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A CLASS OF MÖBIUS INVARIANT FUNCTION SPACES

KEHE ZHU

Abstract. We introduce a class of Möbius invariant spaces of analytic
functions in the unit disk, characterize these spaces in terms of Carleson
type measures, and obtain a necessary and sufficient condition for a
lacunary series to be in such a space. Special cases of this class include
the Bloch space, the diagonal Besov spaces, BMOA, and the so-called
Qp spaces that have attracted much attention lately.

1. Introduction

Let D be the open unit disk in the complex plane C and let Aut(D) denote
the group of all Möbius maps of the disk. For any a ∈ D the function

ϕa(z) =
a− z

1− az
, z ∈ D,

is a Möbius map that interchanges the points a and 0.
For 0 < p < ∞, −1 < α < ∞, and n a positive integer, we let Q(n, p, α)

denote the space of analytic functions f in D with the property that

‖f‖p
n,p,α = sup

a∈D

∫
D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z) < ∞,

where dA is the area measure on D, normalized so that the unit disk has area
equal to 1.

Since every ϕ ∈ Aut(D) is of the form

ϕ(z) = ϕa(eitz), z ∈ D,

where a ∈ D and t is real, we see that

‖f‖p
n,p,α = sup

ϕ∈Aut(D)

∫
D
|(f ◦ ϕ)(n)(z)|p(1− |z|2)α dA(z).

Thus the space Q(n, p, α) is Möbius invariant, in the sense that an analytic
function f in D belongs to Q(n, p, α) if and only if f ◦ϕ belongs to Q(n, p, α)
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for every (or some) Möbius map ϕ. Moreover,

‖f ◦ ϕ‖n,p,α = ‖f‖n,p,α, f ∈ Q(n, p, α), ϕ ∈ Aut(D).

It is clear that each space Q(n, p, α) contains all constant functions. We
say that Q(n, p, α) is trivial if its only members are the constant functions. It
is also clear that

‖f‖ = |f(0)|+ ‖f‖n,p,α

defines a complete norm on Q(n, p, α) whenever p ≥ 1. Thus Q(n, p, α) is a
Banach space of analytic functions when p ≥ 1. See [2] for general properties
of Möbius invariant Banach spaces.

When 0 < p < 1, the space Q(n, p, α) is not necessarily a Banach space,
but is always a complete metric space. However, we will not hesitate to use
the phrase “semi-norm” for ‖f‖n,p,α and use the word “norm” for ‖f‖ even
in the case 0 < p < 1.

With definitions of weighted Bergman spaces, Besov spaces, and the Bloch
space deferred to the next section, we can state our main results as Theorems
A, B, C, and D below.

Theorem A. The space Q(n, p, α) is trivial when np > α+2, it contains
all polynomials when np ≤ α + 2, and it coincides with the Besov space Bp

when np = α + 2.

It turns out that the most interesting case for us is when the parameters
satisfy

α + 1 ≤ pn ≤ α + 2.

When np falls below α + 1, Q(n, p, α) is just the Bloch space (see Proposi-
tion 7); and when np rises above α + 2, Q(n, p, α) becomes trivial.

Theorem B. If γ = (α + 2) − np > 0, then an analytic function f in D
belongs to Q(n, p, α) if and only if the measure

|f (n)(z)|p(1− |z|2)α dA(z)

is γ-Carleson.

Here we say that a positive Borel measure µ on D is a γ-Carleson measure
if there exists a positive constant C such that µ(Sh) ≤ Chγ , where Sh is any
Carleson square with side width h.

Theorem C. Suppose α + 1 ≤ pn ≤ α + 2 and

f(z) =
∞∑

k=0

akznk

is a lacunary series in D. Then the following conditions are equivalent.
(a) The function f is in Q(n, p, α).
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(b) The function f satisfies∫
D
|f (n)(z)|p(1− |z|2)α dA(z) < ∞.

(c) The Taylor coefficients of f satisfy

∞∑
k=0

|ak|p

nα+1−np
k

< ∞.

Note that replacing f by its nth anti-derivative in (b) and (c) above gives a
characterization of lacunary series in weighted Bergman spaces; see Theorem 8
in Section 5. We also prove an optimal pointwise estimate for lacunary series
in weighted Bergman spaces.

Theorem D. If f is a lacunary series satisfying∫
D
|f(z)|p(1− |z|2)α dA(z) < ∞,

then

lim
|z|→1−

(1− |z|2)α+1|f(z)|p = 0.

Note that if we drop the assumption that f be lacunary, then the best we
can expect is

lim
|z|→1−

(1− |z|2)α+2|f(z)|p = 0.

See Lemma 3.2 of [7] and the comments following it.
The papers [9] and [12] study a similar class of function spaces F (p, q, s),

where p > 0, q > −2, and s ≥ 0. It is easy to see that the two classes have
a nontrivial intersection, but neither contains the other. For example, the
class F (p, q, s) contains spaces that are not Möbius invariant, while the class
Q(n, p, α) contains Besov spaces Bp, 0 < p ≤ 1, that are not in the class
F (p, q, s).

The author wishes to thank Ruhan Zhao and Hasi Wulan for constructive
comments on a preliminary version of the paper. The author is also grateful to
the referee for some thoughtful suggestions on how to improve the presentation
of the paper.

2. Preliminaries

We begin with two elementary identities that will be needed several times
later.
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Lemma 1. Suppose f is analytic in D, a ∈ D, and n is a positive integer.
Then

(1) (f ◦ ϕa)(n)(z) =
n∑

k=1

ckf (k)(ϕa(z))
(1− |a|2)k

(1− az)n+k
,

and

(2) f (n)(ϕa(z))
(1− |a|2)n

(1− az)2n
=

n∑
k=1

dk

(1− az)n−k
(f ◦ ϕa)(k)(z),

where ck and dk are polynomials of a.

Proof. It is obvious that (1) and (2) both hold when n = 1.
Assume that (1) and (2) both hold for n = m. We proceed to show that

they also hold for n = m + 1.
First, differentiating (1) with n = m gives

(f ◦ ϕa)(m+1)(z) = −
m∑

k=1

ckf (k+1)(ϕa(z))
(1− |a|2)k+1

(1− az)m+k+2

+
m∑

k=1

ck(m + k)af (k)(ϕa(z))
(1− |a|2)k

(1− az)m+k+1

= −
m+1∑
k=2

ck−1f
(k)(ϕa(z))

(1− |a|2)k

(1− az)m+1+k

+
m∑

k=1

ck(m + k)af (k)(ϕa(z))
(1− |a|2)k

(1− az)m+1+k

=
m+1∑
k=1

c′kf (k)(ϕa(z))
(1− |a|2)k

(1− az)m+1+k
,

that is, (1) holds for n = m + 1.
Next, differentiating (2) with n = m shows that

(3) −f (m+1)(ϕa(z))
(1− |a|2)m+1

(1− az)2(m+1)
+ 2maf (m)(ϕa(z))

(1− |a|2)m

(1− az)2m+1

is equal to

m∑
k=1

[
(m− k)dka

(1− az)m−k+1
(f ◦ ϕa)(k)(z) +

dk

(1− az)m−k
(f ◦ ϕa)(k+1)(z)

]
.
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Applying (2) with n = m to the second term in (3), we obtain

f (m+1)(ϕa(z))
(1− |a|2)(m+1)

(1− az)2(m+1)
= 2ma

m∑
k=1

dk

(1− az)m+1−k
(f ◦ ϕa)(k)(z)

−
m∑

k=1

(m− k)dka

(1− az)m+1−k
(f ◦ ϕa)(k)(z)

−
m∑

k=1

dk

(1− az)m−k
(f ◦ ϕa)(k+1)(z).

The last sum above is the same as
m+1∑
k=2

dk−1

(1− az)m+1−k
(f ◦ ϕa)(k)(z).

Therefore,

f (m+1)(ϕa(z))
(1− |a|2)(m+1)

(1− az)2(m+1)
=

m+1∑
k=1

d′k
(1− az)m+1−k

(f ◦ ϕa)(k)(z),

namely, (2) holds for n = m + 1.
The proof of the lemma is complete by induction. �

Several classical function spaces appear in various places of the paper. We
give their definitions here.

For 0 < p < ∞ the Hardy space Hp consists of analytic functions f in D
such that

‖f‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0

|f(reit)|p dt < ∞.

It is well known that every function f ∈ Hp has radial limit, denoted by
f(eit), at almost every point eit on the unit circle. Moreover,

‖f‖Hp =
[

1
2π

∫ 2π

0

|f(eit)|p dt

]1/p

for every f ∈ Hp. If f is represented as a power series

f(z) =
∞∑

k=0

akzk,

then it is easy to see that

‖f‖2
H2 =

∞∑
k=0

|ak|2

for every f ∈ Hp.
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BMOA is the space of functions f ∈ H2 with the property that

‖f‖BMO = sup
a∈D

‖f ◦ ϕa − f(a)‖H2 < ∞.

See [5] for basic properties of Hardy spaces and BMOA.
For 0 < p < ∞ and −1 < α < ∞ the weighted Bergman space Ap

α consists
of analytic functions f in D with

‖f‖p
p,α = (α + 1)

∫
D
|f(z)|p(1− |z|2)α dA(z) < ∞.

If ak are the Taylor coefficients of f at z = 0, then it is easy to see that

‖f‖2
2,α =

∞∑
k=0

k! Γ(2 + α)
Γ(k + 2 + α)

|ak|2.

By Stirling’s formula, the above sum is comparable to
∞∑

k=0

|ak|2

(k + 1)α+1
.

See [7] for the modern theory of Bergman spaces.
The following result about Bergman spaces will be important for us later.

Lemma 2. Suppose n is a positive integer, α > −1, and p > 0. Then the
integral ∫

D
|f(z)|p(1− |z|2)α dA(z)

is comparable to
n−1∑
k=0

|f (k)(0)|p +
∫

D
|f (n)(z)|p(1− |z|2)np+α dA(z),

where f is any analytic function in D.

Proof. See Theorem 2.17 of [14]. �

An analytic function f in D belongs to the Bloch space B if

sup
a∈D

‖f ◦ ϕa − f(a)‖p,α < ∞.

It is well known that this definition of B is independent of the choice of p and
α. In fact, it can be shown that f ∈ B if and only if

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

See [4].
We are going to need the following characterizations of the Bloch space in

terms of higher order derivatives.
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Lemma 3. Suppose n is any positive integer. Then the following are equiv-
alent for an analytic function f in D.

(a) f belongs to the Bloch space.
(b) f satisfies the condition

sup
z∈D

(1− |z|2)n|f (n)(z)| < ∞.

(c) f satisfies the condition

sup
a∈D

|(f ◦ ϕa)(n)(0)| < ∞.

Proof. See Theorem 5.15 of [13] for the equivalence of (a) and (b). It is clear
that the set of functions satisfying the condition in (c) is a Möbius invariant
Banach space. It follows from the maximality of the Bloch space among
Möbius invariant Banach spaces (see [10]) that (c) implies (a). According to
Lemma 1,

(f ◦ ϕa)(n)(0) =
n∑

k=1

ck(ā)(1− |a|2)kf (k)(a),

where each ck(ā) is a polynomial in ā, so the equivalence of (a) and (b) shows
that (a) implies (c). �

Suppose 0 < p < ∞ and n is a positive integer satisfying np > 1. The
(diagonal) Besov space Bp consists of analytic functions f in D such that∫

D
|f (n)(z)|p(1− |z|2)np−2 dA(z) < ∞.

It is well known that the definition is independent of the choice of n; see [14].
In particular, for p > 1, we have f ∈ Bp if and only if∫

D
|f ′(z)|p(1− |z|2)p dλ(z) < ∞,

where

dλ(z) =
dA(z)

(1− |z|2)2
is the Möbius invariant measure on D.

The following estimate will play a crucial role in our analysis.

Lemma 4. Suppose α > −1 and t is real. Then the integral

I(a) =
∫

D

(1− |z|2)α dA(z)
|1− az|2+α+t

has the following properties:
(a) If t < 0, I(a) is comparable to 1.
(b) If t = 0, I(a) is comparable to log(2/(1− |a|2)).
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(c) If t > 0, I(a) is comparable to 1/(1− |a|2)t.

Proof. See Lemma 4.2.2 of [13]. �

We can now determine exactly when the space Q(n, p, α) is nontrivial.

Theorem 5. The following conditions are equivalent.

(a) The space Q(n, p, α) is nontrivial.
(b) The space Q(n, p, α) contains all polynomials.
(c) The parameters satisfy the condition pn ≤ α + 2.

Proof. It is trivial that (b) implies (a).
For any analytic function f in D we consider the integral

Ia =
∫

D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z).

By (1) and a change of variables,

Ia = (1− |a|2)α+2−np

∫
D

∣∣∣∣∣
n∑

k=1

ckf (k)(z)(1− az)n+k

∣∣∣∣∣
p

(1− |z|2)α dA(z)
|1− az|4+2α

.

If f is a polynomial, then each f (k) is bounded. After we factor out (1−az)n+1

from every term in the above sum, we find a constant C > 0, independent of
a, such that

Ia ≤ C(1− |a|2)α+2−np

∫
D

(1− |z|2)α dA(z)
|1− az|4+2α−(n+1)p

.

It follows from Lemma 4 that Ia is bounded for a ∈ D when np ≤ α +2. This
proves that (c) implies (b).

Working with the integral Ia from the preceding paragraph, we have∫
D

∣∣∣∣∣
n∑

k=1

ckf (k)(z)(1− az)n+k

∣∣∣∣∣
p

(1− |z|2)α dA(z)
|1− az|4+2α

= (1− |a|2)np−(α+2)Ia.

Since |1− az| ≤ 2, we have∫
D

∣∣∣∣∣
n∑

k=1

ckf (k)(z)(1− az)n+k

∣∣∣∣∣
p

(1− |z|2)α dA(z) ≤ C(1− |a|2)np−(α+2)Ia,

where C = 24+2α. Now if np > α+2 and f ∈ Q(n, p, α), we can let a approach
the unit circle and use Fatou’s lemma to conclude that∫

D

∣∣∣∣∣
n∑

k=1

ckf (k)(z)(1− az)n+k

∣∣∣∣∣
p

(1− |z|2)α dA(z) = 0
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whenever |a| = 1. But the integrand above is a polynomial of a, so we must
have

n∑
k=1

ckf (k)(z)(1− az)n+k = 0

for all a ∈ D, and hence Ia = 0 for all a ∈ D. This can happen only when f is
constant. Therefore, we see that (a) implies (c), and the proof of the theorem
is complete. �

The Bloch space B is maximal among all Möbius invariant Banach spaces
(see [10]), so Q(n, p, α) ⊂ B when p ≥ 1. We show that this is also true for
0 < p < 1, although in this case Q(n, p, α) is not necessarily a Banach space.

Lemma 6. The space Q(n, p, α) is always contained in the Bloch space.

Proof. It follows from the subharmonicity of |f |p that |f(0)| ≤ ‖f‖p,α,
where f is analytic in D and ‖ ‖p,α is the norm in the weighted Bergman
space Ap

α. Replacing f by (f ◦ ϕa)(n), we obtain

|(f ◦ ϕa)(n)(0)| ≤ (α + 1)‖f‖n,p,α, f ∈ Q(n, p, α).

By condition (c) in Lemma 3, every function in Q(n, p, α) belongs to the Bloch
space. �

As a consequence of Lemmas 2, 3, and 6, we see that

(4) Q(n, p, α) = Q(n + 1, p, α + p)

whenever α > −1, p > 0, and n ≥ 1. This shows that the class Q(n, p, α)
depends on only two parameters. In fact, if for 0 < p < ∞ and β real we
define

Q′(p, β) = Q(n, p, (n− 1)p + β),
where n is large enough so that α = (n− 1)p + β > −1, then (4) shows that
the definition of Q′(p, β) is independent of the choice of n and the classes
Q(n, p, α) and Q′(p, β) are the same.

Alternatively, the class Q(n, p, α) depends on the parameters p and γ =
α + 2 − np. Several results of the paper can be stated more simply in terms
of these two parameters.

3. Several special cases

We now identify several special cases of the spaces Q(n, p, α).
When n = 1 and p = 2, the integral∫

D
|(f ◦ ϕa)′(z)|p(1− |z|2)α dA(z)

can be rewritten as ∫
D
|f ′(z)|2(1− |ϕa(z)|2)α dA(z)
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via a change of variables. Therefore, the resulting spaces Q(n, p, α) become
the so-called Qα spaces. More generally, if 2n < α + 3, then Q(n, 2, α) = Qβ ,
where β = α− 2(n− 1). This follows easily from Lemma 2. The book [11] is
a good source of information for the spaces Qα.

Although the Qα spaces cover both BMOA and the Bloch space, we single
out these two important cases to show their relative location in the scale
Q(n, p, α).

Proposition 7. If np < α + 1, then Q(n, p, α) = B.

Proof. Recall from Lemma 6 that Q(n, p, α) ⊂ B. To prove the other
direction, we fix some f ∈ B. If np < α + 1, we can write α = np + β, where
β > −1. By Lemmas 2 and 3, the integral∫

D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z)

is bounded for a ∈ D if and only if the integral∫
D
|f ◦ ϕa(z)− f(a)|p(1− |z|2)β dA(z)

is bounded for a ∈ D. Since the latter condition is satisfied by every Bloch
function, the proof is complete. �

Theorem 8. If np = α + 2, we have Q(n, p, α) = Bp.

Proof. Setting a = 0 in the integral

Ia =
∫

D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z)

shows that Q(n, p, α) ⊂ Bp for np = α + 2.
We proceed to show that Bp ⊂ Q(n, p, α) when np = α + 2.
If p > 1, the Besov space Bp is Möbius invariant with the following semi-

norm:

‖f‖Bp =
[∫

D
|f ′(z)|p(1− |z|2)p−2 dA(z)

]1/p

.

If n is any positive integer and α = np − 2 > −1, then by Lemma 2 there
exists a constant C > 0, depending on p and n, such that∫

D
|f (n)(z)|p(1− |z|2)np−2 dA(z) ≤ C‖f‖p

Bp

for all f ∈ Bp. Replacing f by f ◦ ϕa and using the Möbius invariance of the
semi-norm ‖ ‖Bp , we conclude that

sup{Ia : a ∈ D} < ∞

whenever f ∈ Bp. This shows that Bp ⊂ Q(n, p, α) when p > 1 and np = α+2.
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A similar argument works for p = 1. As a matter of fact, B1 admits a
Möbius invariant norm (not just a semi-norm) ‖f‖m; see [2]. If n > 1 is an
integer, then

‖f‖n =
n−1∑
k=0

|f (k)(0)|+
∫

D
|f (n)(z)|(1− |z|2)n−2 dA(z)

defines a norm on B1 that is equivalent to ‖f‖m. Therefore, we can find a
constant C > 0, independent of f and a, such that

‖f ◦ ϕa‖n ≤ C‖f ◦ ϕa‖m = C‖f‖m

for all f ∈ B1 and a ∈ D. This shows that f ∈ B1 implies the integral∫
D
|(f ◦ ϕa)(n)|(1− |z|2)n−2 dA(z)

is bounded for a ∈ D, or equivalently, B1 ⊂ Q(n, 1, np− 2).
We prove the case 0 < p < 1 using a version of atomic decomposition for

the space Bp. By Theorem 6.6 of [14], if 0 < p < 1 and f ∈ Bp, there exists
a sequence {ak} in D such that

f(z) =
∞∑

k=1

ck
1− |ak|2

1− akz
,

where
∞∑

k=1

|ck|p < ∞.

Let

fk(z) =
1− |ak|2

1− akz
, 1 ≤ k < ∞.

Then by Hölder’s inequality, the integral∫
D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α(z)

is less than or equal to
∞∑

k=1

|ck|p
∫

D
|(fk ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z).

Since
fk(z) = 1− akϕak

(z),
we have

fk(ϕa(z)) = 1− akϕak
◦ ϕa(z) = 1− akeitkϕλk

(z),
where tk is a real number and λk = ϕa(ak). It follows that

(fk ◦ ϕa)(n)(z) =
Ak(1− |λk|2)
(1− λkz)n+1

,
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where Ak = n!akeitkλ
n−1

k . Therefore, the integral∫
D
|(fk ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z)

does not exceed n! times

(1− |λk|2)p

∫
D

(1− |z|2)α dA(z)
|1− λkz|(n+1)p

= (1− |λk|2)p

∫
D

(1− |z|2)α dA(z)
|1− λkz|α+2+p

.

By Lemma 4, there exists a constant C > 0, independent of k and a, such
that ∫

D
|(fk ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z) ≤ C

for all k ≥ 1 and all a ∈ D. It follows that f ∈ Q(n, p, α), and the proof of
the theorem is complete. �

Proposition 9. If p = 2 and α = 2n− 1, then Q(n, p, α) = BMOA.

Proof. If f ∈ B, then Lemmas 2 and 3 show that the integral∫
D
|(f ◦ ϕa)(n)(z)|2(1− |z|2)2n−1 dA(z)

is bounded in a if and only if the integral∫
D
|(f ◦ ϕa)′(z)|2(1− |z|2) dA(z)

is bounded in a. The latter integral, by a classical identity of Littlewood and
Paley (see page 236 of [5] or Theorem 8.1.9 of [13]), is comparable to

‖f ◦ ϕa − f(a)‖2
H2 .

This proves the desired result. �

Finally in this section, we mention that in studying the spaces Q(n, p, α),
we may as well assume that −1 < α ≤ p − 1. Otherwise, we can write
α = p + α′ with α′ > −1. Then the integral∫

D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z),

is comparable to

|(f ◦ ϕa)(n−1)(0)|p +
∫

D
|(f ◦ ϕa)(n−1)(z)|p(1− |z|2)α′ dA(z)

when n > 1, and is comparable to∫
D
|f ◦ ϕa(z)− f(a)|p(1− |z|2)α′ dA(z)

when n = 1. Therefore, either Q(n, p, α) = Q(n − 1, p, α′) or Q(n, p, α) = B.
Continuing this process, the space Q(n, p, α) is either equal to some Q(m, p, β)
with β ≤ p− 1 or equal to the Bloch space.
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4. Characterization in terms of Carleson-type measures

In this section we are going to characterize the spaces Q(n, p, α) in terms of
Carleson type measures. We begin with the following elementary inequality.

Lemma 10. For any p > 0 and complex numbers zk we have

(5) |z1 + · · ·+ zn|p ≤ C(|z1|p + · · ·+ |zn|p),

where C = 1 if 0 < p ≤ 1 and C = np−1 when p > 1.

Proof. This is a direct consequence of Hölder’s inequality. �

To simplify the presentation for the next two lemmas, we introduce the
expressions

M(f, n, a) =
∫

D
|(f ◦ ϕa)(n)(z)|p(1− |z|2)α dA(z)

and

N(f, n, a) =
∫

D

∣∣∣∣f (n)(ϕa(z))
(

1− |a|2

(1− az)2

)n∣∣∣∣p (1− |z|2)α dA(z).

By a change of variables, we can write

N(f, n, a) =
∫

D
|f (n)(z)|p

(
1− |a|2

|1− az|2

)α+2−np

(1− |z|2)α dA(z).

We will also need the following notation.

P (f, n) =
n∑

k=1

sup
a∈D

(1− |a|2)kp|f (k)(a)|p,

and

Q(f, n) =
n∑

k=1

sup{|(f ◦ ϕa)(k)(0)|p : a ∈ D}.

According to Lemma 3, P (f, n) < ∞ if and only if f ∈ B, and Q(f, n) < ∞
if and only if f ∈ B.

Lemma 11. If np < α+2, then there exists a constant C > 0, independent
of f and a, such that

M(f, n, a) ≤ C [N(f, n, a) + P (f, n)]

for all analytic f and a ∈ D.

Proof. We prove the inequality by induction on n.
It is clear that M(f, n, a) = N(f, n, a) when n = 1. So we assume that the

inequality holds for n and consider the expression M(f, n + 1, a) under the
condition that (n + 1)p < α + 2.
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Fix a ∈ D and observe that

(f ◦ ϕa)(n+1)(z) = −(g ◦ ϕa)(n)(z),

where

g(z) =
(1− az)2

1− |a|2
f ′(z).

By the product rule, we have

g(m)(z) =
(1− az)2

1− |a|2
f (m+1)(z)− 2ma

1− az

1− |a|2
f (m)(z)(6)

+
m(m− 1)a2

1− |a|2
f (m−1)(z)

for all m ≥ 1. In particular,

(1− |a|2)mg(m)(a) = (1− |a|2)m+1f (m+1)(a)−2ma(1− |a|2)mf (m)(a)

+ m(m− 1)a2(1− |a|2)m−1f (m−1)(a)

for m ≥ 1 and

g(n)(ϕa(z)) =
1− |a|2

(1− az)2
f (n+1)(ϕa(z))− 2na

1− az
f (n)(ϕa(z))(7)

+
n(n− 1)a2

1− |a|2
f (n−1)(ϕa(z)).

It follows from this and the induction hypothesis (note that the condition
(n + 1)p < α + 2 implies np < α + 2) that there exist positive constants C1

and C2, both independent of f and a, such that

M(f, n + 1, a) = M(g, n, a) ≤ C1 [N(g, n, a) + P (g, n)]

≤ C2 [N(g, n, a) + P (f, n + 1)] .

By equation (7) and inequality (5), we can find another constant C3 > 0,
independent of f and a, such that

N(g, n, a) ≤ C3(I1 + I2 + I3),

where
I1 = N(f, n + 1, a),

and

I2 =
∫

D

∣∣∣∣f (n)(ϕa(z))
(1− |a|2)n

(1− az)2n+1

∣∣∣∣p (1− |z|2)α dA(z),

and

I3 =
∫

D

∣∣∣∣f (n−1)(ϕa(z))
(1− |a|2)n−1

(1− az)2n

∣∣∣∣p (1− |z|2)α dA(z).
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By Lemma 2 and inequality (5), there exists a constant C4 > 0 such that

I2 ≤ C4(1− |a|2)np|f (n)(a)|p(8)

+ C4

∫
D

∣∣∣∣f (n+1)(ϕa(z))
(1− |a|2)n+1

(1− az)2n+3

∣∣∣∣p (1− |z|2)p+α dA(z)(9)

+ C4

∫
D

∣∣∣∣f (n)(ϕa(z))
(1− |a|2)n

(1− az)2n+2

∣∣∣∣p (1− |z|2)p+α dA(z).(10)

Since
(1− |z|2)p ≤ 2p|1− az|p,

the integral in (9) is less than or equal to 2pN(f, n + 1, a). The integral in
(10) can be estimated using Lemma 2 again. After this process is repeated n
times, we find a constant C5 > 0, independent of f and a, such that

I2 ≤ C5 [P (f, n) + N(f, n + 1, a)]

+ C5

∫
D

∣∣∣∣f (n)(ϕa(z))
(1− |a|2)n

(1− az)2n+1+n

∣∣∣∣p (1− |z|2)np+α dA(z).

First using
(1− |ϕa(z)|2)n|f (n)(ϕa(z))| ≤ P (f, n),

then applying Lemma 4 with the condition (n+1)p < α+2, we find a constant
C6 > 0, independent of f and a, such that

I2 ≤ C6 [N(f, n + 1, a) + P (f, n)] .

After we estimate the integral I3 in a similar way, we obtain a constant C > 0,
independent of f and a, such that

M(f, n + 1, a) ≤ C [N(f, n + 1, a) + P (f, n + 1)] .

This completes the proof of the lemma. �

We now show that the inequality in Lemma 11 can essentially be reversed.

Lemma 12. If np < α + 2, there exists a constant C > 0, independent of
f and a, such that

N(f, n, a) ≤ C [M(f, n, a) + Q(f, n)]

for all analytic f and a ∈ D.

Proof. By equation (2) and the elementary inequality (5), we can find a
constant C1 > 0, independent of f and a, such that

N(f, n, a) ≤ C1

n∑
k=1

Ik(f, n, a),
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where

Ik(f, n, a) =
∫

D

∣∣∣∣ 1
(1− az)n−k

(f ◦ ϕa)(k)(z)
∣∣∣∣p (1− |z|2)α dA(z).

We are going to use backward induction on k to show that

(11) Ik(f, n, a) ≤ Mk[M(f, n, a) + Q(f, n)], 1 ≤ k ≤ n,

where each Mk is a positive constant independent of f and a.
It is clear that In(f, n, a) = M(f, n, a), so the inequality in (11) holds for

k = n.
Next we assume that the inequality in (11) holds for Ik+1(f, n, a) and pro-

ceed to show that the same inequality also holds for Ik(f, n, a). Since

d

dz

[
1

(1− az)n−k
(f ◦ ϕa)(k)(z)

]
equals

(n− k)a
(1− az)n−k+1

(f ◦ ϕa)(k)(z) +
1

(1− az)n−k
(f ◦ ϕa)(k+1)(z),

we can use Lemma 2 and (5) to find a constant C2 > 0, independent of f and
a, such that Ik(f, n, a) is less than or equal to C2|(f ◦ ϕa)(k)(0)|p plus

(12) C2

∫
D

∣∣∣∣ 1
(1− az)n−k+1

(f ◦ ϕa)(k)(z)
∣∣∣∣p (1− |z|2)p+α dA(z)

plus

(13) C2

∫
D

∣∣∣∣ 1
(1− az)n−k

(f ◦ ϕa)(k+1)(z)
∣∣∣∣p (1− |z|2)p+α dA(z).

The integral in (13) can be estimated by the elementary inequality

(1− |z|2)p ≤ 2p|1− az|p

followed by the induction hypothesis, while the integral in (12) can be esti-
mated by Lemma 2 again. This process can be repeated. After a repetition
of k steps, we obtain a constant C3 > 0, independent of f and a, such that
Ik(f, n, a) is less than or equal to

C3 [M(f, n, a) + Q(f, n)]

plus

(14) C3

∫
D

∣∣∣∣ 1
(1− az)n

(f ◦ ϕa)(k)(z)
∣∣∣∣p (1− |z|2)kp+α dA(z).

Since the Bloch space is Möbius invariant, we can find a constant C4 > 0,
independent of f and a, such that

sup
z∈D

|(f ◦ ϕa)(k)(z)|(1− |z|2)k ≤ C4Q(f, n).
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We now estimate the integral in (14) first using this, and then using part (a)
of Lemma 4 together with the assumption that np < α+2. The result is that

Ik(f, n, a) ≤ Mk [M(f, n, a) + Q(f, n)] .

This shows that (11) holds for all k = 1, 2, . . . , n, and completes the proof of
the lemma. �

Note that by using (2) and arguments similar to those used in the proof of
Lemma 12, we can construct a different proof for Lemma 11.

We now state the main result of the section.

Theorem 13. If np ≤ α + 2, then an analytic function f in D belongs to
Q(n, p, α) if and only if

(15) sup
a∈D

∫
D
|f (n)(z)|p (1− |a|2)α+2−np

|1− az|2(α+2−np)
(1− |z|2)α dA(z) < ∞.

Proof. If np = α + 2, the desired result is just Theorem 8.
We already know that Q(n, p, α) is contained in the Bloch space. Using

the very first definition of N(f, n, a) and the obvious estimate

|g(0)|p ≤ (α + 1)
∫

D
|g(z)|p(1− |z|2)α dA(z),

we see that condition (15) also implies that f ∈ B (see also Lemma 3). The
desired result for np < α +2 is then a consequence of Lemmas 11 and 12. �

For any arc I of the unit circle ∂D, we let SI denote the classical Carleson
square in D generated by I. Suppose γ > 0 and µ is a positive Borel measure
on D. We say that µ is γ-Carleson if there exists a constant C > 0 such that

µ(SI) ≤ C|I|γ

for all I, where |I| denotes the length of I.

Theorem 14. Suppose γ = α + 2− np > 0. Then an analytic function f
in D belongs to Q(n, p, α) if and only if the measure

dµ(z) = |f (n)(z)|p(1− |z|2)α dA(z)

is γ-Carleson.

Proof. This follows from Theorem 13 and Lemma 4.1.1 of [11]. �

Corollary 15. Suppose p > 0, γ > 0, α > −1, n is a positive integer,
m is a nonnegative integer, and f is analytic in D. Then the measure

|f (n)(z)|p(1− |z|2)α dA(z)
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is γ-Carleson if and only if the measure

|f (m+n)(z)|p(1− |z|2)mp+α dA(z)

is γ-Carleson.

Proof. This is a consequence of Theorem 14 and equation (4). �

Replacing f by its nth anti-derivative, we conclude that

|f(z)|p(1− |z|2)α dA(z)

is γ-Carleson if and only if

|f (m)(z)|p(1− |z|2)mp+α dA(z)

is γ-Carleson.

5. Lacunary series in Bergman type spaces

In this section we characterize lacunary series in Bergman-type spaces. We
are going to need two classical results concerning lacunary series in Hardy
type spaces.

Lemma 16. Suppose 0 < p < ∞ and 1 < λ < ∞. There exists a constant
C > 0, depending only on p and λ, such that

C−1‖f‖H2 ≤ ‖f‖Hp ≤ C‖f‖H2

for all lacunary series

f(z) =
∞∑

k=0

akznk

with nk+1/nk ≥ λ for all k.

Proof. See page 213 of [15]. �

A consequence of the above lemma is that if a lacunary series belongs to
some Hardy space, then it belongs to all Hardy spaces. Actually, a lacunary
series belongs to a Hardy space if and only if it belongs to BMOA; see [6].

Lemma 17. Suppose 0 < p < ∞ and −1 < α < ∞. There exists a
constant C > 0, depending only on p and α, such that

1
C

∞∑
n=0

tpn
2n(α+1)

≤
∫ 1

0

f(x)p(1− x)α dx ≤ C

∞∑
n=0

tpn
2n(α+1)

for all power series

f(x) =
∞∑

k=0

akxk
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with nonnegative coefficients, where

tn =
∑
k∈In

ak

and
I0 = {0, 1}, In = {k : 2n ≤ k < 2n+1}, 1 ≤ n < ∞.

Proof. See [8]. �

We now characterize lacunary series in the weighted Bergman spaces Ap
α.

Theorem 18. Suppose 0 < p < ∞, −1 < α < ∞, and 1 < λ < ∞. There
exists a constant C > 0, depending only on p, α and λ, such that

1
C

∞∑
k=0

|ak|p

nα+1
k

≤
∫

D
|f(z)|p(1− |z|2)α dA(z) ≤ C

∞∑
k=0

|ak|p

nα+1
k

for all lacunary series

f(z) =
∞∑

k=0

akznk

with nk+1/nk ≥ λ for all k.

Proof. In polar coordinates the integral

I =
∫

D
|f(z)|p(1− |z|2)α dA(z)

can be written as

I =
1
π

∫ 1

0

r(1− r2)α

∫ 2π

0

∣∣∣∣∣
∞∑

k=0

akrnkeinkt

∣∣∣∣∣
p

dt.

By Lemma 16, the integral I is comparable to

2
∫ 1

0

r(1− r2)α

( ∞∑
k=0

|ak|2r2nk

)p/2

dr,

which is the same as ∫ 1

0

( ∞∑
k=0

|ak|2xnk

)p/2

(1− x)α dx.

Combining this with Lemma 17, we conclude that the integral I is comparable
to

∞∑
n=0

2−n(α+1)

( ∑
nk∈In

|ak|2
)p/2

.
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Let N = [logλ 2] + 1. Then for each n there are at most N of nk in In. In
fact, if

2n ≤ nk < nk+1 < · · · < nk+m < 2n+1,

then
λm ≤ nk+m

nk
< 2

and so m < logλ 2. Therefore,( ∑
nk∈In

|ak|2
)p/2

≤
(

N max
nk∈In

|ak|2
)p/2

= Np/2 max
nk∈In

|ak|p

≤ Np/2
∑

nk∈In

|ak|p.

Similarly, ∑
nk∈In

|ak|p ≤ N max
nk∈In

|ak|p

= N

(
max
nk∈In

|ak|2
)p/2

≤ N

( ∑
nk∈In

|ak|2
)p/2

.

Combining the results of the last two paragraphs, we see that the integral
I is comparable to

∞∑
n=0

2−n(α+1)
∑

nk∈In

|ak|p.

Since nk is comparable to 2n for nk ∈ In, we conclude that the integral I is
comparable to

∞∑
n=0

∑
nk∈In

|ak|p

nα+1
k

=
∞∑

k=0

|ak|p

nα+1
k

.

This completes the proof of the theorem. �

Corollary 19. Suppose 0 < p < ∞, −1 < α < ∞, and n is a positive
integer. Then a lacunary series

f(z) =
∞∑

k=0

akznk

satisfies ∫
D
|f (n)(z)|p(1− |z|2)α dA(z) < ∞
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if and only if
∞∑

k=0

|ak|p

nα+1−pn
k

< ∞.

Proof. If the Taylor series of f(z) at z = 0 is lacunary, then so is some tail of
the Taylor series of f (n)(z). The desired result then follows from Theorem 18.

�

Note that lacunary series in Bp are characterized in [3] when p > 1. Our
approach here is similar to that in [3]. The above corollary covers all Besov
spaces Bp, 0 < p < ∞: simply take α = np−2, where n is any positive integer
greater than 1/p.

Any function f ∈ Ap
α satisfies the pointwise estimate

|f(z)| ≤ ‖f‖p,α

(1− |z|2)(α+2)/p
, z ∈ D,

and the exponent (α+2)/p is best possible for general functions. See Lemma
3.2 of [7]. The following result shows that lacunary series in Ap

α grow more
slowly near the boundary than a general function does.

Theorem 20. If f(z) is defined by a lacunary series in D and belongs to
Ap

α, then there exists a constant C > 0, depending on f , such that

|f(z)| ≤ C

(1− |z|2)(α+1)/p
, z ∈ D.

Moreover, the exponent (α + 1)/p cannot be improved.

Proof. Suppose f ∈ Ap
α and

f(z) =
∞∑

k=0

akznk

is a lacunary series with nk+1/nk ≥ λ > 1 for all k. By Theorem 18,

ak = o
(
n

(α+1)/p
k

)
, k →∞.

In particular, there exists a constant C1 > 0 such that

|ak| ≤ C1n
(α+1)/p
k , k ≥ 0,

so

|f(z)| ≤ C1

∞∑
n=0

∑
nk∈In

n
(α+1)/p
k |z|nk .

Let N = [logλ 2] + 1 as in the proof of Theorem 18. Then∑
nk∈In

n
(α+1)/p
k |z|nk ≤ N2(n+1)(α+1)/p|z|2

n

.
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It is clear that
2n−1|z|2

n

≤
∑

k∈In−1

|z|k.

Since 2n−1, 2n, and 2n+1 are all comparable to k for k ∈ In or for k ∈ In−1,
we can find another constant C2 > 0 such that

|f(z)| ≤ C2

∞∑
k=0

(k + 1)(α+1)/p−1|z|k.

It is well known (see page 54 of [13] for example) that the series above is
comparable to (1− |z|2)−(α+1)/p. This proves the desired estimate for f(z).

To show that the exponent (α+1)/p is best possible, we assume that there
exists some q > p such that for every lacunary series f ∈ Ap

α there is a positive
constant Cf > 0 with

|f(z)| ≤ Cf

(1− |z|2)(α+1)/q
, z ∈ D.

This would imply that every lacunary series f ∈ Ap
α also belongs to Ar

α, where
r < q. Fix some r ∈ (p, q) and choose σ such that

α + 1
r

< σ <
α + 1

p
.

By Theorem 18, the lacunary series

f(z) =
∞∑

k=0

2σkz2k

belongs to Ap
α but does not belong to Ar

α. This contradiction completes the
proof of the theorem. �

We mention that another class of functions in Ap
α enjoy the estimate in

Theorem 20, namely, the so-called Ap
α-inner functions. See [7]. Although the

exponent (α + 1)/p in the preceding theorem cannot be decreased, we can
use a standard approximation argument, or refine the argument in the proof
above, to improve the result as follows. If f is a lacunary series in Ap

α, then

f(z) = o

(
1

(1− |z|2)(α+1)/p

)
as |z| → 1−. We omit the routine details.

6. Lacunary series in Q(n, p, α)

It is well known that a lacunary series

f(z) =
∞∑

k=0

akznk
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belongs to the Bloch space if and only if its Taylor coefficients ak are bounded;
see [1].

In this section we characterize the lacunary series in Q(n, p, α). Our main
result is the following.

Theorem 21. Suppose α+1 ≤ np ≤ α+2. Then the following conditions
are equivalent for a lacunary series

f(z) =
∞∑

k=0

akznk .

(a) f ∈ Q(n, p, α).
(b) f satisfies the condition∫

D
|f (n)(z)|p(1− |z|2)α dA(z) < ∞.

(c) The Taylor coefficients of f satisfy the condition
∞∑

k=0

|ak|p

nα+1−np
k

< ∞.

Proof. Choosing a = 0 in the definition of the semi-norm ‖f‖n,p,α shows
that (a) implies (b). It follows from Corollary 19 that (b) implies (c).

To prove the remaining implication, we fix a lacunary series

f(z) =
∞∑

k=0

akznk

and consider the integral

N(f, n, a) =
∫

D
|f (n)(z)|p

(
1− |a|2

|1− az|2

)α+2−np

(1− |z|2)α dA(z).

By Theorem 13, it suffices to show that the condition in (c) implies that the
integral N(f, n, a) is bounded in a.

We write

N(f, n, a) =
∫

D
|f (n)(z)|p(1− |z|2)np−2(1− |ϕa(z)|2)α+2−np dA(z)

and

f (n)(z) =
∞∑

k=0

bkzmk .

By dropping the first few terms if necessary, we may, without loss of generality,
that f (n)(z) is still a lacunary series. It is clear that, as k → ∞, |bk| is
comparable to |ak|nn

k .
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In polar coordinates, the integral N(f, n, a) can be written as

1
π

∫ 1

0

r(1− r2)np−2 dr

∫ 2π

0

∣∣∣∣∣
∞∑

k=0

bkrmkeimkt

∣∣∣∣∣
p

(1− |ϕa(reit)|2)α+2−np dt.

By the triangle inequality, N(f, n, a) is less than or equal to

C1

∫ 1

0

( ∞∑
k=0

|bk|rmk

)p

(1− r)np−2 dr
1
2π

∫ 2π

0

(1− |ϕa(reit)|2)α+2−np dt,

where C1 = 2np−1. Because 0 ≤ α + 2 − np ≤ 1, Hölder’s inequality implies
that the inner integral above is less than or equal to(

1
2π

∫ 2π

0

(1− |ϕa(reit)|2) dt

)α+2−np

=
[
(1− |a|2)(1− r2)

1− r2|a|2

]α+2−np

,

which is obviously less than (1−r2)α+2−np. Therefore, there exists a constant
C2 > 0 such that

N(f, n, a) ≤ C2

∫ 1

0

( ∞∑
k=0

|bk|rmk

)p

(1− r)α dr.

By Lemma 17, there exists C3 > 0 such that

N(f, n, a) ≤ C3

∞∑
n=0

tpn
2n(α+1)

,

where
tn =

∑
mk∈In

|bk|, 0 ≤ n < ∞.

By the proof of Theorem 18, tpn is comparable to∑
mk∈In

|bk|p.

Since |bk| is comparable to nn
k |ak| and 2n is comparable to mk ∈ In, we

conclude that there exists a constant C4 > 0, independent of a, such that

N(f, n, a) ≤ C4

∞∑
k=0

|ak|p

nα+2−pn
k

.

This completes the proof of the theorem. �

This result can be used to tell the differences among the spaces Q(n, p, α).
Suppose α+1 ≤ pn ≤ α+2 and let Q0(n, p, α) be the closure in Q(n, p, α)

of the set of polynomials. The above theorem shows that a lacunary se-
ries belongs to Q(n, p, α) if and only if it belongs to Q0(n, p, α). Note that
the space Q(n, p, α) is nonseparable for some parameters, for example, when
Q(n, p, α) = BMOA. But Q(n, p, α) is separable for some other parameters,
for example, when Q(n, p, α) = Bp.
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7. Other generalizations

It is clear that the nth derivative used in the definition of Q(n, p, α) can
be replaced by any reasonable “fractional derivative”, for example, the radial
fractional derivatives introduced in [14] work perfectly here.

To go even further, we can start out with an arbitrary Banach space (X, ‖ ‖)
of analytic functions in D and define Q(X) as the space of analytic functions
f in D with the property that

‖f‖Q = sup
ϕ∈Aut(D)

‖f ◦ ϕ‖ < ∞.

This clearly gives rise to a Möbius invariant space QX if it is nontrivial. If X
contains all constants, we may also want to use the condition

‖f‖Q = sup
ϕ∈Aut(D)

‖f ◦ ϕ− f(ϕ(0))‖ < ∞

instead. This construction gives rise to all Möbius invariant Banach spaces
on D. In fact, if X is Möbius invariant, then X = QX .

There are many problems concerning the spaces Q(n, p, α) that one may
want to study, for example, inner and outer functions in Q(n, p, α), compo-
sition operators on Q(n, p, α), and atomic decomposition for Q(n, p, α). We
will study such topics in subsequent papers.
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