2πic(ω+)·(z−y)

×
(

1
6
|ω+|−1/n

)−n
φ

(
z− y

1
6 |ω+|−1/n

)(
1
6
|ω+|−1/n

)n
dy

∣∣∣∣∣
≤
∫

y∈I+

|ω−|1/n|y|1−n|ω+||r|−νdy +

 ∑
m 6=0 : |m−r|≤ |r|2

+
∑

m 6=0 : |m−r|> |r|2


×
(
|m||I+|1/n

)1−n
|ω−|1/n min

(
1, |m− r|−ν |

)
≤ |ω−|1/n|ω+||I+|1/n|r|−ν +

(
|r||I+|1/n

)1−n
|ω−|1/n

+
∑

m : |m−r|> |r|2

|m− r|−ν |ω−|1/n|I+|(1/n)(1−n)

.
(
|r||I+|1/n

)1−n
|ω−|1/n

. |z|1−n|ω−|1/n.

Therefore,

|B4| . |ω−|1/n
∫

|I+|1/n.|z|.|I−|1/n

|z|1−n|G2(x− z)|dz

. g ∗ |G2|(x),

where

g(z) = h(|z|) = |ω−|1/n|z|1−n1|I+|1/n.|z|.|I−|1/n(z).



806 MALABIKA PRAMANIK AND ERIN TERWILLEGER

We observe that g ∈ L1, ‖g‖1 ≤ C, and g is radially decreasing. Let us
approximate g from below by gγ defined as follows:

gγ(x) =


0 if |x| ≤ |I+|1/n,
h
(
|I+|1/n + kγ

)
if (k − 1)γ + |I+|1/n < |x| ≤ kγ + |I+|1/n,

1 ≤ k ≤ k0,

0 if |x| > |I−|1/n,

where k0γ = |I−|1/n − |I+|1/n. We can write gγ as

gγ = −h
(
|I+|1/n + γ

)
1B(0;|I+|1/n)

+
k0∑
k=1

(
h
(
|I+|1/n + kγ

)
− h

(
|I+|1/n + (k + 1)γ

))
1B(0;|I+|1/n+kγ).

Therefore,

|gγ ∗ |G2|| ≤ h(|I+|1/n + γ)|G2| ∗ 1B(0;|I+|1/n)

+
∑
k

(
h
(
|I+|1/n + kγ

)
− h

(
|I+|1/n + (k + 1)γ

))
|G2| ∗ 1B(0;|I+|1/n+kγ),

which in turn is bounded by sup
I : J⊂I

1
|I|

∫
I

|G2(z)|dz

 × [
h
(
|I+|1/n + γ

) ∣∣∣B (0; |I+|1/n
)∣∣∣

+
∑
k

(
h
(
|I+|1/n + kγ

)
− h

(
|I+|1/n + (k + 1)γ

)) ∣∣∣B (0; |I+|1/n + kγ
)∣∣∣]

≤

 sup
I : J⊂I

1
|I|

∫
I

|G2(z)|dz

 ‖g̃γ‖1.
Here g̃γ is given by

g̃γ = h
(
|I+|1/n + γ

)
1B(0;|I+|1/n)

+
∑
k

(
h
(
|I+|1/n + kγ

)
− h

(
|I+|1/n + (k + 1)γ

))
1B(0;|I+|1/n+kγ).

In other words,

g̃γ(x) =


2h
(
|I+|1/n + γ

)
if 0 ≤ |x| ≤ |I+|1/n,

h
(
|I+|1/n + kγ

)
if |I+|1/n + (k − 1)γ < |x| < |I+|1/n + kγ,

0 if |x| > |I−|1/n.
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Therefore,

‖g̃γ‖1 . ‖g‖1 + |ω−|1/n
∫

|y|≤|I+|1/n

|y|1−ndy . 1,

since |ω−| < |ω+|. Thus,

gγ ∗ |G2|(x) . sup
I : J⊂I

1
|I|

∫
I

|G2(z)| dz.

Letting γ → 0 and applying the dominated convergence theorem now yields
the desired bound for B4.

8. An application

As an immediate application of the weak L2 mapping property of the max-
imal dyadic sum operator, we obtain a new proof of Sjölin’s theorem [6] on
a weak-type (2,2) estimate for the maximal conjugated Calderón-Zygmund
operator on Rn, n > 1.

Theorem 2. Let

K(x) = Ω
(

x
|x|

)
|x|−n

be a Calderón-Zygmund kernel in Rn with Ω ∈ C∞(Sn−1). Let

Bf = f ∗K,
and

Cf(x) = sup
ξξξ∈Rn

∣∣∣(e2πiξξξ·(·)Be−2πiξξξ·(·)f
)∣∣∣ (x).

Then,
‖Cf‖L2,∞ ≤ C‖f‖L2 ,

with a constant C independent of f .

The proof of Theorem 2 again follows techniques similar to those used by
Lacey and Thiele [5] in proving Carleson’s theorem on almost everywhere
convergence of Fourier series. Following [5], we introduce the operators

Aηηηf :=
∑
p∈D

〈f, φp〉φp1ωp(2n)(ηηη),

Af := lim
N→∞

1
KN

∫
KN×[0,1]

M−ηηηT−yD
2
2−κA2−κηηηD

2
2κTyMηηηf dy dηηη dκ,

where KN is any increasing sequence of rectangles filling out Rn × Rn. For
any Schwartz function f and any x ∈ Rn, the limit representing Af(x) exists
by the argument given by Lacey and Thiele.
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Note that by rotation invariance, it is enough to prove Theorem 2 when
the multiplier is supported on a nonempty open cone in Rn.

Lemma 6. There exists a nonempty open cone K̃0 with vertex at the ori-
gin,

K̃0 ⊂ {ξξξ = (ξ1, ξ2, · · · , ξn); ξi ≤ 0 for all i} ,

such that for all ξξξ ∈ K̃0,

(Af )̂ (ξξξ) = cf̂(ξξξ),

where c is a constant independent of f .

Proof.

(Af )̂ (ξξξ)

= lim
N→∞

1
|KN |

∫
((y,ηηη),κ)∈KN×[0,1]

(
M−ηηηT−yD

2
2−κA2−κηηηD

2
2κTyyyMηηηf

)̂
(ξξξ) dy dηηη dκ

= lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

〈f,M−ηηηT−yD
2
2−κφp〉

(
M−ηηηT−yD

2
2−κφp

)̂
(ξξξ) dy dηηη dκ

= lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

∫
Rn

f̂(ξ′ξ′ξ′)2
−κn

2 φ̂p
(
2−κ(ξ′ξ′ξ′ + ηηη

)
e−2πiy·(ξ′ξ′ξ′+ηηη)dξ′ξ′ξ′

× 2
−κn

2 φ̂p
(
2−κ(ξξξ + ηηη)

)
e2πiy·(ξξξ+ηηη)1ωp(2n)(2

−κηηη) dy dηηη dκ

= lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

∫
Rn

f̂(ξ′ξ′ξ′)2−κn+αnφ̂

(
2α−κ(ξ′ + ηηη)−

(
l +

1
4

))

× e−2πi(m+ 1
2 )·(2α−κ(ξ′ξ′ξ′+ηηη)−(l+ 1

4 ))φ̂
(

2α−κ(ξξξ + ηηη)−
(

l +
1
4

))
× e2πi(m+ 1

2 )·(2α−κ(ξξξ+ηηη)−(l+ 1
4 ))1ωp(2n)(2

−κη) dy dηηη dκ dξ′ξ′ξ′,

where we have expressed Ip and ωp as

Ip =
n∏
i=1

[mi2α, (mi + 1)2α) , ωp =
n∏
i=1

[
li2−α, (li + 1)2−α

)
with

m = (m1,m2, . . . ,mn), l = (l1, l2, . . . ln) ∈ Zn.
Interpreting the sum ∑

m∈Zn
e2πi(m+ 1

2 )·2α−κ(ξξξ−ξ′ξ′ξ′)
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in the sense of distributions, we find that

(8.1) (Af )̂ (ξξξ) = c lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
l∈Zn,α∈Z

f̂(ξξξ)

×
∣∣∣∣φ̂(2α−κ (ξξξ + ηηη)−

(
l +

1
4

))∣∣∣∣2 1ωp(2n)(2
−κηηη) dy dηηη dκ.

Now, φ̂
(
2α−κ (ξξξ + ηηη)−

(
l + 1

4

))
is supported on{

(ξξξ,ηηη) : − 1
10
≤ 2α−κ (ξi + ηi)−

(
li +

1
4

)
≤ 1

10
for 1 ≤ i ≤ n

}
=
{

(ξξξ,ηηη) :
(
li +

3
20

)
2κ−α ≤ ξi + ηi ≤

(
li +

7
20

)
2κ−α for 1 ≤ i ≤ n

}
.

Also,

1ωp(2n)(2
−κηηη) 6= 0⇔

(
li +

1
2

)
2−p ≤ 2−κηi ≤ (li + 1) 2−α

⇔
(
li +

1
2

)
2κ−α ≤ ηi ≤ (li + 1) 2κ−α.

Therefore, the integrand in the right hand side of (8.1) is supported in⋃
α∈Z

{
−17

20
2κ−α ≤ ξi ≤ −

3
20

2κ−α for all i, 1 ≤ i ≤ n
}
.

Moreover, if

(8.2) −13
20

2κ−α ≤ ξi ≤ −
7
20

2κ−α for all i, 1 ≤ i ≤ n,

then{
ηηη :

(
li +

3
20

)
2κ−α ≤ ξi + ηi ≤

(
li +

7
20

)
2κ−α for all i, 1 ≤ i ≤ n

}
⊂
{
ηηη :

(
li +

1
2

)
2κ−α ≤ ηi ≤ (li + 1) 2κ−α

}
.

Note that there exists a nonempty open cone K̃0 with vertex at the origin
such that for all ξξξ ∈ K̃0, there exist α ∈ Z and κ ∈ [0, 1] satisfying (8.2). In
the sequel we work with such a cone.

For ξξξ ∈ K̃0 and choosing KN = [−N,N ]n × [−N,N ]n, we have

(Af )̂ (ξξξ) = cf̂(ξξξ) lim
N→∞

1
|KN |

×
∫

KN×[0,1]

∑
l∈Zn,α∈Z

∣∣∣∣φ̂(2α−κ (ξξξ + ηηη)−
(

l +
1
4

))∣∣∣∣2 dy dηηη dκ
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= cf̂(ξξξ) lim
N→∞

N−n

×
∫

(ηηη,κ)∈[−N,N ]n×[0,1]

∑
l∈Zn,p∈Z
|ξi|∼2κ−α

ηi∼li2κ−α ∀i

∣∣∣∣φ̂(2α−κ (ξξξ + ηηη)−
(

l +
1
4

))∣∣∣∣2dηηη dκ

= cf̂(ξξξ) lim
N→∞

N−n
1∫

0

∑
l∈Zn,α∈Z
|ξi|∼2κ−α

−N.li2κ−α.N ∀i

(
2κ−α

)n
dκ

= cf̂(ξξξ) lim
N→∞

N−n
1∫

0

∑
α∈Z

|ξi|∼2κ−α ∀i

(
N2−κ+α

)n (2κ−α)n dκ

= cf̂(ξξξ)

1∫
0

∑
α∈Z

|ξi|∼2κ−α ∀i

1 dκ

= cf̂(ξξξ). �

Now, let m be the multiplier associated with the Calderón-Zygmund kernel
K. Then m ∈ C∞(Rn \{0}) and m is homogeneous of degree 0. Suppose fur-
ther, without loss of generality, that m is supported on the cone K̃0 described
earlier. We may reduce the problem to this case via a partition of unity and
by invoking rotation invariance.

Recalling that
Bf = f ∗K,

and
Cf(x) = sup

ηηη
|MηηηBM−ηηηf |(x),

we define, for ζζζ ∈ Rn,

Bζζζf :=
∑
p∈D

〈f, φp〉ψζζζp1ωp(2n)(ζζζ),

where (
ψζζζp

)
(̂ξξξ) = m(ξξξ − ζζζ)φ̂p(ξξξ).

Using Lemma 6, it is not hard to see that

Bf : = lim
N→∞

1
|KN |

∫
KN×[0,1]

M−ηηηT−yD
2
2−κB2−κηηηD

2
2κTyMηηηf dy dηηη dκ
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= lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

[
〈f,M−ηηηT−yD

2
2−κφp〉

×
(
M−ηηηT−yD

2
2−κψ

2−κηηη
p

) (
1ωp(2n)(2

−κηηη)
)]
dy dηηη dκ.

In fact,

(Bf )̂ (ξξξ) = lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

[
〈f,M−ηηηT−yD

2
2−κφp〉

× T−ηηηMyD
2
2κ

(
ψ2−κηηη
p

)̂
(ξξξ)

(
1ωp(2n)(2

−κηηη)
)]
dy dηηη dκ

= lim
N→∞

1
|KN |

∫
KN×[0,1]

∑
p∈D

[
〈f,M−ηηηT−yD

2
2−κφp〉

× T−ηηηMyD
2
2κ

[
m
(
ξξξ − ηηη2−κ

)
φ̂p(ξξξ)

] (
1ωp(2n)(2

−κηηη)
)]
dy dηηη dκ.

Since

T−ηηηMyD
2
2κ

[
m
(
ξξξ − ηηη2−κ

)
φ̂p(ξξξ)

]
= m(ξξξ)T−ηηηMyD

2
2κ φ̂p(ξξξ),

we get that

(Bf )̂ (ξξξ) = m(ξξξ)(Af )̂ (ξξξ) = c m(ξξξ)f̂(ξξξ),

where the last equality follows from the claim and the fact that suppm ⊂ K̃0.
Now, for f ∈ C∞0 (Rn) and ζζζ ∈ Rn,

MζζζBM−ζζζf(x)

= lim
l→∞

1
|Kl|

∫
Kl×[0,1]

MζζζM−ηηηT−yD
2
2−κB2−κηηηD

2
2κTyMηηηM−ζζζf(x) dy dηηη dκ

= lim
l→∞

1
|Kl|

∫
Kl×[0,1]

Mζζζ−ηηηT−yD
2
2−κB2−κηηηD

2
2κTyMηηη−ζζζf(x) dy dηηη dκ

= lim
l→∞

1
|Kl|

∫
Kζ
ζζ
l ×[0,1]

M−η′η′η′T−yD
2
2−κB2−κ(η′η′η′+ζζζ)D

2
2κTyMη′η′η′f(x) dy dη′η′η′ dκ

= lim
l→∞

1
|Kl|

∫
Kl×[0,1]

M−η′η′η′T−yD
2
2−κB2−κ(η′η′η′+ζζζ)D

2
2κTyMη′η′η′f(x) dy dη′η′η′ dκ,
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where Kζζζ
l := ζζζ + Kl. The last equality follows from the fact that for f ∈

C∞0 (Rn) and any fixed ζζζ, the integrand gets arbitrarily small on the domain
Kζζζ
l 4Kl as l→∞. The details are left to the interested reader.
Therefore,

sup
ζζζ
|MζζζBM−ζζζf(x)|

≤ lim
l→∞

1
|Kl|

∫
Kl×[0,1]

∣∣∣∣∣M−η′η′η′T−yD
2
2−κ

[
sup
ζζζ
Bζζζ

]
D2

2κTyMη′η′η′f(x)

∣∣∣∣∣ dy dη′η′η′ dκ.
We recall the following fact about the weak L2 norm: there exist universal
constants C1, C2 such that

C1 sup
E

|〈f, 1E〉|
|E|1/2

≤ ‖f‖L2,∞ ≤ C2 sup
E

|〈f, 1E〉|
|E|1/2

,

where the supremum is over all measurable sets E with finite Lebesgue mea-
sure. This implies∥∥∥∥∥sup

ζζζ
|MζζζBM−ζζζf |

∥∥∥∥∥
L2,∞

. sup
E

1
|E|1/2

∫
E

[
lim
l→∞

1
|Kl|

×
∫

Kl×[0,1]

∣∣∣∣∣M−η′η′η′T−yD
2
2−κ

(
sup
ζζζ
Bζζζ

)
D2

2κTyMη′η′η′f(x)

∣∣∣∣∣ dydη′η′η′dκ
]
dx

. lim
l→∞

1
|Kl|

∫
Kl×[0,1]

[
sup
E

1
|E|1/2

×
∫
E

∣∣∣∣∣M−η′η′η′T−yD
2
2−κ

(
sup
ζζζ
Bζζζ

)
D2

2κTyMη′η′η′f(x)

∣∣∣∣∣ dx
]
dy dη′η′η′ dκ

. lim
l→∞

1
|Kl|

∫
Kl×[0,1]

∥∥∥∥∥|M−η′η′η′T−yD
2
2−κ

(
sup
ζζζ
Bζζζ

)
D2

2κTyMη′η′η′f |

∥∥∥∥∥
L2,∞

dy dη′η′η′ dκ

. lim
l→∞

1
|Kl|

∫
Kl×[0,1]

∥∥∥∥∥
(

sup
ζζζ
Bζζζ

)
D2

2κTyMη′η′η′f

∥∥∥∥∥
L2,∞

dy dη′η′η′ dκ,

since the weak L2 norm is invariant under the translation, dilation and mod-
ulation operators defined in Section 2. The same invariance properties also
hold true for the L2 norm. In order to prove the weak L2 bound for the
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Carleson operator, it therefore suffices to show that

(8.3) ‖ sup
ζζζ
Bζζζf‖L2,∞ ≤ C‖f‖L2 ,

which is the conclusion of Theorem 1.
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