A CLASS OF MÖBIUS INVARIANT FUNCTION SPACES

KEHE ZHU

ABSTRACT. We introduce a class of Möbius invariant spaces of analytic functions in the unit disk, characterize these spaces in terms of Carleson type measures, and obtain a necessary and sufficient condition for a lacunary series to be in such a space. Special cases of this class include the Bloch space, the diagonal Besov spaces, BMOA, and the so-called Q_p spaces that have attracted much attention lately.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and let $\operatorname{Aut}(\mathbb{D})$ denote the group of all Möbius maps of the disk. For any $a \in \mathbb{D}$ the function

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z}, \qquad z \in \mathbb{D},$$

is a Möbius map that interchanges the points a and 0.

For $0 , <math>-1 < \alpha < \infty$, and n a positive integer, we let $Q(n, p, \alpha)$ denote the space of analytic functions f in \mathbb{D} with the property that

$$||f||_{n,p,\alpha}^p = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z) < \infty,$$

where dA is the area measure on \mathbb{D} , normalized so that the unit disk has area equal to 1.

Since every $\varphi \in \operatorname{Aut}(\mathbb{D})$ is of the form

$$\varphi(z) = \varphi_a(e^{it}z), \qquad z \in \mathbb{D},$$

where $a \in \mathbb{D}$ and t is real, we see that

$$||f||_{n,p,\alpha}^p = \sup_{\varphi \in \operatorname{Aut}(\mathbb{D})} \int_{\mathbb{D}} |(f \circ \varphi)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z).$$

Thus the space $Q(n, p, \alpha)$ is Möbius invariant, in the sense that an analytic function f in \mathbb{D} belongs to $Q(n, p, \alpha)$ if and only if $f \circ \varphi$ belongs to $Q(n, p, \alpha)$

Received March 2, 2006; received in final form June 12, 2006.

2000 Mathematics Subject Classification. 30H05.

Partially supported by the National Science Foundation.

©2007 University of Illinois

for every (or some) Möbius map φ . Moreover,

$$||f \circ \varphi||_{n,p,\alpha} = ||f||_{n,p,\alpha}, \qquad f \in Q(n,p,\alpha), \varphi \in \operatorname{Aut}(\mathbb{D}).$$

It is clear that each space $Q(n,p,\alpha)$ contains all constant functions. We say that $Q(n,p,\alpha)$ is trivial if its only members are the constant functions. It is also clear that

$$||f|| = |f(0)| + ||f||_{n,p,\alpha}$$

defines a complete norm on $Q(n, p, \alpha)$ whenever $p \geq 1$. Thus $Q(n, p, \alpha)$ is a Banach space of analytic functions when $p \geq 1$. See [2] for general properties of Möbius invariant Banach spaces.

When $0 , the space <math>Q(n, p, \alpha)$ is not necessarily a Banach space, but is always a complete metric space. However, we will not hesitate to use the phrase "semi-norm" for $||f||_{n,p,\alpha}$ and use the word "norm" for ||f|| even in the case 0 .

With definitions of weighted Bergman spaces, Besov spaces, and the Bloch space deferred to the next section, we can state our main results as Theorems A, B, C, and D below.

THEOREM A. The space $Q(n, p, \alpha)$ is trivial when $np > \alpha + 2$, it contains all polynomials when $np \leq \alpha + 2$, and it coincides with the Besov space B_p when $np = \alpha + 2$.

It turns out that the most interesting case for us is when the parameters satisfy

$$\alpha + 1 < pn < \alpha + 2$$
.

When np falls below $\alpha + 1$, $Q(n, p, \alpha)$ is just the Bloch space (see Proposition 7); and when np rises above $\alpha + 2$, $Q(n, p, \alpha)$ becomes trivial.

THEOREM B. If $\gamma = (\alpha + 2) - np > 0$, then an analytic function f in \mathbb{D} belongs to $Q(n, p, \alpha)$ if and only if the measure

$$|f^{(n)}(z)|^p (1-|z|^2)^{\alpha} dA(z)$$

is γ -Carleson.

Here we say that a positive Borel measure μ on \mathbb{D} is a γ -Carleson measure if there exists a positive constant C such that $\mu(S_h) \leq Ch^{\gamma}$, where S_h is any Carleson square with side width h.

Theorem C. Suppose $\alpha + 1 \le pn \le \alpha + 2$ and

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

is a lacunary series in \mathbb{D} . Then the following conditions are equivalent.

(a) The function f is in $Q(n, p, \alpha)$.

(b) The function f satisfies

$$\int_{\mathbb{D}} |f^{(n)}(z)|^p (1-|z|^2)^{\alpha} \, dA(z) < \infty.$$

(c) The Taylor coefficients of f satisfy

$$\sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+1-np}} < \infty.$$

Note that replacing f by its nth anti-derivative in (b) and (c) above gives a characterization of lacunary series in weighted Bergman spaces; see Theorem 8 in Section 5. We also prove an optimal pointwise estimate for lacunary series in weighted Bergman spaces.

THEOREM D. If f is a lacunary series satisfying

$$\int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^{\alpha} dA(z) < \infty,$$

then

$$\lim_{|z| \to 1^{-}} (1 - |z|^{2})^{\alpha + 1} |f(z)|^{p} = 0.$$

Note that if we drop the assumption that f be lacunary, then the best we can expect is

$$\lim_{|z| \to 1^{-}} (1 - |z|^{2})^{\alpha + 2} |f(z)|^{p} = 0.$$

See Lemma 3.2 of [7] and the comments following it.

The papers [9] and [12] study a similar class of function spaces F(p,q,s), where p > 0, q > -2, and $s \ge 0$. It is easy to see that the two classes have a nontrivial intersection, but neither contains the other. For example, the class F(p,q,s) contains spaces that are not Möbius invariant, while the class $Q(n,p,\alpha)$ contains Besov spaces B_p , 0 , that are not in the class <math>F(p,q,s).

The author wishes to thank Ruhan Zhao and Hasi Wulan for constructive comments on a preliminary version of the paper. The author is also grateful to the referee for some thoughtful suggestions on how to improve the presentation of the paper.

2. Preliminaries

We begin with two elementary identities that will be needed several times later.

LEMMA 1. Suppose f is analytic in \mathbb{D} , $a \in \mathbb{D}$, and n is a positive integer. Then

(1)
$$(f \circ \varphi_a)^{(n)}(z) = \sum_{k=1}^n c_k f^{(k)}(\varphi_a(z)) \frac{(1-|a|^2)^k}{(1-\overline{a}z)^{n+k}},$$

and

(2)
$$f^{(n)}(\varphi_a(z))\frac{(1-|a|^2)^n}{(1-\overline{a}z)^{2n}} = \sum_{k=1}^n \frac{d_k}{(1-\overline{a}z)^{n-k}} (f \circ \varphi_a)^{(k)}(z),$$

where c_k and d_k are polynomials of \overline{a} .

Proof. It is obvious that (1) and (2) both hold when n = 1.

Assume that (1) and (2) both hold for n = m. We proceed to show that they also hold for n = m + 1.

First, differentiating (1) with n = m gives

$$(f \circ \varphi_a)^{(m+1)}(z) = -\sum_{k=1}^m c_k f^{(k+1)}(\varphi_a(z)) \frac{(1-|a|^2)^{k+1}}{(1-\overline{a}z)^{m+k+2}}$$

$$+ \sum_{k=1}^m c_k (m+k) \overline{a} f^{(k)}(\varphi_a(z)) \frac{(1-|a|^2)^k}{(1-\overline{a}z)^{m+k+1}}$$

$$= -\sum_{k=2}^{m+1} c_{k-1} f^{(k)}(\varphi_a(z)) \frac{(1-|a|^2)^k}{(1-\overline{a}z)^{m+1+k}}$$

$$+ \sum_{k=1}^m c_k (m+k) \overline{a} f^{(k)}(\varphi_a(z)) \frac{(1-|a|^2)^k}{(1-\overline{a}z)^{m+1+k}}$$

$$= \sum_{k=1}^{m+1} c'_k f^{(k)}(\varphi_a(z)) \frac{(1-|a|^2)^k}{(1-\overline{a}z)^{m+1+k}},$$

that is, (1) holds for n = m + 1.

Next, differentiating (2) with n = m shows that

$$(3) -f^{(m+1)}(\varphi_a(z))\frac{(1-|a|^2)^{m+1}}{(1-\overline{a}z)^{2(m+1)}} + 2m\overline{a}f^{(m)}(\varphi_a(z))\frac{(1-|a|^2)^m}{(1-\overline{a}z)^{2m+1}}$$

is equal to

$$\sum_{k=1}^{m} \left[\frac{(m-k)d_k \overline{a}}{(1-\overline{a}z)^{m-k+1}} (f \circ \varphi_a)^{(k)}(z) + \frac{d_k}{(1-\overline{a}z)^{m-k}} (f \circ \varphi_a)^{(k+1)}(z) \right].$$

Applying (2) with n = m to the second term in (3), we obtain

$$f^{(m+1)}(\varphi_a(z))\frac{(1-|a|^2)^{(m+1)}}{(1-\overline{a}z)^{2(m+1)}} = 2m\overline{a}\sum_{k=1}^m \frac{d_k}{(1-\overline{a}z)^{m+1-k}} (f \circ \varphi_a)^{(k)}(z)$$
$$-\sum_{k=1}^m \frac{(m-k)d_k\overline{a}}{(1-\overline{a}z)^{m+1-k}} (f \circ \varphi_a)^{(k)}(z)$$
$$-\sum_{k=1}^m \frac{d_k}{(1-\overline{a}z)^{m-k}} (f \circ \varphi_a)^{(k+1)}(z).$$

The last sum above is the same as

$$\sum_{k=2}^{m+1} \frac{d_{k-1}}{(1-\overline{a}z)^{m+1-k}} (f \circ \varphi_a)^{(k)}(z).$$

Therefore,

$$f^{(m+1)}(\varphi_a(z))\frac{(1-|a|^2)^{(m+1)}}{(1-\overline{a}z)^{2(m+1)}} = \sum_{k=1}^{m+1} \frac{d'_k}{(1-\overline{a}z)^{m+1-k}} (f \circ \varphi_a)^{(k)}(z),$$

namely, (2) holds for n = m + 1.

The proof of the lemma is complete by induction.

Several classical function spaces appear in various places of the paper. We give their definitions here.

For $0 the Hardy space <math>H^p$ consists of analytic functions f in $\mathbb D$ such that

$$||f||_{H^p}^p = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt < \infty.$$

It is well known that every function $f \in H^p$ has radial limit, denoted by $f(e^{it})$, at almost every point e^{it} on the unit circle. Moreover,

$$||f||_{H^p} = \left[\frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})|^p dt\right]^{1/p}$$

for every $f \in H^p$. If f is represented as a power series

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

then it is easy to see that

$$||f||_{H^2}^2 = \sum_{k=0}^{\infty} |a_k|^2$$

for every $f \in H^p$.

BMOA is the space of functions $f \in H^2$ with the property that

$$||f||_{BMO} = \sup_{a \in \mathbb{D}} ||f \circ \varphi_a - f(a)||_{H^2} < \infty.$$

See [5] for basic properties of Hardy spaces and BMOA.

For $0 and <math>-1 < \alpha < \infty$ the weighted Bergman space A^p_α consists of analytic functions f in $\mathbb D$ with

$$||f||_{p,\alpha}^p = (\alpha+1) \int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^\alpha dA(z) < \infty.$$

If a_k are the Taylor coefficients of f at z=0, then it is easy to see that

$$||f||_{2,\alpha}^2 = \sum_{k=0}^{\infty} \frac{k! \Gamma(2+\alpha)}{\Gamma(k+2+\alpha)} |a_k|^2.$$

By Stirling's formula, the above sum is comparable to

$$\sum_{k=0}^{\infty} \frac{|a_k|^2}{(k+1)^{\alpha+1}}.$$

See [7] for the modern theory of Bergman spaces.

The following result about Bergman spaces will be important for us later.

Lemma 2. Suppose n is a positive integer, $\alpha > -1$, and p > 0. Then the integral

$$\int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^{\alpha} dA(z)$$

is comparable to

$$\sum_{k=0}^{n-1} |f^{(k)}(0)|^p + \int_{\mathbb{D}} |f^{(n)}(z)|^p (1-|z|^2)^{np+\alpha} dA(z),$$

where f is any analytic function in \mathbb{D} .

An analytic function f in \mathbb{D} belongs to the Bloch space \mathcal{B} if

$$\sup_{a\in\mathbb{D}} \|f\circ\varphi_a - f(a)\|_{p,\alpha} < \infty.$$

It is well known that this definition of \mathcal{B} is independent of the choice of p and α . In fact, it can be shown that $f \in \mathcal{B}$ if and only if

$$||f||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

See [4].

We are going to need the following characterizations of the Bloch space in terms of higher order derivatives.

LEMMA 3. Suppose n is any positive integer. Then the following are equivalent for an analytic function f in \mathbb{D} .

- (a) f belongs to the Bloch space.
- (b) f satisfies the condition

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^n |f^{(n)}(z)| < \infty.$$

(c) f satisfies the condition

$$\sup_{a\in\mathbb{D}} |(f\circ\varphi_a)^{(n)}(0)| < \infty.$$

Proof. See Theorem 5.15 of [13] for the equivalence of (a) and (b). It is clear that the set of functions satisfying the condition in (c) is a Möbius invariant Banach space. It follows from the maximality of the Bloch space among Möbius invariant Banach spaces (see [10]) that (c) implies (a). According to Lemma 1,

$$(f \circ \varphi_a)^{(n)}(0) = \sum_{k=1}^n c_k(\bar{a})(1 - |a|^2)^k f^{(k)}(a),$$

where each $c_k(\bar{a})$ is a polynomial in \bar{a} , so the equivalence of (a) and (b) shows that (a) implies (c).

Suppose 0 and <math>n is a positive integer satisfying np > 1. The (diagonal) Besov space B_p consists of analytic functions f in \mathbb{D} such that

$$\int_{\mathbb{D}} |f^{(n)}(z)|^p (1-|z|^2)^{np-2} dA(z) < \infty.$$

It is well known that the definition is independent of the choice of n; see [14]. In particular, for p > 1, we have $f \in B_p$ if and only if

$$\int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^p \, d\lambda(z) < \infty,$$

where

$$d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^2}$$

is the Möbius invariant measure on \mathbb{D} .

The following estimate will play a crucial role in our analysis.

Lemma 4. Suppose $\alpha > -1$ and t is real. Then the integral

$$I(a) = \int_{\mathbb{D}} \frac{(1-|z|^2)^{\alpha} dA(z)}{|1-\overline{a}z|^{2+\alpha+t}}$$

has the following properties:

- (a) If t < 0, I(a) is comparable to 1.
- (b) If t = 0, I(a) is comparable to $\log(2/(1-|a|^2))$.

(c) If t > 0, I(a) is comparable to $1/(1-|a|^2)^t$.

Proof. See Lemma 4.2.2 of [13].

We can now determine exactly when the space $Q(n, p, \alpha)$ is nontrivial.

Theorem 5. The following conditions are equivalent.

- (a) The space $Q(n, p, \alpha)$ is nontrivial.
- (b) The space $Q(n, p, \alpha)$ contains all polynomials.
- (c) The parameters satisfy the condition $pn \leq \alpha + 2$.

Proof. It is trivial that (b) implies (a).

For any analytic function f in \mathbb{D} we consider the integral

$$I_a = \int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z).$$

By (1) and a change of variables,

$$I_a = (1 - |a|^2)^{\alpha + 2 - np} \int_{\mathbb{D}} \left| \sum_{k=1}^n c_k f^{(k)}(z) (1 - \overline{a}z)^{n+k} \right|^p \frac{(1 - |z|^2)^{\alpha} dA(z)}{|1 - \overline{a}z|^{4 + 2\alpha}}.$$

If f is a polynomial, then each $f^{(k)}$ is bounded. After we factor out $(1-\overline{a}z)^{n+1}$ from every term in the above sum, we find a constant C > 0, independent of a, such that

$$I_a \le C(1-|a|^2)^{\alpha+2-np} \int_{\mathbb{D}} \frac{(1-|z|^2)^{\alpha} dA(z)}{|1-\overline{a}z|^{4+2\alpha-(n+1)p}}.$$

It follows from Lemma 4 that I_a is bounded for $a \in \mathbb{D}$ when $np \leq \alpha + 2$. This proves that (c) implies (b).

Working with the integral I_a from the preceding paragraph, we have

$$\int_{\mathbb{D}} \left| \sum_{k=1}^{n} c_k f^{(k)}(z) (1 - \overline{a}z)^{n+k} \right|^p \frac{(1 - |z|^2)^{\alpha} dA(z)}{|1 - \overline{a}z|^{4+2\alpha}} = (1 - |a|^2)^{np - (\alpha + 2)} I_a.$$

Since $|1 - \overline{a}z| \le 2$, we have

$$\int_{\mathbb{D}} \left| \sum_{k=1}^{n} c_k f^{(k)}(z) (1 - \overline{a}z)^{n+k} \right|^p (1 - |z|^2)^{\alpha} dA(z) \le C (1 - |a|^2)^{np - (\alpha + 2)} I_a,$$

where $C = 2^{4+2\alpha}$. Now if $np > \alpha + 2$ and $f \in Q(n, p, \alpha)$, we can let a approach the unit circle and use Fatou's lemma to conclude that

$$\int_{\mathbb{D}} \left| \sum_{k=1}^{n} c_k f^{(k)}(z) (1 - \overline{a}z)^{n+k} \right|^p (1 - |z|^2)^{\alpha} dA(z) = 0$$

whenever |a| = 1. But the integrand above is a polynomial of \bar{a} , so we must have

$$\sum_{k=1}^{n} c_k f^{(k)}(z) (1 - \overline{a}z)^{n+k} = 0$$

for all $a \in \mathbb{D}$, and hence $I_a = 0$ for all $a \in \mathbb{D}$. This can happen only when f is constant. Therefore, we see that (a) implies (c), and the proof of the theorem is complete.

The Bloch space \mathcal{B} is maximal among all Möbius invariant Banach spaces (see [10]), so $Q(n, p, \alpha) \subset \mathcal{B}$ when $p \geq 1$. We show that this is also true for $0 , although in this case <math>Q(n, p, \alpha)$ is not necessarily a Banach space.

LEMMA 6. The space $Q(n, p, \alpha)$ is always contained in the Bloch space.

Proof. It follows from the subharmonicity of $|f|^p$ that $|f(0)| \leq ||f||_{p,\alpha}$, where f is analytic in \mathbb{D} and $|| ||_{p,\alpha}$ is the norm in the weighted Bergman space A^p_{α} . Replacing f by $(f \circ \varphi_a)^{(n)}$, we obtain

$$|(f \circ \varphi_a)^{(n)}(0)| \le (\alpha + 1)||f||_{n,p,\alpha}, \qquad f \in Q(n,p,\alpha).$$

By condition (c) in Lemma 3, every function in $Q(n, p, \alpha)$ belongs to the Bloch space.

As a consequence of Lemmas 2, 3, and 6, we see that

(4)
$$Q(n, p, \alpha) = Q(n+1, p, \alpha+p)$$

whenever $\alpha > -1$, p > 0, and $n \ge 1$. This shows that the class $Q(n, p, \alpha)$ depends on only two parameters. In fact, if for $0 and <math>\beta$ real we define

$$Q'(p,\beta) = Q(n, p, (n-1)p + \beta),$$

where n is large enough so that $\alpha = (n-1)p + \beta > -1$, then (4) shows that the definition of $Q'(p,\beta)$ is independent of the choice of n and the classes $Q(n,p,\alpha)$ and $Q'(p,\beta)$ are the same.

Alternatively, the class $Q(n, p, \alpha)$ depends on the parameters p and $\gamma = \alpha + 2 - np$. Several results of the paper can be stated more simply in terms of these two parameters.

3. Several special cases

We now identify several special cases of the spaces $Q(n, p, \alpha)$.

When
$$n = 1$$
 and $p = 2$, the integral

 $\int_{\mathbb{D}} |(f\circ\varphi_a)'(z)|^p (1-|z|^2)^\alpha \, dA(z)$ can be rewritten as

$$\int_{\mathbb{D}} |f'(z)|^2 (1 - |\varphi_a(z)|^2)^{\alpha} \, dA(z)$$

via a change of variables. Therefore, the resulting spaces $Q(n, p, \alpha)$ become the so-called Q_{α} spaces. More generally, if $2n < \alpha + 3$, then $Q(n, 2, \alpha) = Q_{\beta}$, where $\beta = \alpha - 2(n-1)$. This follows easily from Lemma 2. The book [11] is a good source of information for the spaces Q_{α} .

Although the Q_{α} spaces cover both BMOA and the Bloch space, we single out these two important cases to show their relative location in the scale $Q(n, p, \alpha)$.

PROPOSITION 7. If $np < \alpha + 1$, then $Q(n, p, \alpha) = \mathcal{B}$.

Proof. Recall from Lemma 6 that $Q(n, p, \alpha) \subset \mathcal{B}$. To prove the other direction, we fix some $f \in \mathcal{B}$. If $np < \alpha + 1$, we can write $\alpha = np + \beta$, where $\beta > -1$. By Lemmas 2 and 3, the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} \, dA(z)$$

is bounded for $a \in \mathbb{D}$ if and only if the integral

$$\int_{\mathbb{D}} |f \circ \varphi_a(z) - f(a)|^p (1 - |z|^2)^{\beta} dA(z)$$

is bounded for $a \in \mathbb{D}$. Since the latter condition is satisfied by every Bloch function, the proof is complete.

Theorem 8. If $np = \alpha + 2$, we have $Q(n, p, \alpha) = B_p$.

Proof. Setting a = 0 in the integral

$$I_a = \int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z)$$

shows that $Q(n, p, \alpha) \subset B_p$ for $np = \alpha + 2$.

We proceed to show that $B_p \subset Q(n, p, \alpha)$ when $np = \alpha + 2$.

If p > 1, the Besov space B_p is Möbius invariant with the following seminorm:

$$||f||_{B_p} = \left[\int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^{p-2} dA(z) \right]^{1/p}.$$

If n is any positive integer and $\alpha = np - 2 > -1$, then by Lemma 2 there exists a constant C > 0, depending on p and n, such that

$$\int_{\mathbb{D}} |f^{(n)}(z)|^p (1-|z|^2)^{np-2} dA(z) \le C ||f||_{B_p}^p$$

for all $f \in B_p$. Replacing f by $f \circ \varphi_a$ and using the Möbius invariance of the semi-norm $\| \cdot \|_{B_p}$, we conclude that

$$\sup\{I_a:a\in\mathbb{D}\}<\infty$$

whenever $f \in B_p$. This shows that $B_p \subset Q(n, p, \alpha)$ when p > 1 and $np = \alpha + 2$.

A similar argument works for p = 1. As a matter of fact, B_1 admits a Möbius invariant norm (not just a semi-norm) $||f||_m$; see [2]. If n > 1 is an integer, then

$$||f||_n = \sum_{k=0}^{n-1} |f^{(k)}(0)| + \int_{\mathbb{D}} |f^{(n)}(z)| (1-|z|^2)^{n-2} dA(z)$$

defines a norm on B_1 that is equivalent to $||f||_m$. Therefore, we can find a constant C > 0, independent of f and a, such that

$$||f \circ \varphi_a||_n \le C||f \circ \varphi_a||_m = C||f||_m$$

for all $f \in B_1$ and $a \in \mathbb{D}$. This shows that $f \in B_1$ implies the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}| (1 - |z|^2)^{n-2} \, dA(z)$$

is bounded for $a \in \mathbb{D}$, or equivalently, $B_1 \subset Q(n, 1, np - 2)$.

We prove the case $0 using a version of atomic decomposition for the space <math>B_p$. By Theorem 6.6 of [14], if $0 and <math>f \in B_p$, there exists a sequence $\{a_k\}$ in $\mathbb D$ such that

$$f(z) = \sum_{k=1}^{\infty} c_k \frac{1 - |a_k|^2}{1 - \overline{a}_k z},$$

where

$$\sum_{k=1}^{\infty} |c_k|^p < \infty.$$

Let

$$f_k(z) = \frac{1 - |a_k|^2}{1 - \overline{a}_k z}, \qquad 1 \le k < \infty.$$

Then by Hölder's inequality, the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha}(z)$$

is less than or equal to

$$\sum_{k=1}^{\infty} |c_k|^p \int_{\mathbb{D}} |(f_k \circ \varphi_a)^{(n)}(z)|^p (1-|z|^2)^{\alpha} dA(z).$$

Since

$$f_k(z) = 1 - \overline{a}_k \varphi_{a_k}(z),$$

we have

$$f_k(\varphi_a(z)) = 1 - \overline{a}_k \varphi_{a_k} \circ \varphi_a(z) = 1 - \overline{a}_k e^{it_k} \varphi_{\lambda_k}(z),$$

where t_k is a real number and $\lambda_k = \varphi_a(a_k)$. It follows that

$$(f_k \circ \varphi_a)^{(n)}(z) = \frac{A_k(1 - |\lambda_k|^2)}{(1 - \overline{\lambda}_k z)^{n+1}},$$

where $A_k = n! \overline{a}_k e^{it_k} \overline{\lambda}_k^{n-1}$. Therefore, the integral

$$\int_{\mathbb{D}} |(f_k \circ \varphi_a)^{(n)}(z)|^p (1-|z|^2)^{\alpha} dA(z)$$

does not exceed n! times

$$(1 - |\lambda_k|^2)^p \int_{\mathbb{D}} \frac{(1 - |z|^2)^\alpha dA(z)}{|1 - \overline{\lambda}_k z|^{(n+1)p}} = (1 - |\lambda_k|^2)^p \int_{\mathbb{D}} \frac{(1 - |z|^2)^\alpha dA(z)}{|1 - \overline{\lambda}_k z|^{\alpha + 2 + p}}.$$

By Lemma 4, there exists a constant C > 0, independent of k and a, such that

$$\int_{\mathbb{R}} |(f_k \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} \, dA(z) \le C$$

for all $k \geq 1$ and all $a \in \mathbb{D}$. It follows that $f \in Q(n, p, \alpha)$, and the proof of the theorem is complete. \Box

Proposition 9. If p=2 and $\alpha=2n-1$, then $Q(n,p,\alpha)=\mathrm{BMOA}$.

Proof. If $f \in \mathcal{B}$, then Lemmas 2 and 3 show that the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^2 (1 - |z|^2)^{2n - 1} dA(z)$$

is bounded in a if and only if the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)'(z)|^2 (1 - |z|^2) \, dA(z)$$

is bounded in a. The latter integral, by a classical identity of Littlewood and Paley (see page 236 of [5] or Theorem 8.1.9 of [13]), is comparable to

$$||f \circ \varphi_a - f(a)||_{H^2}^2.$$

This proves the desired result.

Finally in this section, we mention that in studying the spaces $Q(n, p, \alpha)$, we may as well assume that $-1 < \alpha \le p - 1$. Otherwise, we can write $\alpha = p + \alpha'$ with $\alpha' > -1$. Then the integral

$$\int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1-|z|^2)^{\alpha} dA(z),$$

is comparable to

$$|(f \circ \varphi_a)^{(n-1)}(0)|^p + \int_{\mathbb{D}} |(f \circ \varphi_a)^{(n-1)}(z)|^p (1-|z|^2)^{\alpha'} dA(z)$$

when n > 1, and is comparable to

$$\int_{\mathbb{D}} |f \circ \varphi_a(z) - f(a)|^p (1 - |z|^2)^{\alpha'} dA(z)$$

when n = 1. Therefore, either $Q(n, p, \alpha) = Q(n - 1, p, \alpha')$ or $Q(n, p, \alpha) = \mathcal{B}$. Continuing this process, the space $Q(n, p, \alpha)$ is either equal to some $Q(m, p, \beta)$ with $\beta \leq p - 1$ or equal to the Bloch space.

4. Characterization in terms of Carleson-type measures

In this section we are going to characterize the spaces $Q(n, p, \alpha)$ in terms of Carleson type measures. We begin with the following elementary inequality.

LEMMA 10. For any p > 0 and complex numbers z_k we have

(5)
$$|z_1 + \dots + z_n|^p \le C(|z_1|^p + \dots + |z_n|^p),$$

where $C = 1$ if $0 and $C = n^{p-1}$ when $p > 1$.$

ere C = 1 if 0 when <math>p > 1.

Proof. This is a direct consequence of Hölder's inequality.

To simplify the presentation for the next two lemmas, we introduce the expressions

$$M(f, n, a) = \int_{\mathbb{D}} |(f \circ \varphi_a)^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z)$$

and

$$N(f, n, a) = \int_{\mathbb{D}} \left| f^{(n)}(\varphi_a(z)) \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2} \right)^n \right|^p (1 - |z|^2)^{\alpha} dA(z).$$

By a change of variables, we can write

$$N(f, n, a) = \int_{\mathbb{D}} |f^{(n)}(z)|^p \left(\frac{1 - |a|^2}{|1 - \overline{a}z|^2}\right)^{\alpha + 2 - np} (1 - |z|^2)^{\alpha} dA(z).$$

We will also need the following notation.

$$P(f,n) = \sum_{k=1}^{n} \sup_{a \in \mathbb{D}} (1 - |a|^2)^{kp} |f^{(k)}(a)|^p,$$

and

$$Q(f,n) = \sum_{k=1}^{n} \sup\{|(f \circ \varphi_a)^{(k)}(0)|^p : a \in \mathbb{D}\}.$$

According to Lemma 3, $P(f, n) < \infty$ if and only if $f \in \mathcal{B}$, and $Q(f, n) < \infty$ if and only if $f \in \mathcal{B}$.

LEMMA 11. If $np < \alpha + 2$, then there exists a constant C > 0, independent of f and a, such that

$$M(f, n, a) < C[N(f, n, a) + P(f, n)]$$

for all analytic f and $a \in \mathbb{D}$.

Proof. We prove the inequality by induction on n.

It is clear that M(f, n, a) = N(f, n, a) when n = 1. So we assume that the inequality holds for n and consider the expression M(f, n + 1, a) under the condition that $(n + 1)p < \alpha + 2$.

Fix $a \in \mathbb{D}$ and observe that

$$(f \circ \varphi_a)^{(n+1)}(z) = -(g \circ \varphi_a)^{(n)}(z),$$

where

$$g(z) = \frac{(1 - \overline{a}z)^2}{1 - |a|^2} f'(z).$$

By the product rule, we have

(6)
$$g^{(m)}(z) = \frac{(1 - \overline{a}z)^2}{1 - |a|^2} f^{(m+1)}(z) - 2m\overline{a} \frac{1 - \overline{a}z}{1 - |a|^2} f^{(m)}(z) + \frac{m(m-1)\overline{a}^2}{1 - |a|^2} f^{(m-1)}(z)$$

for all $m \ge 1$. In particular,

$$(1 - |a|^2)^m g^{(m)}(a) = (1 - |a|^2)^{m+1} f^{(m+1)}(a) - 2m\overline{a}(1 - |a|^2)^m f^{(m)}(a) + m(m-1)\overline{a}^2 (1 - |a|^2)^{m-1} f^{(m-1)}(a)$$

for $m \ge 1$ and

(7)
$$g^{(n)}(\varphi_a(z)) = \frac{1 - |a|^2}{(1 - \overline{a}z)^2} f^{(n+1)}(\varphi_a(z)) - \frac{2n\overline{a}}{1 - \overline{a}z} f^{(n)}(\varphi_a(z)) + \frac{n(n-1)\overline{a}^2}{1 - |a|^2} f^{(n-1)}(\varphi_a(z)).$$

It follows from this and the induction hypothesis (note that the condition $(n+1)p < \alpha + 2$ implies $np < \alpha + 2$) that there exist positive constants C_1 and C_2 , both independent of f and a, such that

$$M(f, n+1, a) = M(g, n, a) \le C_1 [N(g, n, a) + P(g, n)]$$

 $\le C_2 [N(g, n, a) + P(f, n+1)].$

By equation (7) and inequality (5), we can find another constant $C_3 > 0$, independent of f and a, such that

$$N(g, n, a) \le C_3(I_1 + I_2 + I_3)$$

where

$$I_1 = N(f, n+1, a),$$

and

$$I_2 = \int_{\mathbb{D}} \left| f^{(n)}(\varphi_a(z)) \frac{(1 - |a|^2)^n}{(1 - \overline{a}z)^{2n+1}} \right|^p (1 - |z|^2)^{\alpha} dA(z),$$

and

$$I_3 = \int_{\mathbb{D}} \left| f^{(n-1)}(\varphi_a(z)) \frac{(1-|a|^2)^{n-1}}{(1-\overline{a}z)^{2n}} \right|^p (1-|z|^2)^{\alpha} dA(z).$$

By Lemma 2 and inequality (5), there exists a constant $C_4 > 0$ such that

(8)
$$I_2 \le C_4 (1 - |a|^2)^{np} |f^{(n)}(a)|^p$$

(9)
$$+ C_4 \int_{\mathbb{D}} \left| f^{(n+1)}(\varphi_a(z)) \frac{(1-|a|^2)^{n+1}}{(1-\overline{a}z)^{2n+3}} \right|^p (1-|z|^2)^{p+\alpha} dA(z)$$

(10)
$$+ C_4 \int_{\mathbb{D}} \left| f^{(n)}(\varphi_a(z)) \frac{(1 - |a|^2)^n}{(1 - \overline{a}z)^{2n+2}} \right|^p (1 - |z|^2)^{p+\alpha} dA(z).$$

Since

$$(1 - |z|^2)^p \le 2^p |1 - \overline{a}z|^p$$

the integral in (9) is less than or equal to $2^p N(f, n+1, a)$. The integral in (10) can be estimated using Lemma 2 again. After this process is repeated n times, we find a constant $C_5 > 0$, independent of f and a, such that

$$I_2 \le C_5 \left[P(f,n) + N(f,n+1,a) \right]$$

$$+ C_5 \int_{\mathbb{D}} \left| f^{(n)}(\varphi_a(z)) \frac{(1-|a|^2)^n}{(1-\overline{a}z)^{2n+1+n}} \right|^p (1-|z|^2)^{np+\alpha} dA(z).$$

First using

$$(1 - |\varphi_a(z)|^2)^n |f^{(n)}(\varphi_a(z))| \le P(f, n),$$

then applying Lemma 4 with the condition $(n+1)p < \alpha+2$, we find a constant $C_6 > 0$, independent of f and a, such that

$$I_2 \leq C_6 [N(f, n+1, a) + P(f, n)].$$

After we estimate the integral I_3 in a similar way, we obtain a constant C > 0, independent of f and a, such that

$$M(f, n + 1, a) < C[N(f, n + 1, a) + P(f, n + 1)].$$

This completes the proof of the lemma.

We now show that the inequality in Lemma 11 can essentially be reversed.

LEMMA 12. If $np < \alpha + 2$, there exists a constant C > 0, independent of f and a, such that

$$N(f, n, a) < C[M(f, n, a) + Q(f, n)]$$

for all analytic f and $a \in \mathbb{D}$.

Proof. By equation (2) and the elementary inequality (5), we can find a constant $C_1 > 0$, independent of f and a, such that

$$N(f, n, a) \le C_1 \sum_{k=1}^{n} I_k(f, n, a),$$

where

$$I_k(f, n, a) = \int_{\mathbb{D}} \left| \frac{1}{(1 - \overline{a}z)^{n-k}} (f \circ \varphi_a)^{(k)}(z) \right|^p (1 - |z|^2)^{\alpha} dA(z).$$

We are going to use backward induction on k to show that

(11)
$$I_k(f, n, a) \le M_k[M(f, n, a) + Q(f, n)], \quad 1 \le k \le n,$$

where each M_k is a positive constant independent of f and a.

It is clear that $I_n(f, n, a) = M(f, n, a)$, so the inequality in (11) holds for k = n.

Next we assume that the inequality in (11) holds for $I_{k+1}(f, n, a)$ and proceed to show that the same inequality also holds for $I_k(f, n, a)$. Since

$$\frac{d}{dz} \left[\frac{1}{(1 - \overline{a}z)^{n-k}} (f \circ \varphi_a)^{(k)}(z) \right]$$

equals

$$\frac{(n-k)\overline{a}}{(1-\overline{a}z)^{n-k+1}}(f\circ\varphi_a)^{(k)}(z)+\frac{1}{(1-\overline{a}z)^{n-k}}(f\circ\varphi_a)^{(k+1)}(z),$$

we can use Lemma 2 and (5) to find a constant $C_2 > 0$, independent of f and a, such that $I_k(f, n, a)$ is less than or equal to $C_2|(f \circ \varphi_a)^{(k)}(0)|^p$ plus

(12)
$$C_2 \int_{\mathbb{D}} \left| \frac{1}{(1 - \overline{a}z)^{n-k+1}} (f \circ \varphi_a)^{(k)}(z) \right|^p (1 - |z|^2)^{p+\alpha} dA(z)$$

plus

(13)
$$C_2 \int_{\mathbb{D}} \left| \frac{1}{(1 - \overline{a}z)^{n-k}} (f \circ \varphi_a)^{(k+1)} (z) \right|^p (1 - |z|^2)^{p+\alpha} dA(z).$$

The integral in (13) can be estimated by the elementary inequality

$$(1-|z|^2)^p < 2^p|1-\overline{a}z|^p$$

followed by the induction hypothesis, while the integral in (12) can be estimated by Lemma 2 again. This process can be repeated. After a repetition of k steps, we obtain a constant $C_3 > 0$, independent of f and a, such that $I_k(f, n, a)$ is less than or equal to

$$C_3 \left[M(f, n, a) + Q(f, n) \right]$$

plus

(14)
$$C_3 \int_{\mathbb{D}} \left| \frac{1}{(1 - \overline{a}z)^n} (f \circ \varphi_a)^{(k)}(z) \right|^p (1 - |z|^2)^{kp + \alpha} dA(z).$$

Since the Bloch space is Möbius invariant, we can find a constant $C_4 > 0$, independent of f and a, such that

$$\sup_{z\in\mathbb{D}} |(f\circ\varphi_a)^{(k)}(z)|(1-|z|^2)^k \le C_4 Q(f,n).$$

We now estimate the integral in (14) first using this, and then using part (a) of Lemma 4 together with the assumption that $np < \alpha + 2$. The result is that

$$I_k(f, n, a) \le M_k [M(f, n, a) + Q(f, n)].$$

This shows that (11) holds for all $k=1,2,\ldots,n,$ and completes the proof of the lemma. \Box

Note that by using (2) and arguments similar to those used in the proof of Lemma 12, we can construct a different proof for Lemma 11.

We now state the main result of the section.

THEOREM 13. If $np \leq \alpha + 2$, then an analytic function f in \mathbb{D} belongs to $Q(n, p, \alpha)$ if and only if

(15)
$$\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f^{(n)}(z)|^p \frac{(1-|a|^2)^{\alpha+2-np}}{|1-\overline{a}z|^{2(\alpha+2-np)}} (1-|z|^2)^{\alpha} dA(z) < \infty.$$

Proof. If $np = \alpha + 2$, the desired result is just Theorem 8.

We already know that $Q(n, p, \alpha)$ is contained in the Bloch space. Using the very first definition of N(f, n, a) and the obvious estimate

$$|g(0)|^p \le (\alpha + 1) \int_{\mathbb{D}} |g(z)|^p (1 - |z|^2)^{\alpha} dA(z),$$

we see that condition (15) also implies that $f \in \mathcal{B}$ (see also Lemma 3). The desired result for $np < \alpha + 2$ is then a consequence of Lemmas 11 and 12. \square

For any arc I of the unit circle $\partial \mathbb{D}$, we let S_I denote the classical Carleson square in \mathbb{D} generated by I. Suppose $\gamma > 0$ and μ is a positive Borel measure on \mathbb{D} . We say that μ is γ -Carleson if there exists a constant C > 0 such that

$$\mu(S_I) < C|I|^{\gamma}$$

for all I, where |I| denotes the length of I.

THEOREM 14. Suppose $\gamma = \alpha + 2 - np > 0$. Then an analytic function f in \mathbb{D} belongs to $Q(n, p, \alpha)$ if and only if the measure

$$d\mu(z) = |f^{(n)}(z)|^p (1 - |z|^2)^{\alpha} dA(z)$$

is γ -Carleson.

Proof. This follows from Theorem 13 and Lemma 4.1.1 of [11]. \Box

COROLLARY 15. Suppose p > 0, $\gamma > 0$, $\alpha > -1$, n is a positive integer, m is a nonnegative integer, and f is analytic in \mathbb{D} . Then the measure

$$|f^{(n)}(z)|^p (1-|z|^2)^{\alpha} dA(z)$$

is γ -Carleson if and only if the measure

$$|f^{(m+n)}(z)|^p (1-|z|^2)^{mp+\alpha} dA(z)$$

is γ -Carleson.

Proof. This is a consequence of Theorem 14 and equation (4).

Replacing f by its nth anti-derivative, we conclude that

$$|f(z)|^p (1-|z|^2)^{\alpha} dA(z)$$

is γ -Carleson if and only if

$$|f^{(m)}(z)|^p (1-|z|^2)^{mp+\alpha} dA(z)$$

is γ -Carleson.

5. Lacunary series in Bergman type spaces

In this section we characterize lacunary series in Bergman-type spaces. We are going to need two classical results concerning lacunary series in Hardy type spaces.

LEMMA 16. Suppose $0 and <math>1 < \lambda < \infty$. There exists a constant C > 0, depending only on p and λ , such that

$$C^{-1} \|f\|_{H^2} \le \|f\|_{H^p} \le C \|f\|_{H^2}$$

for all lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

with $n_{k+1}/n_k \geq \lambda$ for all k.

A consequence of the above lemma is that if a lacunary series belongs to some Hardy space, then it belongs to all Hardy spaces. Actually, a lacunary series belongs to a Hardy space if and only if it belongs to BMOA; see [6].

LEMMA 17. Suppose $0 and <math>-1 < \alpha < \infty$. There exists a constant C > 0, depending only on p and α , such that

$$\frac{1}{C} \sum_{n=0}^{\infty} \frac{t_n^p}{2^{n(\alpha+1)}} \le \int_0^1 f(x)^p (1-x)^{\alpha} \, dx \le C \sum_{n=0}^{\infty} \frac{t_n^p}{2^{n(\alpha+1)}}$$

for all power series

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

with nonnegative coefficients, where

$$t_n = \sum_{k \in I_n} a_k$$

and

$$I_0 = \{0, 1\}, \qquad I_n = \{k : 2^n \le k < 2^{n+1}\}, \quad 1 \le n < \infty.$$

Proof. See [8]. \Box

We now characterize lacunary series in the weighted Bergman spaces A_{α}^{p} .

THEOREM 18. Suppose $0 , <math>-1 < \alpha < \infty$, and $1 < \lambda < \infty$. There exists a constant C > 0, depending only on p, α and λ , such that

$$\frac{1}{C} \sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+1}} \le \int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^{\alpha} \, dA(z) \le C \sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+1}}$$

for all lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

with $n_{k+1}/n_k \geq \lambda$ for all k.

Proof. In polar coordinates the integral

$$I = \int_{\mathbb{D}} |f(z)|^{p} (1 - |z|^{2})^{\alpha} dA(z)$$

can be written as

$$I = \frac{1}{\pi} \int_0^1 r(1 - r^2)^{\alpha} \int_0^{2\pi} \left| \sum_{k=0}^{\infty} a_k r^{n_k} e^{in_k t} \right|^p dt.$$

By Lemma 16, the integral I is comparable to

$$2\int_0^1 r(1-r^2)^{\alpha} \left(\sum_{k=0}^{\infty} |a_k|^2 r^{2n_k}\right)^{p/2} dr,$$

which is the same as

$$\int_0^1 \left(\sum_{k=0}^\infty |a_k|^2 x^{n_k} \right)^{p/2} (1-x)^\alpha \, dx.$$

Combining this with Lemma 17, we conclude that the integral I is comparable to

$$\sum_{n=0}^{\infty} 2^{-n(\alpha+1)} \left(\sum_{n_k \in I_n} |a_k|^2 \right)^{p/2}.$$

Let $N = [\log_{\lambda} 2] + 1$. Then for each n there are at most N of n_k in I_n . In fact, if

$$2^n \le n_k < n_{k+1} < \dots < n_{k+m} < 2^{n+1}$$
,

then

$$\lambda^m \le \frac{n_{k+m}}{n_k} < 2$$

and so $m < \log_{\lambda} 2$. Therefore,

$$\left(\sum_{n_k \in I_n} |a_k|^2\right)^{p/2} \le \left(N \max_{n_k \in I_n} |a_k|^2\right)^{p/2}$$

$$= N^{p/2} \max_{n_k \in I_n} |a_k|^p$$

$$\le N^{p/2} \sum_{n_k \in I_n} |a_k|^p.$$

Similarly,

$$\begin{split} \sum_{n_k \in I_n} |a_k|^p &\leq N \max_{n_k \in I_n} |a_k|^p \\ &= N \left(\max_{n_k \in I_n} |a_k|^2 \right)^{p/2} \\ &\leq N \left(\sum_{n_k \in I_n} |a_k|^2 \right)^{p/2}. \end{split}$$

Combining the results of the last two paragraphs, we see that the integral I is comparable to

$$\sum_{n=0}^{\infty} 2^{-n(\alpha+1)} \sum_{n_k \in I_n} |a_k|^p.$$

Since n_k is comparable to 2^n for $n_k \in I_n$, we conclude that the integral I is comparable to

$$\sum_{n=0}^{\infty}\sum_{n_k\in I_n}\frac{|a_k|^p}{n_k^{\alpha+1}}=\sum_{k=0}^{\infty}\frac{|a_k|^p}{n_k^{\alpha+1}}.$$

This completes the proof of the theorem.

COROLLARY 19. Suppose $0 , <math>-1 < \alpha < \infty$, and n is a positive integer. Then a lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

satisfies

$$\int_{\mathbb{D}} |f^{(n)}(z)|^p (1 - |z|^2)^{\alpha} \, dA(z) < \infty$$

if and only if

$$\sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+1-pn}} < \infty.$$

Proof. If the Taylor series of f(z) at z=0 is lacunary, then so is some tail of the Taylor series of $f^{(n)}(z)$. The desired result then follows from Theorem 18.

Note that lacunary series in B_p are characterized in [3] when p > 1. Our approach here is similar to that in [3]. The above corollary covers all Besov spaces B_p , $0 : simply take <math>\alpha = np-2$, where n is any positive integer greater than 1/p.

Any function $f \in A^p_{\alpha}$ satisfies the pointwise estimate

$$|f(z)| \le \frac{\|f\|_{p,\alpha}}{(1-|z|^2)^{(\alpha+2)/p}}, \qquad z \in \mathbb{D},$$

and the exponent $(\alpha + 2)/p$ is best possible for general functions. See Lemma 3.2 of [7]. The following result shows that lacunary series in A^p_{α} grow more slowly near the boundary than a general function does.

THEOREM 20. If f(z) is defined by a lacunary series in \mathbb{D} and belongs to A^p_{α} , then there exists a constant C > 0, depending on f, such that

$$|f(z)| \le \frac{C}{(1-|z|^2)^{(\alpha+1)/p}}, \qquad z \in \mathbb{D}.$$

Moreover, the exponent $(\alpha + 1)/p$ cannot be improved.

Proof. Suppose $f \in A^p_{\alpha}$ and

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

is a lacunary series with $n_{k+1}/n_k \ge \lambda > 1$ for all k. By Theorem 18,

$$a_k = o\left(n_k^{(\alpha+1)/p}\right), \qquad k \to \infty.$$

In particular, there exists a constant $C_1 > 0$ such that

$$|a_k| \le C_1 n_k^{(\alpha+1)/p}, \qquad k \ge 0,$$

so

$$|f(z)| \le C_1 \sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k^{(\alpha+1)/p} |z|^{n_k}.$$

Let $N = [\log_{\lambda} 2] + 1$ as in the proof of Theorem 18. Then

$$\sum_{n_k \in I_n} n_k^{(\alpha+1)/p} |z|^{n_k} \le N 2^{(n+1)(\alpha+1)/p} |z|^{2^n}.$$

It is clear that

$$2^{n-1}|z|^{2^n} \le \sum_{k \in I_{n-1}} |z|^k.$$

Since 2^{n-1} , 2^n , and 2^{n+1} are all comparable to k for $k \in I_n$ or for $k \in I_{n-1}$, we can find another constant $C_2 > 0$ such that

$$|f(z)| \le C_2 \sum_{k=0}^{\infty} (k+1)^{(\alpha+1)/p-1} |z|^k.$$

It is well known (see page 54 of [13] for example) that the series above is comparable to $(1-|z|^2)^{-(\alpha+1)/p}$. This proves the desired estimate for f(z).

To show that the exponent $(\alpha+1)/p$ is best possible, we assume that there exists some q>p such that for every lacunary series $f\in A^p_\alpha$ there is a positive constant $C_f>0$ with

$$|f(z)| \leq \frac{C_f}{(1-|z|^2)^{(\alpha+1)/q}}, \qquad z \in \mathbb{D}.$$

This would imply that every lacunary series $f \in A^p_\alpha$ also belongs to A^r_α , where r < q. Fix some $r \in (p,q)$ and choose σ such that

$$\frac{\alpha+1}{r}<\sigma<\frac{\alpha+1}{p}.$$

By Theorem 18, the lacunary series

$$f(z) = \sum_{k=0}^{\infty} 2^{\sigma k} z^{2^k}$$

belongs to A^p_{α} but does not belong to A^r_{α} . This contradiction completes the proof of the theorem.

We mention that another class of functions in A^p_{α} enjoy the estimate in Theorem 20, namely, the so-called A^p_{α} -inner functions. See [7]. Although the exponent $(\alpha+1)/p$ in the preceding theorem cannot be decreased, we can use a standard approximation argument, or refine the argument in the proof above, to improve the result as follows. If f is a lacunary series in A^p_{α} , then

$$f(z) = o\left(\frac{1}{(1-|z|^2)^{(\alpha+1)/p}}\right)$$

as $|z| \to 1^-$. We omit the routine details.

6. Lacunary series in $Q(n, p, \alpha)$

It is well known that a lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

belongs to the Bloch space if and only if its Taylor coefficients a_k are bounded; see [1].

In this section we characterize the lacunary series in $Q(n, p, \alpha)$. Our main result is the following.

THEOREM 21. Suppose $\alpha + 1 \le np \le \alpha + 2$. Then the following conditions are equivalent for a lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}.$$

- (a) $f \in Q(n, p, \alpha)$.
- (b) f satisfies the condition

$$\int_{\mathbb{D}} |f^{(n)}(z)|^p (1 - |z|^2)^{\alpha} \, dA(z) < \infty.$$

(c) The Taylor coefficients of f satisfy the condition

$$\sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+1-np}} < \infty.$$

Proof. Choosing a=0 in the definition of the semi-norm $||f||_{n,p,\alpha}$ shows that (a) implies (b). It follows from Corollary 19 that (b) implies (c).

To prove the remaining implication, we fix a lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}$$

and consider the integral

$$N(f,n,a) = \int_{\mathbb{D}} |f^{(n)}(z)|^p \left(\frac{1 - |a|^2}{|1 - \overline{a}z|^2}\right)^{\alpha + 2 - np} (1 - |z|^2)^{\alpha} dA(z).$$

By Theorem 13, it suffices to show that the condition in (c) implies that the integral N(f, n, a) is bounded in a.

We write

$$N(f, n, a) = \int_{\mathbb{D}} |f^{(n)}(z)|^p (1 - |z|^2)^{np-2} (1 - |\varphi_a(z)|^2)^{\alpha + 2 - np} dA(z)$$

and

$$f^{(n)}(z) = \sum_{k=0}^{\infty} b_k z^{m_k}.$$

By dropping the first few terms if necessary, we may, without loss of generality, that $f^{(n)}(z)$ is still a lacunary series. It is clear that, as $k \to \infty$, $|b_k|$ is comparable to $|a_k|n_k^n$.

In polar coordinates, the integral N(f, n, a) can be written as

$$\frac{1}{\pi} \int_0^1 r(1-r^2)^{np-2} dr \int_0^{2\pi} \left| \sum_{k=0}^{\infty} b_k r^{m_k} e^{im_k t} \right|^p (1-|\varphi_a(re^{it})|^2)^{\alpha+2-np} dt.$$

By the triangle inequality, N(f, n, a) is less than or equal to

$$C_1 \int_0^1 \left(\sum_{k=0}^\infty |b_k| r^{m_k} \right)^p (1-r)^{np-2} dr \frac{1}{2\pi} \int_0^{2\pi} (1-|\varphi_a(re^{it})|^2)^{\alpha+2-np} dt,$$

where $C_1 = 2^{np-1}$. Because $0 \le \alpha + 2 - np \le 1$, Hölder's inequality implies that the inner integral above is less than or equal to

$$\left(\frac{1}{2\pi} \int_0^{2\pi} (1 - |\varphi_a(re^{it})|^2) dt\right)^{\alpha + 2 - np} = \left[\frac{(1 - |a|^2)(1 - r^2)}{1 - r^2|a|^2}\right]^{\alpha + 2 - np},$$

which is obviously less than $(1-r^2)^{\alpha+2-np}$. Therefore, there exists a constant $C_2 > 0$ such that

$$N(f, n, a) \le C_2 \int_0^1 \left(\sum_{k=0}^{\infty} |b_k| r^{m_k} \right)^p (1 - r)^{\alpha} dr.$$

By Lemma 17, there exists $C_3 > 0$ such that

$$N(f, n, a) \le C_3 \sum_{n=0}^{\infty} \frac{t_n^p}{2^{n(\alpha+1)}},$$

where

$$t_n = \sum_{m_k \in I_n} |b_k|, \qquad 0 \le n < \infty.$$

By the proof of Theorem 18, t_n^p is comparable to

$$\sum_{m_k \in I_n} |b_k|^p.$$

Since $|b_k|$ is comparable to $n_k^n|a_k|$ and 2^n is comparable to $m_k \in I_n$, we conclude that there exists a constant $C_4 > 0$, independent of a, such that

$$N(f, n, a) \le C_4 \sum_{k=0}^{\infty} \frac{|a_k|^p}{n_k^{\alpha+2-pn}}.$$

This completes the proof of the theorem.

This result can be used to tell the differences among the spaces $Q(n, p, \alpha)$. Suppose $\alpha + 1 \le pn \le \alpha + 2$ and let $Q_0(n, p, \alpha)$ be the closure in $Q(n, p, \alpha)$ of the set of polynomials. The above theorem shows that a lacunary series belongs to $Q(n, p, \alpha)$ if and only if it belongs to $Q_0(n, p, \alpha)$. Note that the space $Q(n, p, \alpha)$ is nonseparable for some parameters, for example, when $Q(n, p, \alpha) = \text{BMOA}$. But $Q(n, p, \alpha)$ is separable for some other parameters, for example, when $Q(n, p, \alpha) = B_p$.

7. Other generalizations

It is clear that the *n*th derivative used in the definition of $Q(n, p, \alpha)$ can be replaced by any reasonable "fractional derivative", for example, the radial fractional derivatives introduced in [14] work perfectly here.

To go even further, we can start out with an arbitrary Banach space (X, || ||) of analytic functions in \mathbb{D} and define Q(X) as the space of analytic functions f in \mathbb{D} with the property that

$$||f||_Q = \sup_{\varphi \in \operatorname{Aut}(\mathbb{D})} ||f \circ \varphi|| < \infty.$$

This clearly gives rise to a Möbius invariant space Q_X if it is nontrivial. If X contains all constants, we may also want to use the condition

$$||f||_Q = \sup_{\varphi \in \operatorname{Aut}(\mathbb{D})} ||f \circ \varphi - f(\varphi(0))|| < \infty$$

instead. This construction gives rise to all Möbius invariant Banach spaces on \mathbb{D} . In fact, if X is Möbius invariant, then $X = Q_X$.

There are many problems concerning the spaces $Q(n, p, \alpha)$ that one may want to study, for example, inner and outer functions in $Q(n, p, \alpha)$, composition operators on $Q(n, p, \alpha)$, and atomic decomposition for $Q(n, p, \alpha)$. We will study such topics in subsequent papers.

References

- J. M. Anderson, Bloch functions: the basic theory, Operators and function theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 1–17. MR 810441 (87h:30072)
- [2] J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145. MR 814017 (87f:30104)
- [3] R. Aulaskari and G. Csordas, Besov spaces and the $Q_{q,0}$ classes, Acta Sci. Math. (Szeged) 60 (1995), 31–48. MR 1348679 (96h:46039)
- [4] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315–332. MR 850538 (87m:47064)
- [5] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981. MR 628971 (83g:30037)
- [6] D. Girela, Analytic functions of bounded mean oscillation, Complex function spaces (Mekrijärvi, 1999), Univ. Joensuu Dept. Math. Rep. Ser., vol. 4, Univ. Joensuu, Joensuu, 2001, pp. 61–170. MR 1820090 (2002m:30041)
- [7] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653 (2001c:46043)
- [8] M. Mateljević and M. Pavlović, L^p-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309–316. MR 681840 (84g:30034)
- [9] J. Rättyä, On some complex function spaces and classes, Ann. Acad. Sci. Fenn. Math. Diss. (2001), 73. MR 1866201 (2002j:30052)
- [10] L. A. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45–49. MR 529210 (80h:30034)

- [11] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics, vol. 1767, Springer-Verlag, Berlin, 2001. MR 1869752 (2003f:30045)
- [12] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. (1996), 56. MR 1395906 (97e:46027)
- [13] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker Inc., New York, 1990. MR 1074007 (92c:47031)
- [14] ______, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155 (2006d:46035)
- [15] A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge University Press, London, 1968. MR 0236587 (38 #4882)

Kehe Zhu, Department of Mathematics, SUNY, Albany, NY 12222, USA $E\text{-}mail\ address$: kzhu@math.albany.edu