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CONGRUENCES FOR 3F2 HYPERGEOMETRIC
FUNCTIONS OVER FINITE FIELDS

KEN ONO AND DAVID PENNISTON

Abstract. We present congruences for Greene’s 3F2 hypergeometric

functions over finite fields, which relate values of these functions to a
simple polynomial in the characteristic of the field.

In the 1980’s, J. Greene [G1][G2] initiated a study of finite field hyper-
geometric functions, and he found that they satisfy a variety of properties
analogous to those of their classical counterparts. Recent works by S. Ahlgren
and K. Ono [A-O][O] and M. Koike [K] have illustrated that certain special
values of these functions are congruent to Apéry type numbers modulo the
characteristic of the finite field. Here we present congruences of a different
type which relate the values of these functions to a simple polynomial in the
characteristic.

We begin by recalling Greene’s definition. As usual, let GF(p) denote the
finite field with p elements. We extend all characters χ of GF(p)∗ to GF(p)
by setting χ(0) := 0. If A and B are two characters of GF(p), then we denote
the normalized Jacobi sum by

(1)
(
A
B

)
:=

B(−1)
p

J(A, B̄) =
B(−1)
p

∑
x∈GF(p)

A(x)B̄(1− x).

Definition 1. IfA0, A1, . . . An andB1, B2, . . . Bn are characters of GF(p),

then Greene’s hypergeometric function n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣ x)
p

is

defined by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣ x)
p

:=
p

p− 1

∑
χ

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
Anχ
Bnχ

)
χ(x),

where the summation is over all characters χ of GF(p).
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We restrict our attention to the n+1Fn

(
φp, φp, . . . , φp

εp, . . . , εp

∣∣∣∣ λ)
p

func-

tions, where φp denotes the Legendre symbol modulo p and εp is the trivial
character; for convenience we denote these functions by n+1Fn(λ)p. S. Ahlgren
and the first author [A-O] proved one of F. Beukers’ Apéry number super-
congruences by explicitly evaluating all of the 4F3(1)p and relating these val-
ues to the zeta function of a specific Calabi-Yau manifold. They also showed
that if p is an odd prime, then [A-O, Theorem 3]

4F3(1)p ≡ −1− p13 − p14 (mod 32).

Here we obtain many such congruences for 3F2(λ)p. For example, if p 6=
2, 3, 5, 11, then

(2) 3F2

(
2673
2048

)
p

≡ φp(−2)(1+p−1+p−2) ≡ φp(−2)(1+p2+p3) (mod 20).

We begin by defining groups Gi, functions λi(s) and sets Si as in Table 1
below.

If p is prime and n is a nonzero integer, then ordp(n) shall denote the power
of p dividing n; we extend ordp to Q in the obvious way.

Theorem 1. For each i in Table 1, define Ni by

Ni :=

{
2|Gi| if 4 - |Gi|,
4|Gi| otherwise.

If s ∈ Q− Si and p ≥ 5 is a prime for which

ordp(λi(s)(λi(s)− 4)) = ordp(Ni) = 0,

then

3F2

(
4

4− λi(s)

)
p

≡ φp(λ2
i (s)− 4λi(s))

(
1 + p−1 + p−2

)
(mod Ni).

Remark. Example (2) is obtained by letting s = 3/4 when i = 14 in
Theorem 1.

2. Proof of Theorem 1

If λ ∈ Q− {0, 4}, define the elliptic curve E(λ)/Q by the equation

(3) E(λ) : y2 = (x− 1)
(
x2 +

4− λ
λ

)
.

The point (1, 0) is a point of order 2 on E(λ). (Note that this curve is iso-
morphic over Q to the curve (16) in [O].) This elliptic curve has discriminant

(4) ∆(E(λ)) := 1024λ−3(λ− 4)
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Table 1

i Gi λi(s) Si

1 Z2 s 0, 4, 9
2

2 Z2× Z2 4
1−s2

0,±1,± 1
3

3 Z4 (8s+1)2

16s2
0,− 1

8 ,− 1
16

4 Z2× Z4 4(16s2+1)2

(4s+1)2(4s−1)2
0,± 1

4

5 Z2× Z4 − (16s2−24s+1)2

16s(4s−1)2
0, 1

4

6 Z2× Z8 (4096s8+8192s7+6144s6+2048s5+512s4+256s3+96s2+16s+1)2

256(4s+1)4(2s+1)4s4
0,− 1

4 ,− 1
2

7 Z2× Z8 − 4(2048s8+4096s7+3072s6+1024s5−128s4−256s3−96s2−16s−1)2

(8s2+8s+1)(8s2−1)(8s2+4s+1)2(4s+1)4
0,− 1

4 ,− 1
2

8 Z2× Z8 (8192s8+16384s7+12288s6+4096s5+256s4−256s3−96s2−16s−1)2

256s4(8s2+8s+1)(8s2−1)(8s2+4s+1)2(2s+1)4
0,− 1

4 ,− 1
2

9 Z8 (8s4−16s3+16s2−8s+1)2

16(s−1)4s4
0, 1

2 , 1

10 Z6 − (3s2−6s−1)2

16s3
0,−1,− 1

9

11 Z2× Z6 (s4−12s3+30s2+228s−759)2

128(s−5)3(s−3)(s+3)
1,±3, 5, 9

12 Z2× Z6 − (s4−12s3+30s2−156s+393)2

128(s−1)3(s−9)(s−3)
1,±3, 5, 9

13 Z2× Z6 4(s4−12s3+30s2+36s−183)2

(s−5)3(s−1)3(s−9)(s+3)
1,±3, 5, 9

14 Z10 (2s2−2s+1)2(4s4−12s3+6s2+2s−1)2

16(s−1)5(s2−3s+1)s5
0, 1

2 , 1

15 Z12 (24s8−96s7+216s6−312s5+288s4−168s3+60s2−12s+1)2

16(s−1)6(3s2−3s+1)2s6
0, 1

2 , 1
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and j-invariant

(5) j(E(λ)) :=
256(λ− 3)3

λ− 4
.

If p is a prime such that ordp(∆(E(λ))) = 0, then E(λ) is an elliptic curve
when considered over GF(p); in this case we say that E(λ) has good reduction
at p, and define 3a2(p;λ) by

(6) 3a2(p;λ) = p+ 1− |E(λ)p|,

where |E(λ)p| denotes the order of the Mordell-Weil group of E(λ) over GF(p).
Extending a result of J. Greene and D. Stanton [G-S], the first author

proved the following theorem in [O].

Theorem 2. If λ ∈ Q−{0, 4} and p ≥ 5 is a prime for which ordp(λ(λ−
4)) = 0, then

3F2

(
4

4− λ

)
p

=
φp(λ2 − 4λ)(3a2(p;λ)2 − p)

p2
.

Theorem 1 follows from Theorem 2 and the following elementary propo-
sition regarding the numbers 3a2(p;λ) (mod N) when E(λ) is the twist of
an elliptic curve over Q whose Mordell-Weil group has a torsion subgroup of
order N .

Proposition 3. Suppose that E/Q is an elliptic curve for which j(E) =
j(E(λ)) 6= 1728, and assume the torsion subgroup of E/Q has even order N .
Let N ′ = 2N if 4 - N , and N ′ = 4N if 4 | N . If p ≥ 5 is a prime for which
E has good reduction and

ordp(λ(λ− 4)) = ordp(N) = 0,

then

3F2

(
4

4− λ

)
p

≡ φp(λ2 − 4λ)(1 + p−1 + p−2) (mod N ′).

Proof. By (4), the condition that the odd prime p satisfies ordp(λ(λ−4)) =
0 implies that E(λ) is an elliptic curve over GF(p). Since j(E) = j(E(λ)), E
is a twist of E(λ) (see Proposition 1.4 (b) in Chapter III of [Si]).

We claim that in fact E is a quadratic twist of E(λ). To see this, note
first that if j(E) 6= 0, 1728, then our claim is given by Proposition 5.4(i) in
Chapter X of [Si]. In case j(E) = 0, we know that E is given by an equation
of the form E : y2 = x3 − b, b ∈ Q − {0}. Since N is even, b = c3 for some
c ∈ Q − {0} (so the point (c, 0) has order 2). The same argument holds for
E(λ); indeed, one can check (since λ = 3 in this case) that E(λ) is given by
the equation y2 = x3 − 8

27 . Therefore E is the 3c
2 -quadratic twist of E(λ).
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If Ep denotes the curve E considered over GF(p), this implies that

(7) 3a2(p;λ) = ±(p+ 1− |Ep|).
Now, the fact that ordp(N) = 0 gives that the reduction map E → Ep is
injective on the torsion points of E/Q (see Proposition 3.1 (b) in Chapter VII
of [Si]), and hence

|Ep| ≡ 0 (mod N).
Therefore, by (7) we find that

3a2(p;λ) ≡ ±(p+ 1) (mod N).

The claim now follows easily from Theorem 2. �

Proof of Theorem 1. We prove Theorem 1 in the case when i = 10 (i.e.,
G10 = Z6); the remaining cases follow mutatis mutandis. Notice that the
groups Gi are exactly those which occur as torsion subgroups of elliptic curves
over Q and have an element of order 2 (see, for example, Theorem 7.5 in
Chapter VIII of [Si]).

Kubert [Ku] has shown that any elliptic curve E/Q having a rational point
of order 6 can be given by an equation of the form

(8) E : y2 + (1− s)xy − (s2 + s)y = x3 − (s2 + s)x2,

where s ∈ Q− {0,−1,−1/9}. This curve has discriminant

(9) ∆(E) = s6(s+ 1)3(9s+ 1),

and its j-invariant is

j(E) =
(9s4 + 12s3 + 30s2 + 12s+ 1)3

s6(s+ 1)3(9s+ 1)
.

Setting this equal to j(E(λ)), we obtain one rational solution λ = λ10(s),
which is given in the table. By Proposition 3, for every s ∈ Q−S10 and every
prime p ≥ 5 for which ordp(λ10(s)(λ10(s)− 4)) = 0 and E has good reduction
at p, we have

3F2

(
4

4− λ10(s)

)
≡ φp(λ10(s)2 − 4λ10(s))(1 + p−1 + p−2) (mod 12).

Since

λ10(s)(λ10(s)− 4) =
(3s2 − 6s− 1)2(9s+ 1)(s+ 1)3

256s6
,

by (9) we find that all the potential odd primes of bad reduction for E already
have the property that ordp(λ10(s)(λ10(s)−4)) 6= 0. This completes the proof
when i = 10.

Theorem 1 is obtained by arguing as above for all the possible torsion
subgroups of elliptic curves E/Q containing a rational point of order 2. All
such curves have a convenient parametrization as in (8), and they are listed
in Table 3 of [Ku]. �
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