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TRANSFERRING FOURIER MULTIPLIERS FROM S2p−1 TO
Hp−1

A. H. DOOLEY AND S. K. GUPTA

Abstract. We prove versions of de Leeuw’s Theorems for the contrac-
tion of S2p−1 to Hp−1.

1. Introduction

In 1965, Karel de Leeuw proved two theorems relating Fourier multipliers of
Lq(R) to those of Lq(T). Given a function φ on R̂ = R, consider its restriction
φ1 to T̂ = Z. He proved that if φ is uniformly continuous on R, then:

(1) If Tφ is bounded on Lq(R), then Tφ1 is bounded on Lq(T) and |||Tφ1 |||q ≤
|||Tφ|||q. In fact, if we let φε be the restriction of φ to εZ ⊆ R, then
|||Tφε |||q ≤ |||Tφ|||q.

(2) If for every ε ∈ R+, Tφε is bounded on Lq(T) with limε→0 sup |||Tφε |||q =
K <∞, then Tφ is bounded on Lp(R) with |||Tφ|||q ≤ K.

In these statements, we have used the notion of Fourier multiplier: Tφ is a
Fourier multiplier if for all f ∈ Lq(R), ̂(Tφf) = φf̂ is the Fourier transform of
an Lq(R) function, and |||Tφ|||q = supf∈Lq(R)‖Tφf‖q/‖f‖q.

These two elegant theorems became the prototype for a number of “trans-
ference” results, where the Lq boundedness of a Fourier multiplier or a con-
volution kernel on a group may be checked on a different, hopefully simpler,
group.

This theme was taken up in the context of non-commutative harmonic
analysis, notably by Coifman and Weiss [CW1][CW2], who proved results of
Marcinkiewicz type for SU(2) and other Lie groups, replacing the quotient
maps R → T by the mapping X → exp εX : g → G. Rubin [Ru] used the
same circle of ideas in the context of SO(3) and the Euclidean motion group,
and this theme was taken up by Dooley, Gaudry and Rice [DRi][DG][D1]
who showed that the notion of a contraction or continuous deformation of Lie
groups was the key underlying idea.
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We say that the Lie group G2 is a contraction1 of the Lie group G1 if
there is a family (πε)ε>0 of local diffeomorphisms πε : G2 → G1, which are
approximate homomorphisms in the sense that

πε(x)→ e as ε→ 0

and
πε
−1(πε(x)πε(y))→ xy as ε→ 0.

If (G,K) is a Riemannian symmetric pair of the compact or non-compact
type, we have the Cartan decomposition g = k+p. Letting V = p, the Cartan
motion group V oK is a contraction of G [DRi], given by the maps

πε : (X, k) 7→ expG(εX) · k
This generalises the homomorphism/dilation relationship between R and T.
In [DG], a version of (2) was proved in this setting. (See also [D1] for a
discussion of the ideas in the framework of a more general contraction.)

Subsequently, one of the authors [D2] gave a version of (1), both for the
Cartan motion group contraction, and for the Coifman-Weiss contraction of
G to g. Unfortunately, the versions of (1) proved in [D2] no longer gave an
exact converse of the version of (2) from [DG] and from [CW1]. We shall
discuss this further below.

Now in the case of a rank one semisimple group with Iwasawa decompo-
sition G = KAN , there is an obvious contraction from K to the semi-direct
product NM (and which coincides with the above Cartan motion group con-
traction for SO(n + 1) to Rn o SO(n) if G = SO(n + 1, 1)). One wished to
prove de Leeuw theorems in this setting, or in the closely related setting of the
contraction of K/M to N . The latter was done in [RRu] for the special case
of SU(2, 1)—where K/M is SU(2) and N is the Heisenberg group. Again, an
analogue of (2) was proved.

Dooley and Ricci [DR] took the first step towards proving the result in
generality, that is, they found an approximation for matrix coefficients—but
were not able, in that generality, to describe an orthonormal basis for the
representation space which leads to the full de Leeuw theorem. In [DGu], the
authors strengthened the results of [DR] for the case of G = SU(n+ 1, 1).

In this article, we shall use the representation theory developed in [DGu]
to prove de Leeuw theorems for M -invariant multipliers associated to SU(n+
1, 1). More precisely, for the contraction of K/M = S2n−1 to the Heisen-
berg group Hn−1, Theorem 4.1 below is an analogue of the main theorem of
[RRu], constituting a version of (2) above. The essential novelty here is the
description of an explicit orthonormal basis for the Fock space Fλ(N) and its
relationship to bases for the representations of SU(n+ 1).

1This terminology is derived from the physics literature, where one Lie algebra is con-
tracted to another by setting some of its structure constants equal to zero. The contracted
Lie algebra is in general a “more abelian” algebra than the original one.
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The other main result of this paper is a version of (1) which is an exact
converse to Theorem 4.1. This result has not previously been proved, even in
the Cartan motion group case.

We would like to explain its relationship to the results of [D2], where a
slightly different version of (1) was proved. The key to the original de Leeuw
theorems, and to any generalization, lies in understanding the nature of the
periodization map.

In the original version, the maps φ 7→ φε can be realized as the “duals”
of the family of homomorphisms πε, r 7→ eiεr : R → T. To be somewhat
imprecise, for a sufficiently nice function φ on R, the two operations of

(i) defining the multiplier φε on T by

〈φεf, g〉 = 〈φf ◦ πε, g ◦ πε〉

for f ∈ Lq and g ∈ Lq′ ,
(ii) restricting φ(ε·) to Z to obtain φε as a multiplier of Fourier series,

coincide.
(Checking all the details here, and making sure that the rather loose de-

scription given in (i) actually makes sense, amounts to a proof of (1).)
In [DG], as in the present paper, a definition of restriction inspired by (ii) is

used to prove a version of de Leeuw’s theorem (2) for Cartan motion groups.
However in [D2], a different notion of restriction based on (i) and denoted by
iεφ was used to prove an analogue of de Leeuw’s theorem (1). The restriction
iεφ however did not provide an exact converse to the de Leeuw’s theorem of
[DG].

Thus, a salient question is to find a suitable version of the “restriction” for
which both versions of de Leeuw’s theorem hold. In Theorem 5.1 below, we
find a suitable version of restriction, denoted by φε, for which both directions
of de Leeuw’s theorem hold in the case of the contraction of S2p−1 to Hp−1.

We believe that with further work these techniques can be extended to the
contraction of K to N̄M .

2. Notation and definitions

We denote by N, Z, R and C, the natural numbers, integers, real numbers
and complex numbers, respectively. Let p ≥ 2 and G = SU(p, 1). Then the
Lie algebra of G, denoted by g = su(p, 1), is equal to{(

Z z
z∗ −trZ

)
: Z skew-hermitian of order p and z ∈ Cp

}
.

Let θ be the differential of the Cartan involution of G. Then θZ = −Z∗. We
will denote by B( , ) the Killing form of g. A positive definite product on g

is then given by (X,Y ) = −B(X, θY ). ‖X‖ denotes (X,X)1/2. A Cartan
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decomposition for g is given by g = p
⊕

k, where

p =
{(

0 z
z∗ 0

)
: z ∈ Cp

}
,

and

k =
{(

Z 0
0∗ −trZ

)
: Z skew-hermitian of order p

}
.

Also, p, k have the following complexifications:

pC =
{(

0 z
w∗ 0

)
: z,w ∈ Cp

}
,

kC =
{(

Z 0
0∗ −trZ

)
: Z a matrix of order p

}
.

Let ej be the vector in Cp with j-th coordinate 1 and other coordinates zero.
Set

H =
(

0 e1

et1 0

)
.

Then a = {aH : a ∈ R} is a maximal abelian subalgebra of p. The restricted
positive roots of g with respect to a are {λ, 2λ} , λ(H) = 1, and the corre-
sponding root spaces are

gλ =


 0 z∗ 0
−z 0 z
0 z∗ 0

 : z ∈ Cp−1


and

g2λ = {a(θX0) : a ∈ R} ,
where X0 is the matrix

X0 =

 i/2 0∗ i/2
0 0 0
−i/2 0∗ −i/2


of order p + 1. Set n = gλ

⊕
g2λ. Let N,A,K denote the Lie groups corre-

sponding to Lie algebras n, a, k, respectively. Then the Iwasawa decomposition
of G is KAN , where K = S(U(p)× U(1)) ≡ U(p). Set n̄ = g−λ

⊕
g−2λ. By

N̄ , we shall denote the image of N under the Cartan involution θX = (X∗)−1

of G. We will identify N̄ with n̄ via the exponential mapping between them.
Then N̄ is isomorphic to the Heisenberg group Hp−1. Let M be the centralizer
of A in K. Then the Lie algebra of M is

m =


 −trZ/2 0∗ 0

0 Z 0
0 0∗ −trZ/2

 : Z skew-hermitian of order p− 1

 .



TRANSFERRING FOURIER MULTIPLIERS FROM S2p−1 TO Hp−1 661

Next we define a family of contraction mappings πε between N̄M and K.
Each element of N̄M can be expressed uniquely as exp(X + aX0)m, where
X ∈ g−λ, a ∈ R, and m ∈ M , and we denote it by (X, a)m. For X ∈ g, Xθ

denotes X + θX. Then for ε > 0, define

πε(n̄m) = exp(ε1/2Xθ + aε(X0)θ)m.

We close this section with a theorem (see [Va]):

Theorem 2.1. There exists a relatively compact open set O in N̄M such
that {exp(Xθ + a(X0)θ)m : (X, a)m ∈ O} is open and dense in K and π1 is
a diffeomorphism on O.

3. M-class-1 representations of K and representations of N̄

We say that a unitary representation T of K is of M -class-1 if the carrier
Hilbert space H of T has non-zero vectors a such that T (m)a = a for all
m ∈M and the dimension of the linear space spanned by such vectors is one.
We describe a family of M -class-1 representations of K which we need here.
For a complete description of M -class-1 representations of K see [VK]. For
n ∈ Np−1, let |n| = n2 + · · ·+ np.

Let Ejk be the matrix of order p + 1 with (j, k)-entry equal to 1 and all
other entries equal to zero. For 2 ≤ j ≤ p, set

Xj =
−1√

2
(E1j − Ep+1,j − Ej1 − Ej,p+1)

For g ∈ K, define Γ(g) = 2(E1,p+1,Ad(g)E1,p+1) and for 2 ≤ j ≤ p set

Γj(g) = (Xj − θXj , Ad(g)2E1,p+1) =
1√
2

(Ej,p+1,Ad(g)2E1,p+1) .

For l ∈ N, we put

Γl,n =
Γl−|n|

∏p
j=2 Γnjj∥∥∥Γl−|n|

∏p
j=2 Γnjj

∥∥∥
L2(K)

.

Next, define

w =

 −1 0t 0
0 Ip−1 0
0 0t −1

 .

The following theorem (for a proof see [DGu]) describes a family of M -class-1
representations of K.

Theorem 3.1. Let τ denote the left regular representation of K. For
l ∈ N, define Hl to be the subspace of L2(K) spanned by the set

Bl =
{

Γl,n : n = (n2, . . . , np) ∈ Np−1, |n| ≤ l
}
.

Then the following statements are true.
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(i) Hl is an invariant subspace of L2(K) under τ and τ acts irreducibly
on Hl. Also Bl is a complete set in Hl and Γl is M -invariant.

(ii) For l ∈ N and g ∈ K, define

τ−l(g) = τ l(w(gt)−1w).

Then τ−l is a M -class-1 irreducible representation of K on Hl.

For l ∈ Z, we denote by τ l the representation τ of K on H|l|.
Define J : g→ g by

JX = [X0, θX].

Then (J |g−λ)2 = − Id (see [DR]). Thus (g−λ, J) is a complex space, i.e., J
induces a complex structure on g−λ. Indeed, g−λ = R

⊕
JR, where R is

given by 
 0 xt 0
−x 0 −x
0 −xt 0

 : x ∈ Rp−1

 .

The complex inner product on (g−λ, J) is

(Z,X)C = (Z,X)R + i(Z, JX)R.

For A,B ∈ R and X = A + JB ∈ g−λ, X̄ is defined as A − JB. Let Ejk
be the matrix of order p + 1 with (j, k) entry 1 and other entries zero. For
2 ≤ j ≤ p, set

Xj = − 1√
2

(E1j − Ep+1,j − Ej1 − Ej,p+1).

Then {Xj}pj=2 is an orthonormal basis for g−λ as a complex vector space.
Let λ be a positive real number. Define Fλ to be the generalised Fock space
consisting of holomorphic functions F on g−λ satisfying∫

g−λ

|F (X)|2e−2λπ‖X‖2dX <∞.

Fλ is a Hilbert space with the inner product given by

〈F,G〉 =
∫

g−λ

F (X)Ḡ(X)e−2‖X‖2λπdX.

Now we define two representations of N̄ on the Hilbert space Fλ:
Let F ∈ Fλ, (X, a) ∈ N̄ , Z ∈ g−λ. Define

(σλ(X, a)F )(Z) = e2iaλπe−2λπ(‖X‖2/2+(Z,X)C)F (Z +X),

(σ−λ(X, a)F )(Z) = e−2iaλπe−2λπ(‖X‖2/2+(Z,−X̄)C)F (Z − X̄).

It is known that each σλ and each σ−λ is an irreducible representation of
N̄ and the set

{
σλ, σ−λ : λ > 0

}
provides a set of representations of full
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Plancherel measure for N̄ . Next we construct σλ on a function space on
N̄ . Given F ∈ Fλ, let Γ̃λF be the function on N̄ given by

(Γ̃λF )(X, a) = F (−X)Gλ(X, a),

where
Gλ(X, a) = e−πλ(2ia+‖X‖2).

The action of (X, a) on F by σλ is conjugate to the action of (X, a) by the
left regular representation σ of N̄ on Γ̃λF , i.e.,

σ(X, a)Γ̃λF = Γ̃λσλ(X, a)F

on Fλ. We denote by F̃λ the space Γ̃λFλ with the norm that makes Γ̃λ an
isometry and by σ̃λ the representation σ of N̄ on F̃λ. As to the representations
σ−λ, observe that σ−λ(X, a) = σλ(−X̄,−a). Consequently, we can define the
equivalent representations σ̃−λ of N̄ on F̃λ by setting

σ̃−λ(X, a) = σ̃λ(−X̄,−a).

The following is a description of an orthonormal basis of Fλ: Let Z ∈ g−λ be
given by

Z =
p∑
j=2

xjXj +
p∑
j=2

yjJXj .

Then
(Z,Xj)C = (Z,Xj) + i(Z, JXj) = xj + iyj .

We denote (Z,Xj)C by z j . The monomials given by zn = zn2
2 . . . znpp belong

to the space Fλ. Define

Γ̃λn(zn) =
Γ̃λ(zn)

‖Γ̃λ(zn)‖L2(N̄)

.

The set Bλ = {Γ̃λn(zn) : n ∈ Np−1} is a complete set in F̃λ.
We shall denote the matrix elements of τ l with respect to basis Bl as follows:

For n,m ∈ Np−1 and l ∈ Z set

τ ln,m(g) =
(
τ l(g)Γ|l|,n,Γ|l|,m

)
.

We denote the matrix entries of σ̃λ with respect to Bλ as follows: For n,m ∈
N
p−1 and λ ∈ R set

σ̃λn,m(X, a) =
(
σ̃λ(X, a)Γ̃λn, Γ̃

λ
m

)
.

Next we put an ordering on Np−1. We say that (n2, . . . , np) ≤ (m2, . . . ,mp)
if there exists a natural number k, 2 ≤ k < p, such that nj = mj for 2 ≤ j ≤ k
and nk+1 < mk+1. For f ∈ L1(K), we denote by f̂(l,n,m) the d|l|×d|l| matrix
with (n,m)-entry

f̂(l,n,m) =
∫
K

f(g)τ ln,m(g)dg.
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Similarly, for h ∈ L1(N̄) and a non-zero real number λ, we call ĥ(λ) the
countably infinite matrix with (n,m)-entry

ĥ(λ,n,m) =
∫
N̄

h(g)σ̃λn,m(g)dg.

The following Plancherel formulas are well known.
Let f ∈ L1(K) be such that f̂ is supported only on the irreducible unitary

representations of K indexed by Z. Let dl denote the dimension of the Hilbert
space Hl. Then ∫

K

|f(g)|2dg =
∞∑
−∞

d|l|
∑

|n|,|m|≤l

∣∣∣f̂(l,n,m)
∣∣∣2 ,

and for f ∈ L2(N̄),∫
N̄

|f(n̄)|2dn̄ =
∫ ∞
−∞

∑
n,m∈Np−1

∣∣∣f̂(λ,n,m)
∣∣∣2 |λ|p−1 dλ.

We define (right) multiplier transformations on the two groups as follows.
On K, for each l ∈ Z we assign a d|l|×d|l| matrix φ(l) with entries φ(l,n,m).
We say that this matrix-valued function φ induces a bounded multiplier Tφ
on Lq(K) if

‖Tφf‖q ≤ C‖f‖q,

where ̂(Tφf)(l) = f̂(l)φ(l) with f ∈ Lq(K). Similarly, on N̄ , for each λ 6= 0
we assign a countably infinite matrix φ(λ) with entries φ(λ,n,m) that are
measurable in λ for each n and m, and say that it induces a bounded multiplier
Tφ on Lq(N̄) if

‖Tφf‖q ≤ C‖f‖q,

where ̂(Tφf)(λ) = f̂(λ)φ(λ) for f in some dense subspace of Lq(N̄).

4. The de Leeuw theorem

For ε > 0 and λ > 0, let nλ(ε) = [(πλ)/ε]. Now we state our analogue of the
de Leeuw theorem (2) in the setting of SU(p, 1) mentioned in the introduction.

Theorem 4.1. Let q ∈ [1,∞), p ≥ 2, and 0 < α < 1. For each ε > 0, let
φε be a bounded Lq-multiplier on K such that φε is supported on the family
of representations indexed by Z. Suppose that the corresponding multiplier
transformations Tφε have uniformly bounded norms and for almost every λ >
0, the limits

lim
ε→0

φε(nλ(ε),n,m) = φ(λ,n,m),

lim
ε→0

(−1)|n|+|m|φε(−nλ(ε),n,m) = φ(−λ,n,m)
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exist and define for every n and m measurable functions in λ. Then the multi-
plier transformation on N̄ that is induced by the matrices φ(λ) = {φ(λ,n,m) :
n,m ∈ Np−1} is bounded on Lq(N̄) and satisfies

|||Tφ|||q ≤ C sup {|||Tφε |||q : ε > 0} .

Remark. For p = 2, Theorem 4.1 is the main result in [RRu], namely, it
is a statement of de Leeuw’s theorem for the pair (SU(2),H1).

To prove Theorem 4.1, we first prove a sequence of lemmas.

Lemma 4.2. Let A ∈ g−λ and a0 ∈ R. For n̄0 = exp(A+a0X0), we have:

lim
ε→0

(
τnλ(ε)(πε(n̄0))Γnλ(ε),n , Γnλ(ε),m

)
(i)

=
(
σ̃λ(n̄0)Γ̃λn(zn), Γ̃λm(zm)

)
,

lim
ε→0

(
τ−nλ(ε)(πε(n̄0))Γnλ(ε),n , Γnλ(ε),m

)
(ii)

= (−1)|n|+|m|
(
σ̃−λ(n̄0)Γ̃λn(zn) , Γ̃λm(zm)

)
,

where in the above limit it is assumed that nλ(ε) > max(|n|, |m|).

Proof. See [DGu]. �

Let f be any function on N̄ . We will think of f as defined on N̄M by
setting f(n̄m) = f(n̄), for n̄ ∈ N , m ∈ M . Let O be as in Section 2. For
ε > 0, define

Oε =
{

exp
(
ε−1/2X + aε−1(X0)

)
m : (X, a)m ∈ O

}
.

Note that as ε→ 0, Oε ↑ N̄M . For f a measurable function on N̄ , define

fε(g) =
{
ε−pf ◦ π−1

ε (g) on πε(Oε),
0 elsewhere.

Lemma 4.3. Let f be an integrable function on N̄ with compact support.
For λ > 0 we have

lim
ε→0

f̂ε([πλ/ε],n,m) = f̂(λ,n,m)

and
lim
ε→0

f̂ε(−[πλ/ε],n,m) = (−1)|n|+|m|f̂(−λ,n,m).

Also, if 1 ≤ q <∞ and q′ = q/(q − 1), then

εp/q
′
‖fε‖Lq(K) ≤ ‖f‖Lq(N̄)

and
lim
ε→0

εp/q
′
‖fε‖Lq(K) = ‖f‖Lq(N̄).
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Proof. The easy proof using Lemma 4.2 is left to the reader. �

In the proof of Theorem 4.1 we will consider only C∞-functions on N̄
with compact support whose Fourier transforms consist of matrices having
nonzero entries only on a finite number of diagonals. Such functions form a
dense subspace of every Lq-space, 1 ≤ q <∞, as follows from the next lemma.

Lemma 4.4. Let f be a C∞-function on N̄ with support contained in a
compact subset F . There exists a sequence

{
fT
}∞
T=1

of C∞-functions sup-
ported on F which converges to f uniformly and is such that for every λ 6= 0,
f̂T (λ,n,m) = 0 when max{|nj −mj | : 2 ≤ j ≤ p} > T .

Proof. Let KT be the T -th Fejèr kernel on the torus. Define fT (ρ2e
iφ2 , . . . ,

ρpe
iφp , t) to be

1
(2π)(p−1)

∫ 2π

0

. . .

∫ 2π

0

f(ρ2e
iθ2 , . . . , ρpe

iθp , t)×

×KT (φ2 − θ2) . . .KT (φp − θp)dθ2 . . . dθp.

By passing to a larger set if necessary, it can be assumed that the radius of
the compact set F depends only on the parameters ρ2, . . . , ρp and t. Then it
is clear that fT is a C∞-function supported on F . The fact that fT converges
uniformly to f follows from the classical Fejèr theorem and the fact that f is
uniformly continuous. Also an easy computation shows that

σ̃λn,m(ρ2e
iφ2 , . . . , ρpe

iφp , t) = ei
∑p
j=2(nj−mj)φj σ̃λn,m(ρ2, · · · , ρp, t),

and using this relationship,

f̂T (λ,n,m) = f̂(λ,n,m)
p∏
j=2

K̂T (mj − nj),

which vanishes if max{|nj −mj | : 2 ≤ j ≤ p} > T . �

We say that a function f on N̄ is of type T if for every λ 6= 0, f̂(λ,n,m) = 0
when max {|nj −mj | : 2 ≤ j ≤ p} > T . The same definition will be used for
functions on K, with reference to the matrix coefficients f̂(l,n,m).

Lemma 4.5. Let f be a continuous function of type T supported on a
compact subset F of N̄ . Then for sufficiently small ε, fε is of type T on K.

Proof. Let DN be the Dirichlet kernel on the torus and
define g(ρ2e

iφ2 , . . . , ρpe
iφp , t) to be

1
(2π)(p−1)

∫ 2π

0

. . .

∫ 2π

0

f(ρ2e
iθ2 , . . . , ρpe

iθp , t)×

×DT (φ2 − θ2) . . . DT (φp − θp)dθ2 . . . dθp.
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As before, we see that

ĝ(λ,n,m) = f̂(λ,n,m)
p∏
j=2

D̂T (mj − nj).

Therefore, if max {|mj − nj | : 2 ≤ j ≤ p} > T , we get ĝ(λ,n,m) = 0, and for
max {|mj − nj | : 2 ≤ j ≤ p} ≤ T we have D̂T (mj − nj) = 1. Hence

ĝ(λ,n,m) = f̂(λ,n,m) for all λ,n,m.

So, g = f .
A simple calculation now shows that if |m| > T and 2 ≤ j ≤ p, then∫ 2π

0

f(ρ2e
iφ2 , . . . , ρpe

iφp , t)e−imφjdφj = 0.

It follows easily from the definitions that

τ ln,m ◦ πε(ρ2e
iφ2 , . . . , ρpe

iφp , t) =
p∏
j=2

ei(nj−mj)φj τ ln,m ◦ πε(ρ2, . . . , ρp, t).

Let ε0 be such that the support of f (considered f as a function on N̄M) is
contained in Oε0 . For ε < ε0,

f̂ε(l,n,m) =
∫
K

fε(g)τ ln,m(g) dg

=
∫
N̄M

fε ◦ πε(n̄m)τ ln,m(πε(n̄m)) |det dπε(n̄m)| dn̄dm

= ε−p
∫
Oε

f(n̄)τ ln,mπε(n̄) |det dπε(n̄)| dn̄dm.

By a change of variable, the last integral is 0 if max {|nj −mj | : 2 ≤ j ≤ p} is
greater than T . �

Next we estimate the rate of decay of the Fourier transforms of C∞-
functions on K. For 2 ≤ j ≤ p, set Pj = (1/2)(E1j − Ej1), Qj = (i/2)(E1j +
Ej1), Tj = i(−E11 + Ejj). Let L =

∑p
j=2(P 2

j +Q2
j ) and L1 =

∑p
j=2 T

2
j .

Lemma 4.6. Let f be a C∞-function of compact support on N̄ and r a
positive number. Then for all sufficiently small ε and l ≥ 0, |f̂ε(l,n,m)| is
bounded by both of the expressions

C
[
1 +

ε

2
(|n|+ |m|) + ε(|n|(l − |n|) + |m|(l − |m|))(i)

+
ε

2
(p− 1)(2l − (|n|+ |m|))

]−r
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and

(ii) C

[
1 + ε

(
p∑
k=2

(l − |n| − nk)2 + (l − |m| −mk)2

)]−r
,

where C depends only on f and r, but not on ε.

Proof. It is easily seen that

dτ(Pj)Γ = −Γj , dτ(Pj)Γk = δjkΓ, dτ(Qj)Γ = iΓj ,

dτ(Qj)Γk = iδjkΓ, dτ(Tk)Γ = −iΓ, dτ(Tk)Γj = iδjkΓ.

Using these relations, we get that

dτ l(L)Γl,n = −{|n|(l − |n|) + (1/2)(l − |n|)(p− 1) + (1/2)|n|}Γl,n
and

dτ l(L1)Γl,n = −
p∑
k=2

(l − |n| − nk)2 Γl,n.

Hence

L̂(l,n,m) =

{
−{|n|(l − |n|) + (1/2)(l − |n|)(p− 1) + (1/2)|n|} for m = n,
0 otherwise,

and

L̂1(l,n,m) =

{
−{
∑p
k=2(l − |n| − nk)2} for m = n,

0 otherwise.

The remaining part of the proof of the Lemma 4.6 is similar to the proof of
Lemma 5 in [RRu] and will be left to the reader. �

Proof of Theorem 4.1. It will be enough to show that∣∣∣∣∫ ∞
−∞

Tr
(
f̂(λ)φ(λ)ĝ(λ)

)
|λ|p−1dλ

∣∣∣∣ ≤ C‖f‖Lq(N̄)‖g‖Lq′ (N̄)

when f and g are C∞-functions on N̄ with compact support and of type T
for some T . Let ε0 be such that the support of f and g is contained in Oε0 .
Consider ε < ε0. By hypothesis and Lemma 4.3,∣∣∣∣∣

∞∑
−∞

d|l|Tr
(
f̂ε(l)φε(l)ĝε(l)

)∣∣∣∣∣ ≤ C‖fε‖Lq(K) ‖gε‖Lq′ (K)

≤ Cε−p‖f‖Lq(N̄) ‖g‖Lq(N̄).

Therefore the theorem is proved if we show that

lim
ε→0

εp
∞∑
−∞

d|l| Tr
(
f̂ε(l)φε(l)ĝε(l)

)
= C

∫ ∞
−∞

Tr
(
f̂(λ)φ(λ)ĝ(λ)

)
|λ|p−1dλ.
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Next,

εp
∞∑
−∞

d|l| Tr
(
f̂ε(l)φε(l)ĝε(l)

)
= Aε +Bε

say, where

Aε = εp
∞∑
l=0

dl Tr
(
f̂ε(l)φε(l)ĝε(l)

)
and

Bε = εp
∞∑
l=1

d|l| Tr
(
f̂ε(−l)φε(−l)ĝε(−l)

)
.

Let

d(ε, p, λ) =
πp (p+ [ε−1πλ]− 1)!

(p− 1)![ε−1πλ]! {([ε−1πλ] + 1)p − [ε−1πλ]p}
.

Next, using the fact that

dl =
(
p+ l − 1

l

)
we get that

Aε =p
∞∑
l=0

∫ (l+1)ε/π

lε/π

d(ε, p, λ)Tr
(
f̂ε([ε−1πλ])φε([ε−1πλ])ĝε([ε−1πλ])

)
λp−1 dλ

=
∫ ∞

0

d(ε, p, λ)Tr
(
f̂ε([ε−1πλ])φε([ε−1πλ])ĝε([ε−1πλ])

)
λp−1 dλ.

We denote [ε−1πλ] by nλ(ε). Now for ε sufficiently small,

Tr
(
f̂ε(nλ(ε))φε(nλ(ε))ĝε(nλ(ε))

)
=

nλ(ε)∑
|n|=0

nλ(ε)∑
|m|,|p|=0

f̂ε(nλ(ε),n,m)φε(nλ(ε),m,p)ĝε(nλ(ε),p,n).

Hence

Aε =
∫ ∞

0

d(ε, p, λ)
nλ(ε)∑
|n|=0

nλ(ε)∑
|m|,|p|=0

f̂ε(nλ(ε),n,m)×

× φε(nλ(ε),m,p)ĝε(nλ(ε),p,n)λp−1 dλ.

We note that the number of terms in the sum depends on ε. By our assump-
tion, the sums are over the regions where both max{|nj−mj | : 2 ≤ j ≤ p} ≤ T
and max{|nj−pj | : 2 ≤ j ≤ p} ≤ T . For fixed n, the number of m,p satisfying
this inequality is at most (2T + 1)2(p−1).

We choose a number α > 0 such that for all n ∈ Np−1,
∑p
k=2 n

2
k ≥ α|n|2.

Next we choose 0 < β < 1 such that Γ = (β2(α+ 1 + p)− (p+ 1)) is positive.
We split the sum over n into two parts, Σ1 and Σ2: Σ1 is the sum over the
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terms with |n| ≤ βnλ(ε) and Σ2 is the sum over the terms with |n| > βnλ(ε).
Using Lemma 4.6 (i), we obtain, for any positive integer r,

|f̂ε(nλ(ε),n,m)| ≤ C
[
1 + ε(|n|(nλ(ε)− |n|) + |m|(nλ(ε)− |m|))

+
ε

2
(|n|+ |m|)ε

2
(p− 1)(2nλ(ε)− (|n|+ |m|))

]−r
and similarly for gε. For the terms in Σ1 one has

|f̂ε(nλ(ε),n,m)| ≤ C[1 + aλ(1 + |n|)]−r,

|ĝε(nλ(ε),n,m)| ≤ C[1 + aλ(1 + |n|)]−r,
where a is a constant independent of n, λ and ε.

Also, by a theorem of Herz [H], for m,p ∈ N we have

|φε(nλ(ε),m,p)| ≤ C.

Hence Σ1 is dominated by

C

∞∑
|n|=0

(2T + 1)(2p−2)

[1 + aλ(1 + |n|)]2r
.

Choosing r ≥ 2p, we see that the sum converges.
Using Lemma 4.6 (ii), one has

|f̂ε(nλ(ε),n,m)|

≤ C

[
1 + ε

(
p∑
k=2

(nλ(ε)− |n| − nk)2 + (nλ(ε)− |m| −mk)2

)]−r
.

By our choice of the constants α, β and Γ, for the terms in Σ2 we have(
p∑
k=2

(nλ(ε)− |n| − nk)2

)
≥ Γn2

λ(ε).

So,
|f̂ε(nλ(ε),n,m)| ≤ C[1 + εΓn2

λ(ε)]−r.

Let 0 < ε ≤ πλ/2. Then for the terms in Σ2 we have

|f̂ε(nλ(ε),n,m)| ≤ C[1 + π Γ (λ/2)|n|]−r

and similarly for |ĝε(nλ(ε),n,m)|. Hence, Σ2 is dominated by

C
∞∑
|n|=0

(2T + 1)(2p−2)

[1 + π Γ (λ/2) |n|]2r
,

which converges for r ≥ 2p.
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So we may apply the dominated convergence theorem to the double sum
to see that

lim
ε→0

Tr
(
f̂ε(nλ(ε))φε(nλ(ε))ĝε(nλ(ε))

)
=

∞∑
|n|=0

∞∑
|m|,|p|=0

f̂(λ,n,m)φ(λ,m,n)ĝ(λ,n,p)

= Tr
(
f̂(λ)φ(λ)ĝ(λ)

)
.

Next, limε→0 d(ε, p, λ) = πp/(p − 1)! and d(ε, p, λ) ≤ (pp−1πp)/(p − 1)!.
Also, for r = 2p, the estimates on Σ1 and Σ2 allow us to use the dominated
convergence theorem in the variable λ. Hence, we can take the limε→0 inside
the integrands of Aε. Therefore, we get

lim
ε→0

Aε =
πp

(p− 1)!

∫ ∞
0

Tr
(
f̂(λ)φ(λ)ĝ(λ)

)
λp−1dλ.

We next consider Bε. We have

Bε = εp
∞∑
l=1

d|l| Tr
(
f̂ε(−l)φε(−l)ĝε(−l)

)
=

∞∑
l=1

∫ (l+1)ε/π

lε/π

d(ε, p, λ)×

×Tr
(
f̂ε(−[ε−1πλ])φε(−[ε−1πλ])ĝε(−[ε−1πλ])

)
λp−1 dλ

=
∫ ∞
ε/π

d(ε, p, λ)Tr
(
f̂ε(−[ε−1πλ])φε(−[ε−1πλ])ĝε(−[ε−1πλ])

)
λp−1 dλ

Using the same arguments as in calculating limε→0Aε, we obtain

lim
ε→0

Bε =
πp

(p− 1)!

∫ ∞
0

Tr
(
f̂(−λ)φ(−λ)ĝ(−λ)

)
λp−1dλ.

Hence

lim
ε→0

εp
∞∑
−∞

dlTr
(
f̂ε(l)φε(l)ĝε(l)

)
=

πp

(p− 1)!

∫ ∞
−∞

Tr
(
f̂(−λ)φ(−λ)ĝ(−λ)

)
|λ|p−1dλ.

This completes the proof. �

5. A converse of de Leeuw’s theorem

It can be seen that the measures µt = δ(0,t) on H1, when restricted to
SU(2) on the Fourier transforms side, are not bounded multipliers on any
Lq(SU(2)). So a natural analogue of the classical converse of de Leeuw’s
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theorem is not true for the contraction of S2p−1 to Hp−1. Recently, using
contractions, a converse of de Leeuw’s theorem has been proved in a situation
which is more general than ours (see [DGuR]). Using the ideas contained in
[DGuR], we prove in Theorem 5.1 below a stronger form of the converse to
de Leeuw’s theorem in our set-up.

Fix a neighbourhood B of the identity in Hp−1 such that B = B−1 and
B2M is relatively compact in O.

Theorem 5.1. Let k ∈ L1(Hp−1) with supp(k) ∈ B. For ε > 0 the
formula

〈Kε, f〉 =
∫ ∫

B×B
k(z)f(πε(w)−1πε(wz)) dw dz

defines a function Kε ∈ L1(K) with support contained in πε(B)πε(B2). Fur-
thermore, for every q ∈ (1,∞) there exists a constant C independent of k and
ε such that:

Kε|||q ≤ |||k|||q,(a)

lim
ε→0

K̂ε(n(ε),n,m) = k̂(λ,n,m), λ > 0,(b)

lim
ε→0

K̂ε(−n(ε),n,m) = (−1)|n|+|m|k̂(−λ,n,m), λ > 0,(c)

|k|||q ≤ sup{|||Kε|||q : ε > 0}.(d)

To prove Theorem 5.1, we need a stronger form of Lemma 4.2, which we
state below:

Lemma 5.2. Let w = (Y, b), z = (Z, c), Y, Z ∈ g−λ and b, c ∈ R. Then

lim
ε→0

τn(ε)
n,m (πε(wz)−1πε(w)) = σ̃λn,m(z−1)

and
lim
ε→0

τ−n(ε)
n,m (πε(wz)−1πε(w)) = (−1)|n|+|m|σ̃−λn,m(z−1).

We introduce some more notation: For any, w = (Y, b) ∈ N̄ , define

dw =
√

2ε‖Y ‖,

bw =
√
ε2b2 + 4 (dw)2

,

aw = (2
√
ε/bw) sin(bw/2)e3iεb/2.

For ε > 0, set n̄ε = (X, ε−1a), φε(n̄) = πε(n̄ε) and

Γj,ε =
1

2
√
ε

Γj .

To prove Lemma 5.2, we need two lemmas.
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Lemma 5.3. Let B = H − i(X0 − θX0) = 2E1,p+1, w = (Y, b) ∈ N̄ and
Z ∈ g−λ. Then the following statements are true.

[Yθ, B] = (Y − θY )− i(−JY + θJY ),(1)

Ad(πε(w))B = Γ(πε(w))B + aw[Yθ, B],(2)

Γ(πε(w)) = e−3iεb/2 (cos (bw/2)− i (εb/bw) sin (bw/2)) ,(3)

Ad(πε(w))(Z − θZ)(4)

= (Z − θZ)− 2ε1/2 {(X0 − θX0)(Y, JZ) +H(Y,Z)}+ o(ε).

Proof. See [DGu]. �

Lemma 5.4. Let X,Y, Z ∈ g−λ and a, b, c ∈ R. For n = (X, a), w = (Y, b),
z = (Z, c) and Xa = (2/a) sin(a/2)eia/2X, we have:

lim
ε→0

Γn(ε)
(
πε(w)−1πε(wz)φε(n)

)
Γ
nλ(ε)

(φε(n))(i)

= lim
ε→0

Γn(ε)(πε(z)φε(n)) Γ
nλ(ε)

(φε(n))

= e−2icλπ e−2λπ(‖Z‖2/2+(Xa,Z)C) e−2λπ‖Xa‖2 ,

lim
ε→0

Γj,ε(πε(w)−1πε(wz)φε(n))(ii)

= lim
ε→0

Γj,ε(πε(z)φε(n))

= e−2ia(Xa + Z,Xj)C.

Proof. In the proof we will repeatedly use Lemma 5.3.
(i) By the definition of Γ,

Γ(πε(w)−1πε(wz)φε(n)) = 1
2 (Ad(πε(w))B,Ad(πε(wz)) Ad(φε(n))B) .

Next,
Ad(πε(w))B = Γ(πε(w))B + aw[Yθ, B],

so,

Ad(πε(wz)) Ad(φε(n))B

= Ad(πε(wz))
{

Γ(φε(n))B + anε [Xθ, B]
}

= Γ(φε(n))
{

Γ(πε(wz))B + awz[Yθ + Zθ, B]
}

+ anε Ad(πε(wz))[Xθ, B].

Therefore

Γ(πε(w)−1πε(wz)φε(n))

= Γ(πε(w)) Γ (φε(n̄)) Γ(πε(wz))

+ (1/2)anε Γ(πε(w)) (B,Ad(πε(wz))[Xθ, B])

+ (1/2)awawz Γ(φε(n)) ([Yθ, B], [Yθ + Zθ, B])

+ (1/2)awanε ([Yθ, B], Ad(πε(wz))[Xθ, B]).
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Next,

(B,Ad(πε(wz))[Xθ, B]) = −4ε1/2(X,Y + Z)C + o(ε1/2),
([Yθ, B], [Yθ + Zθ, B]) = 4‖Y ‖2 + 4(Z, Y )C

and

([Yθ, B],Ad(πε(wz))[Xθ, B]) = ([Yθ, B], [Xθ, B]) + o(ε1/2)

= 4(X,Y )C + o(ε1/2).

Set
Aε = |Γ(φε(n))|2 Γ(πε(w)) Γ(πε(wz))

and

Bε = ε
2anε
ε1/2

(X,Y + Z)C
Γ(φε(n))Γ(πε(wz))

−
ε 2aw
ε1/2

aw
ε1/2
{‖Y ‖2 + (Z, Y )C}

Γ(πε(w))Γ(πε(wz))

−
ε 2aw
ε1/2

an̄ε
ε1/2

(X,Y )C
Γ(φε(n))Γ(πε(w))Γ(πε(wz))

− o(ε).

Then

Γn(ε)
(
π−1
ε (w)πε(wz)φε(n)

)
Γ
n(ε)

(φε(n)) = Anλ(ε)
ε {1−Bε}nλ(ε).

Note that
anε
ε1/2

−→ sin(a/2)
(a/2)

e−3ia/2 as ε −→ 0,

aw
ε1/2

−→ 1 as ε→ 0,

awz
ε1/2

−→ 1 as ε −→ 0.

Also, Γ(φε(n)) −→ e−2ia and Γnλ(ε)(πε(n)) → e−2iaλπ e−πλ‖X‖
2

as ε −→ 0.
Therefore

lim
ε→0

Γn(ε)(πε(w)−1πε(wz)φε(n))Γ
n(ε)

(φε(n))

= e−2λπ‖Xa‖2e2iπλbe−πλ‖Y ‖
2
e−2iλπ(b+c+([Y,Z],X0))e−πλ‖Y+Z‖2 ×

× e−2πλ(Xa,Y+Z)Ce2πλ(‖Y ‖2+(Z,Y )C)e2πλ(Xa,Y )C

= e−2λπ‖Xa‖2e−2iλπc e−πλ‖Z‖
2
e−2πλ(Xa,Z)C

as − i([Y, Z], X0) + (Z, Y )C − (Y, Z) = 0. Hence (i) is proved.

(ii) By the definition of Γj,ε,

Γj,ε
(
πε(w)−1πε(wz)φε(n)

)
=

1
2
√
ε

(Xj − θXj ,Ad(πε(w)−1) Ad(πε(wz))Ad(φε(n))B)

=
1

2
√
ε

(Ad(πε(w))(Xj − θXj), Ad(πε(wz) Ad(φε(n))B).
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Next,

Ad(πε(w))(Xj − θXj)

= Xj − θXj + ε1/2{−2(Y, JXj)(X0 − θX0)− 2(Y,Xj)H}+ o(ε)

and

Ad(πε(wz)) Ad(φε(n))B

= Γ(φε(n)){Γ(πε(wz))B + awz[Yθ + Zθ, B]}+ anε [Xθ, B] + o(ε1/2).

Therefore,

Γj,ε(πε(w)−1πε(wz)φε(n))

=
1

2
√
ε
{awzΓ(φε(n))(Xj − θXj , [Yθ + Zθ, B]) + anε(Xj − θXj , [Xθ, B])}

+
1
2
{
−2(Y, JXj)(X0 − θX0, B)

− 2(Y,Xj)(H,B)
}

Γ(φε(n))Γ(φε(wz)) + o(1).

Hence

lim
ε→0

Γj,ε(πε(w)−1πε(wz)φε(n))

= e−2ia(Y + Z,Xj)C + e−2ia(Xa, Xj)C − e−2ia(Y,Xj)C
= e−2ia(Xa + Z,Xj)C,

and (ii) is proved. �

Proof of Lemma 5.2. The proof of Lemma 5.2 follows from Lemma 5.4.
The details of this are given in [DGu]. �

Proof of Theorem 5.1. The proof of the assertionsKε ∈ L1(K), supp(Kε) ⊂
πε(B)πε(B2), and of part (a) is given in [DGuR]. We now prove (b), (c), and
(d).

(b): By the definition of Kε,

K̂ε(n(ε),n,m) = 〈Kε, τ
n(ε)
n,m 〉

=
∫∫

B×B
k(z) τnλ(ε)

n,m (πε(w)−1πε(wz))dwdz

=
∫∫

B×B
k(z) τnλ(ε)

n,m (πε(wz)−1πε(w))dwdz.



676 A. H. DOOLEY AND S. K. GUPTA

An application of Lemma 5.2 and of the Dominated Convergence Theorem
yields

lim
ε→0

K̂ε(n(ε)n,m) =
∫ ∫

B×B
k(z)σ̃λn,m(z−1)dwdz

= |B|
∫
B

k(z)σ̃λn,m(z−1)dz

= |B|k̂(λ,n,m).

By a suitable normalization of the Haar measure on Hp−1 we get

lim
ε→0

K̂ε(n(ε),n,m) = k̂(λ,n,m).

Part (c) follows exactly in the same way as (b).
Part (d) follows by de Leeuw’s Theorem 4.1.
This completes the proof. �

Remark. Using Theorem 5.1 (a) and (d), a conjecture of Herz regard-
ing the asymmetry of LP -multipliers on compact connected non-abelian Lie
groups can be resolved. But since Theorem 5.1 (a) and (d) are proved in
a more general set-up in [DGuR] and a result more general than the Herz
conjecture has been proved in [DGuR], we do not provide any details of the
proof of the Herz conjecture here.
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