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MAPS PRESERVING ZERO JORDAN PRODUCTS ON
HERMITIAN OPERATORS

MIKHAIL A. CHEBOTAR, WEN-FONG KE, AND PJEK-HWEE LEE

ABSTRACT. Let H be a separable complex Hilbert space and Bs(H)
the Jordan algebra of all Hermitian operators on H. Let 6 : Bs(H) —
Bs(H) be a surjective R-linear map which is continuous in the strong
operator topology such that 8(x)0(y)+6(y)0(x) = 0 for all z,y € Bs(H)
with zy +yz = 0. We show that 0(x) = Auzu* for all z € Bs(H), where
A is a nonzero real number and u is a unitary or anti-unitary operator
on H.

1. Introduction

Given any (associative) ring R we can render it into a Jordan ring by
defining, for any two elements a,b € R, the Jordan product aob = ab+ba. An
additive map ¢ : R — R’ of rings is called a Jordan homomorphism if ¢(acb) =
w(a)op(b) for all a,b € R. In the case that 2 is invertible in R’ in the sense that
2z = a has a unique solution in R’ for every a € R’, this condition is equivalent
to ¢(a?) = ¢(a)? for all a € R. Obviously, (associative) homomorphisms and
anti-homomorphisms are Jordan homomorphisms. Jordan homomorphisms
have been thoroughly investigated in the literature [1], [2], [5], [8], [9], [11],
[22]. The results proved usually read that a Jordan homomorphism must
be a homomorphism or an anti-homomorphism. For instance, Herstein [5]
showed that a Jordan homomorphism of any ring onto a prime ring is either
a homomorphism or an anti-homomorphism.

In the case that the ring R is endowed with an involution a — a*, the
set S = S(R) = {a € R| a* = a} of all symmetric elements of R is itself a
Jordan ring. In [10] Jacobson and Rickart proved that, given a matrix ring
R = M,(A), where A is aring and n > 3, with a “canonical” involution * such
that the symmetric elements are trace-valued, any Jordan homomorphism of S
can be lifted to a homomorphism of R in a unique way. At his 1961 AMS talk
[6] Herstein posed the problem of characterizing the Jordan homomorphisms
of the symmetric elements of a simple ring with involution. This problem was
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solved by Martindale [12] in the presence of orthogonal idempotents. Using
Zelmanov’s brilliant work on prime Jordan algebras [23], an idempotent-free
solution was later obtained by McCrimmon [14] and Martindale [13].

Let H be a complex Hilbert space and B(H) the algebra of all bounded
linear operators on H with the adjoint map a — a*. The Jordan subalge-
bra Bs(H) = S(B(H)) of all Hermitian operators on H (i.e., the set of all
bounded observables) plays an important role in the mathematical descrip-
tion of quantum mechanics. As with any algebraic structure the study of the
automorphisms of this algebra is of considerable importance. It is well-known
(see, for example, [16, p. 99]) that every Jordan automorphism on Bs(H) is
of the form x — uxu*, where u is a unitary or anti-unitary operator on H. A
unified treatment of the Jordan automorphisms is presented in [4].

In many cases maps on B,(H) defined by certain local properties or pre-
serving certain properties are exactly Jordan automorphisms [16], [17], [18],
[19]. In this note we shall show that Jordan automorphisms can be character-
ized by their action on zero Jordan products. More precisely, we show that a
surjective R-linear map 6 : B;(H) — B(H) which is continuous in the strong
operator topology and preserves zero Jordan products must be of the form
x — Ap(x) where A is a nonzero real number and ¢ is a Jordan automorphism
of B4(H). Moreover, 6 is a Jordan automorphism if, in addition, (1) = 1.

2. The results

Let C be a commutative ring with % (i.e., C is a unital ring in which 2 is
invertible), ¢ — € an automorphism of order 1 or 2 on C, and R = M, (C),
the n by n matrix algebra over C. We denote by e;; the matrix which has 1
in the (4, j)-position and zeros elsewhere. Note that R can be equipped with
the involution * defined by a* =@ for a € C' and €}; = e;;. For simplicity we
shall write a;; = ae;; for a € C' and put

M:{eii|1§i§n}u{aij+ﬁji|a60, 1§Z7é]§n}

Then the Jordan ring S = S(R) is the linear span of M over the subring
F={ceCl|e=c}of C.

Let J be an arbitrary Jordan algebra over F and 6 : S — J an F-linear
map which preserves zero Jordan products, that is, 6(z) o §(y) = 0 whenever
x,y € S satisfy zoy = 0. To begin with, we investigate the product 6(z)o6(y).
A relation between 6(z o y) and 6(z) o 8(y) will be established for arbitrary
x,y € S. As a consequence, we see that the map 6 which preserves zero Jordan
products also preserves equal Jordan products, that is, 8(x)o8(y) = (u)ob(v)
for all z,y,u,v € S with zoy=wuowv.

THEOREM 2.1. Let S be the Jordan algebra defined above, J a Jordan al-
gebra over F and 0 : S — J an F-linear map preserving zero Jordan products.
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Then
1
(2.1) 0(x) 0 O(y) = 5 0(1) 0 b(z oy)
for all z,y € S. In particular, we have 0(x) o O(y) = 6(u) o O(v) for all
T, Yy, u,v €S withroy =wuow.

Proof. Since S is spanned by M over F' and 6 is F-linear, it suffices to
verify (2.1) for x,y € M. Note that (2.1) is obvious if x oy = 0. Thus we
need only consider the following cases:

(a) z =y =ejy.
From (e;; — 1) o e;; = 0 it follows that 6(e;; — 1) o 6(e;;) = 0 and hence

Now x oy = 2e;;, so we have
1
O(z)ob(y) =0(1)o0b(ei) = 3 0(1) o 6(z o y).

(b) © = €;i, Yy = a;; + a@;;, where ¢ # j and a € C.

From (eii — ejj) o (aij —I—Eji) = 0 it follows that Q(eii — ejj) 09(aij +ﬁji) =0,
or equivalently,
(2.3) 0(eii) 0 0(ai; +aji) = 0(ej;) o 0(ai; + aji).
Since 6(epn) 0 0(ai; +a;;) =0 for h ¢ {i, j}, this together with (2.3) yields

0(1) 0 0(ai; +ajs) O(enn) o 0(aij +aj;)

:M:

0(6”) of(a;j +aj)+ 0(ej;) o 0(a;; +aj;)
= 20(es;) 0 O(asj + @ji),
and hence
1
(24) 9(6“) [¢] G(aij —+ ajl') = 5 9(1) (¢] H(aij + aji)-

Now z oy = a;; + @j;, so (2.4) means exactly 0(z) o 0(y) = 5 6(1) 0 O(z 0 y).

(¢) & = a;; +aj;, y = biyj + bj;, where i # j and a,b € C.

Let ¢ = £ (ab+ab) € F. From

(esi + aij +aj; — ejj) o (—¢ii + bij + bji +¢;5) =0
it follows that
0(esi + aij + @y — e55) 0 O(—cii + bij + bjs + ¢;5) = 0.
Expansion of the last identity yields A + B = 0, where
A= 0(eii — ej5) 0 O(—cii + ¢j5) + 0(a; + i) 0 0(bij + bji),
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and

= 0(ai; +aji) o 0(—cis + ¢j5),
since 6(e;; — ej5) o 0( +b;i) = 0 by (2.3). Replacing a by 2a, we get
2A + 4B = 0. Therefore, A = B = 0. By (2.2) it follows from A = 0 that

O(aij + ;i) 0 0(bij + bji) = 0(eis — ej;) 0 O(cii — ¢j5)
= c(eii — ej5) 0 O(ei — ejj)
= c(f(eii) o O(eii) + 0(ej;) o 0(ej;))
= cf(1) o (0(eis) + O(ej;)).
Now z oy = 2¢(e;; + €5;), so we have
0(x) 0 0(y) = cf(1) o (B(ei) + 6(ej;))
= 2 601) 0 6(2c(eii +57))

= l9(1) of(zoy).

\]

(d) x = a;; +aj;, y = bji + bij, where 4, j, k are distinct and a,b € C.
From
(aij + [ablix, + @i + [ab]y,;) o (=[0b]j5 + by + bij — ex) =0
it follows that
0(a;; + [ablix + @ji + [ad],;) 0 O(—[bb];; + bjx + brj — exx) = 0.
Expansion of the last identity yields A + B = 0, where
A = 0(aij +ji) 0 0(bjk + big) — O([abluk + [ab]y;) o O(enr),

and

B = 0([abli + [ably;) 0 O(bjk + biz) — 0(aij +ajq) © O([bd]),
since 0(a;j +@j;i) o 0(exr) = 0 and 0([abliy + [abd],;) 0 O([bD];;) = 0. Replacing
b by 2b, we get 2A + 4B = 0. Therefore, A= B =0. By (2 4) it follows from
A =0 that

0(aij +@ji) 0 0(bj + brj) = 0(exr) 0 O([ablix, + [ab],,)
= £ 6(1) 0 6([ablus + [aB]).

Now z oy = [ab;x + [ab],;, so the last identity means exactly 0(x) o 0(y) =
20(1) 0 f(z o y).

Thus we have proved that 6(z) o 6(y) = 36(1) o (z o y) for all z,y €
S. Therefore, if x,y,u,v € S satisfy x oy = u o v, then it is obvious that

O(x) 0 0(y) = 0(u) o H(v). O

Using an argument similar to that for [3, Theorem 3.2], we may apply the
preceding theorem to the case of Hermitian operators.
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COROLLARY 2.2. Let Fs(H) be the Jordan algebra of all Hermitian oper-
ators of finite rank on a complex Hilbert space H, J a Jordan algebra over R

and 6 : Fs(H) — J an R-linear map preserving zero Jordan products. Then
0(x) 0 0(y) = O(u) o O(v) for all x,y,u,v € Fs(H) with xoy =uowv.

Proof. Fix z,y,u,v € Fs(H). There is a projection p € F5(H) such that
prp = x, pyp =y, pup = u and pvp = v. Let {e1,eq,...,e,} be an orthonor-
mal basis of the range of p and A the subalgebra of B(H) consisting of all
operators a on H defined by a(w) = szzl a;;(wlejye; for w € H, where
a;; € C and (wl|e;) denotes the inner product of w and e;. Note that A is
isomorphic to R = M, (C) via the isomorphism ¢ — szzl agje;; and we
may assume that x,y,u,v € S = S(R), the Jordan algebra of all Hermitian
matrices. Therefore for the restriction of § to S we may apply Theorem 2.1.
Hence 0(x) 0 0(y) = 0(u) o O(v) for all z,y,u,v € Fs(H) with zoy = uowv and
the proof is complete. O

We are now in a position to prove the main theorem of the present paper
using some ideas from the proof of [3, Theorem 3.3].

THEOREM 2.3. Let Bs(H) be the Jordan algebra of all Hermitian operators
on a separable complex Hilbert space H and 6 : Bs(H) — Bs(H) a surjective
R-linear map which is continuous in the strong operator topology. Suppose that
0 preserves zero Jordan products. Then A = 6(1) is a nonzero real number
and there exists a unitary or anti-unitary operator u on H such that

0(z) = duzu™  for all x € B,(H).
Proof. First we show that
1
(2.5) 3 (1) o B(xzoy) = 6(x) o O(y)

for all x,y € Bs(H).

Let xo,y0 € Fs(H). Since H is separable, Fs;(H) is dense in Bs(H) in the
strong operator topology. In particular, there exists a sequence {p,} in Fy(H)
converging to 1 in the strong operator topology. We may assume further that
Pn(2o 0 Yo) = (zo © Yo)prn = xo © Yo for all n. According to Corollary 2.2 the
restriction of 8 to Fs(H) preserves equal Jordan products, so it follows from
2Pn 0 (w9 0 Yo) = 0 0 Yo that

% 0(pn) © 6(xo © yo) = O(zo) © (o)

for all n. Since € is continuous in the strong operator topology, we obtain

(2.6) % 0(1) 0 O(zg o yo) = 0(x0) © O(yo)

by passing to the limit in the previous equation.
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Let z € Bs(H) and {z,} a sequence in Fs(H) converging to . It follows
from (2.6) that

5 0(1) 0 6(z 0 30) = B(an) o B(yo)

for all n. Passing to the limits in this equation we get

(2.7) % 6(1) 0o 8(x o yo) = 6(z) o O(yo).

Finally, let y € Bs(H) and {y,} a sequence in Fs(H) converging to y. It
follows from (2.7) that

5 6(1) 0 6(x 0 ) = 0(x) 0 6(3)

for all n. Passing to the limits in this equation we obtain (2.5).
For any projection p in Bs(H) we have

(2.8) 0(1) 0 6(p) = 6(p) o 6(p) = 26(p)*.
Thus
[0(1) 0 6(p)I0(p) = 0(p)[0(1) © 6(p)],
and its expansion yields
0(1)0(p)* = 0(p)*0(1).
This together with (2.8) gives

0(1)[6(1) o 6(p)] = [6(1) o 6(p)]O(1).
Since every element of Bs(H) is an R-linear combination of projections [20,
Theorem 3], we have

0(1)[6(1) 0 6(x)] = [6(1) 0 B()]O(1)
for all x € Bs(H), and, a fortiori,

0(1)[0(1) 0 O(x o y)] = [6(1) 0 O(z 0 y)]O(1)
for all z,y € Bs(H). In view of (2.5), we conclude that 6(1) commutes with
0(x) o O(y) for all x,y € Bs(H). Since 0 : Bs(H) — Bs(H) is surjective, this
implies that 6(1) commutes with z oy for all z,y € B,(H), and, in particular,
commutes with every projection p in Bs(H). In other words, §(1) is a central
element in By(H), that is, a real number. Note that 6(1) is nonzero by (2.5).
Set A = 6(1). Then (2.5) reduces to

M(z oy) = 0(x) 0 b(y),

and hence ¢ = X716 is a surjective Jordan homomorphism on B,(H) which is
also continuous in the strong operator topology. We claim that ¢ is injective.
Suppose on the contrary that ¢(a) = 0 for some nonzero a € By(H). Let J
be the Jordan ideal of Bs(H) generated by a. Then the restriction of ¢ to
the Jordan ideal J is zero. Let I be a nonzero *-ideal of B(H) such that J
contains all the symmetric elements of I. (For instance, take I to be the ideal
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generated by all the z* for = € J; see the proof of [7, Theorem 2.6].) Since the
nonzero *-ideal I contains F'(H), the ideal of all finite-rank operators on H,
we have Fs(H) = S(F(H)) C J and so ¢ is zero on Fy(H). Recall that ¢ is
continuous and Fy(H) is dense in Bs(H) in the strong operator topology, so
we conclude that ¢ is zero on Bs(H), a contradiction. Therefore ¢ is a Jordan
automorphism. As we mentioned in the introduction, there exists a unitary
or anti-unitary operator u on H such that ¢(z) = uzu* for all © € Bs(H) and
the proof is thereby complete. O
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