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ON THE UNIQUENESS PROBLEM FOR CATALYTIC
BRANCHING NETWORKS AND OTHER SINGULAR
DIFFUSIONS

D.A. DAWSON AND E.A. PERKINS

Dedicated to the memory of Joe Doob whose work and example inspired us both

ABSTRACT. Weak uniqueness is established for the martingale problem
associated to a family of catalytic branching networks. This martingale
problem corresponds to a stochastic differential equation with a degen-
erate Holder continuous diffusion matrix. Our approach uses the semi-
group perturbation method of Stroock and Varadhan and a modification
of a Banach space of weighted Holder continuous functions introduced
by Bass and Perkins.

1. Introduction

1.1. Catalytic branching networks. Let b;,7v;, 2 = 1,...,d, be Holder
continuous functions on R4 with b;(z) > 0 if z; = 0 and ~;(z) > 0 for all z,
i=1,...,d. We consider the operator A" on C?(R%) defined by

A f(z) = zd:(b @ 4wy S ) v e R
p N Gy T ‘0z2 )’ +
The objective of this paper is to prove the uniqueness of solutions to the
martingale problem for the operator A®) under some regularity conditions
on the coefficients. Uniqueness results of this type are proved in [ABBP]
and [BP1] but they require the v;(z) to be strictly positive in R%. The
problem considered in this paper is the extension of these results to the case
in which the ~; can degenerate on the boundary. Our work is largely motivated
by models of catalytic branching networks that include catalytic branching,
mutually catalytic branching and hypercyclic catalytic branching systems (see
[DF] for a survey on these systems). For example, the hypercyclic catalytic
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branching model is a diffusion on Ri, d > 2, solving the following system of
stochastic differential equations:

(1) dmii) =(0;, — xgi))dt + 1/ 2’yi(:vt)x,(f+1)x§i)d3§, i=1,...,d.

Here z(t) = (acgl), e ,xgd)% addition of the superscripts is done cyclically so
that xEdH) = xgl), 0; > 0, and ~y; > 0 satisfy some mild regularity conditions.

This is a stochastic analogue of a system of ode’s first proposed by Eigen
and Schuster [ES] as a self-organizing system which models a macromolecular
precursor to early forms of life. They noted that there is an apparent phase
transition in the equilibrium behaviour of the system as you pass from 4 to
5 types (see [HS]). In (1) one has d large populations in which the (i + 1)st
population catalyzes the branching of type ¢, that is, the branching rate of
type ¢ is proportional to the mass of type i + 1. Given that the original model
was a precursor to a biological system consisting of a large number of self-
replicating molecules, our use of Feller branching in place of an ode with the
analogous catalytic structure is not at all unreasonable. For a discussion of a
general class of catalytic networks based on directed graphs, see [JK].

For d = 2 spatially distributed systems of this type have been studied
(Mytnik [M], Dawson and Perkins [DP1]) and uniqueness in law for 7; con-
stant, even in infinite dimensional spatial settings, follows by a self-duality
argument. Unfortunately this duality breaks down when there are d > 2
types and moment methods fail (cf. [DFX]) so that uniqueness was open even
for 7; constant. Existence and some results on qualitative behaviour of solu-
tions with more than two types in an infinite-dimensional spatial setting were
derived by Fleischmann and Xiong [FX].

Even in the special case d = 2 mentioned above uniqueness remains open
for non-constant «y;. These diffusions arise in the renormalization analysis of
Dawson, Greven, den Hollander, Sun and Swart [DGHSS] aimed at identi-
fying the universality classes of catalytic branching and mutually catalytic
branching.

In this work we consider a natural class of catalytic branching networks
that includes the above examples as special cases and establish the unique-
ness. To describe these networks we begin with a directed graph (V) with
vertices V = {1,...,d} and set of directed edges €& = {e1,...,er}. We assume
throughout:

HypPOTHESIS 1. (i,4) ¢ £ for all i € V and each vertex is the second
element of at most one edge.

Vertices denote types and an edge (4,j) € € indicates that type i catalyzes
the type j branching. Let C' denote the set of vertices (catalysts) which appear
as the 1st element of an edge and R denote the set of vertices that appear as
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the 2nd element (reactants). Let ¢ : R — C be such that for j € R, ¢; denotes
the unique ¢ € C such that (¢,j) € £ and for i € C, let R; = {j : (,5) € E}.
We then consider the system of stochastic differential equations:

(2) daf’ = (0; — o )dt + \/2v; ()2 dB], if j € R,
da?) = (0; — xD)dt + \/2v;(x)2dBI, if j ¢ R.

Again z; = (x,(fl), .. ,a:gd)) € R%,6; > 0, and y; > 0 will satisfy some mild reg-
ularity. For {~;} constant, {x,g] )j¢ R} is a |R°|-dimensional Feller branch-
ing immigration process and for ¢ € C, {xij ) J € R;} is a catalytic branching
process with catalyst 3:,(51) and with immigration. As for (1), uniqueness in (2)
remained open as the additional degeneracy in the diffusion coefficient pre-
vents one from applying the results of [ABBP] and [BP1]. Nonetheless we will
be using refinements and modifications of the basic ideas in [BP1] and [ABP)]
in our proofs. Indeed a second motivation for this work came from wanting to
see if these techniques can be adapted to different sorts of degeneracies. Our
conclusion here is affirmative but not without some additional work which
will depend on the particular setting.

1.2. Statement of the main result. To complete the description of
the class of diffusions we consider we now state the main conditions on the
coefficients of our equations. This will be in force unless otherwise indicated.
|z| is the Euclidean length of 2 € R,

HypOTHESIS 2. ForieV,
7 RE = (0,00),
b RL - R,
are Hélder continuous on compact subsets of R such that |b;i(z)| < c(1+ |z])
on Ri, and b;(x) > 0 if z; = 0. In addition,
(3) bi(z) >0 ifie CUR and z; = 0.
For f € CZ(RY), let
4)  Af() = A" f(x)
= @)z, wfi5 () + Y v (@) fi(a) + ) bi) f(@)

JER JZR jev
Here f;; (or f; ; if there is any ambiguity) is the ¢, jth partial derivative of f.

DEFINITION 3. If v is a probability on R, a probability P on C(R;,R%)
solves the martingale problem M P(A,v) if under P, the law of z¢(w) = wy is
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v and for all f € CZ(RY) (z4(w) = w(?)),

My(t) = f(x:) = f(zo) — /O/Af(:cs)ds

is a local martingale under P with respect to the canonical right-continuous
filtration (F3).

We will restrict the state space for our martingale problems. For A the
state space will be

S={zeRl: H (x; +x;) > 0}
(i,5)€€

We will see in Lemma 5 below that solutions to the martingale problem
necessarily take values in S at all positive times ¢ a.s. and so S is a natural
state space for A.

THEOREM 4. Assume Hypotheses 1 and 2 hold. Then for any probability,
v, on S, there is exactly one solution to MP(A,v).

1.3. Outline of the proof. The proof of Theorem 4 follows the Stroock-
Varadhan perturbation method ([SV]) and is broken into a number of steps.
Existence is proved as in Theorem 1.1 of [ABBP]. For existence, the non-
degeneracy of the ~; assumed there is only used to ensure solutions remain in
the positive orthant and here we may argue as in Lemma 5 below. The main
issue is then uniqueness.

Step 1. A standard conditioning argument allows us to assume v = §,.
By using Krylov’s Markov selection theorem (Theorem 12.2.4 of [SV]) and
the proof of Proposition 2.1 in [ABBP], it suffices to consider uniqueness for
families of strong Markov solutions.

We next observe that a solution never exits S.

LEMMA 5. If P is a solution of MP(A,v), where v is a probability on
Ri, then xy € S for allt >0 P-a.s.

The proof is deferred to Section 4.

Step 2. Using the localization argument of [SV] (see, e.g., the argument
in [BP1]) it suffices to show that for each € S there exists ro > 0 and
coefficients b;, v; which agree with b; and ~;, respectivelyl on B(z,r9) N Ri
and are such that there is at most one solution of M P(A®7)).

In order to deal with the singular initial points, fix 20 € S, let Z = Z(2°) =
{i € V: 29 = 0}. Note that if i ¢ Z, then 2? > 0 and so z% > 0 for small s
a.s.
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Given Z C V, set

Ny = U Ri;

€CNZ
Nl = (ZQC)UNl;
Ny = V\]\_fl

Note that if z° € S, then Ny N Z = ().

We next recast M P(A, §,0) with 20 € S as a perturbation of a well-behaved
diffusion on S(z°) = {x € R? : z; > 0 for all i ¢ Ny} built from two indepen-
dent families of processes associated to Ny, and N», respectively.

First, for 1 € C N Z, we can view ({m(j)}jeRi,x(i)) near its initial point
({29}er,, 2?) as a perturbation of the diffusion on RI%il x R which is given
by the unique solution to the system of sde:

(5) ) = bdt + \/Q'y?xgi)dB,Ej), 2 = ), for j € R;, and

dzt” = 00dt + /2792 dBY | &) = af,

where b = b;(2%) € R, 79 = ~;(2%)29 > 0, and b = b;(2°) > 0, 7 =
Yi(2%)al > 0if i € RNZ, or b) = bi(z°) > 0, 7Y = 7(2°) > 01if i € R.
Note that the non-negativity of ? ensures that solutions starting in {z? > 0}
remain there.

Secondly, for j € Ny we view this coordinate as a perturbation of the Feller

branching process (with immigration)

(6) dz{) = Wdt + \/2992dB),  &f) = a0,
where b§ = (b;(z°) vV 0), 7 = 'yj(xo)xgj > 0if j € Ror ) =v;(z") > 0 if
jé&R.
We then view A as a perturbation of the generator
(7) A= D AT+ )AL
i€eZNC JEN2

where

0 0? 0 o2
L E 0_—~ O0p = 0 0, ~
Ai - {b] ax] +,Y]xlax‘? } +bz axl +’Y7, xlax%a

JER;
0 2
2 0 0

One easily checks that the coefficients b?,~? given above from an 20 € S
satisfy
®) A?>0allj b)>0ifj¢ Ny = ) Ribf

0> 0if je ZN(RUC),
eZNC
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where Z C V satisfies
(9) NiNZ= 0.

In general we will always assume the above conditions when dealing with A°
whether or not it arises from a particular 2° € S as above. The A° martingale
problem is then well-posed and the solution is a diffusion on

(10) So=8(2°) ={x € RY:2; >0 for all i € V\N;}
with semigroup P; and resolvent
(11) Ryf = / e P, fds.

0

The law of this diffusion is a product of independent catalytic processes
and Feller branching processes (with immigration). More precisely we may
write
(12) r=TI P[] 7.

i€ZNC  jEN:
where for i € Z N C, P} is the semigroup of solutions to (5) on bounded
measurable functions on Rl x R, —we refer to this as the m = (|R;| + 1)-
dimensional catalytic semigroup. For j € Ny, P/ is the one-dimensional Feller
branching semigroup of solutions to (6) on bounded measurable functions on
{7}
R,

Step 3: A Key Estimate. Set

(13)  Bf:=(A-A"f

of
= _ bO
; ('h
= 8 f 82]0
" iE;C{Jg};i [( z) - K )i 31‘?:| + (Yi(z) — 710)3318—%2}
2O
+Z§2{ 0 a 2}

where for j € V, bj(x) = b;j(z) for j € Ny, 3;(z) = vj(z)z;, and for i €
(ZNC)U Na, 7i(x) = Lieryi(x)Te, + ligrvi().

By localization and continuity of the above coefficients we may assume that
the coeflicients preceding the derivatives of f in the above operator are small,
say less than n in absolute value. The key step (see Proposition 36) will be
to find a Banach space of continuous functions, depending on A°, with norm
I || so that for n small enough and Ag > 0 large enough,

1
(14) IBRASI < SIF1 Y A > Ao



ON THE UNIQUENESS PROBLEM FOR CATALYTIC BRANCHING NETWORKS 329

Once this inequality is established the uniqueness of the resolvent of our
strong Markov solution will follow as in [SV] and [BP1]. In the next section
we describe the Banach space which will be used in (14).

1.4. Weighted Hoélder norms and semigroup norms. In this subsec-
tion we introduce the basic Banach spaces of functions. Given the subsets
Z,C and {R;,i € ZNC} of V we define N1, Ny as above and the gener-
ator A° as in (7). The state space for the diffusion with generator A° is
So:={r€R?:z; >0foralli € N;} and the corresponding semigroup is
defined on C4(Sp). We next define the Banach subspace C2(Sy) of Cp(Sp)

w

and some related norms. Note that in the localization argument used in the
proof in Section 4 of Theorem 4, the set Z = Z(2°) will depend on a point
2% € S and Sy = S(zV).
Let f : Sp — R be bounded and measurable and « € (0,1). For i € V let
é; denote the unit vector in the ith direction, and
|flce: = sup {|f(z + hé&;) — f(z)||h]~*: h#0, z €Sy},
and fori € ZNC, let
| Flai = sup{| f(a+h) — f(2)|(|h]~ 2% v || 7/) :
For j € N, let
| Flas = sup{| f(z + k) — f(@)|B]25"? :h; > 0, by = 0if k # j,x € So}.
Set I =(ZNC)UNs. Then let

|flce = g.lg}lfla,jv |flca = jlilglflcam

Iflleg = 1fleg + 1 fllcos  [1fllon = [floa + 1 Flloos

where || f|loo is the supremum norm of f. We let
Cu(So) = {f € Co(So) : Ifllcg < oo}

denote the Banach space of weighted a-Hoélder continuous functions on Sp.
We also denote by

C*(So) ={f € Co(So) : [ fllo < o0}

the classical Banach space of a-Hélder continuous functions on Sj.

C&(Sp) will be the Banach space we use in (14) above. It is a modification
of the weighted Holder norm used in [BP1].

In proving (14) most of the work will go into analyzing the semigroups Py
in (12) for i € Z N C on its state space RI%l x R . In this context a special
role will be played by another norm which we first define in a general context.
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Given a Markov semigroup {P,;} on the bounded Borel functions on D, where
D c R? and a € (0,1) the semigroup norm (cf. [ABP]) is defined via

[1Pef — fllo
|f‘0¢ :iglg ta/Q 9
[flla = 1fla 4 11flloo-

The associated Banach space of functions is
SY={f:D —R: f Borel, ||f|la < oo}

We will use this norm for the catalytic semigroups P}, i € Z N C, from (12)
and in fact show (Theorem 19 below) that it is equivalent to the weighted
Holder norm || ||ca in this (|R;| 4 1)-dimensional context. This equivalence,
which plays an important role in our proofs, is patterned after a similar result
in [ABP], where the semigroup in question is a product of independent Feller
branching processes.

We first obtain bounds on the supnorm of the appropriate first and second
order differential operators applied to P/ f. These bounds are singular and
non-integrable in ¢ as ¢ | 0 (see the first sets of inequalities in Propositions 16
and 17). The semigroup norm allows us to easily obtain bounds on the same
quantities in terms of |f|,, now with an improved and integrable singularity
at t = 0 (see the second set of inequalities in the same Propositions). The
simple proof of this improvement, given in Proposition 16 below, is taken from
[ABP]. A similar reduction of singularities holds for the Hoélder norms of the
same functions—see again the improvements from the first set of inequalities
to the second set in Propositions 22 and 23 below.

CONVENTION 1. Throughout this paper all constants appearing in state-
ments of results may depend on a fixed parameter o € (0,1) and {b?,’y? 1 j €
V}. By (8)

15) M°=M°(y°,1°) = PV ()T VIR v b))~ < oo
(15) (7,07 =max(ys v () VIRD v, max  (br)" < 00

Given « € (0,1) and 0 < M < 0o, we can, and shall, choose the constants to
hold uniformly for all coefficients satisfying M°® < M.

In order to simplify the notation, in most of Section 2 we will work in the
special case
(16) d=2, |RZ| =1,7zZ= {2}aN2 =0, and |f

ce — |f|a,2~

1.5. Outline of the paper. In Section 2 we establish properties of the
basic semigroups that are used to verify (14) in the norm |- | ca . In Subsection
2.1 we review representations of the catalytic and branching semigroups which
play an important role in the proofs. In Subsection 2.2 we show that the
semigroup takes bounded Borel functions to C? functions, in Subsection 2.3
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we obtain L bounds on the first and second order partial derivatives of the
semigroup and prove the equivalence of norms mentioned above. In Subsection
2.4 weighted Holder bounds on the (m + 1)-dimensional catalytic semigroups
are derived (in the case m = 1) and the corresponding bounds from [BP1]
for the one-dimensional branching semigroups are noted in Remark 29. In
Section 3 the required L*>° and weighted Hélder norms on the multidimensional
resolvent are obtained and then these bounds are used in Section 4 to complete
the proof of the uniqueness.

2. Properties of the basic semigroups

2.1. Representations of the catalytic semigroups and branching
semigroups. In this section, until otherwise indicated, we work with the
catalytic generator

1_N~J,00 0 0 0 9 0 0?
A ZZ bjGTj +7j$m+167? +bm+1am—m+1 T Yma1Tmt1 55—

2
j=1 Ierl

with semigroup P; on the state space R™ x R,. We assume the coefficients
satisfy (cf. (8))

W >0alj<m+1; b eRifj<m, b, >0,
and

(17) Convention 1 applies with MY = [iinfgfl WV ()Tt \b?\] V(b )

m (m+1)

If the associated process is denoted by z; = ({xij)}jzl,xt ), this semi-

group has the explicit representation

(18) Ptf('r17"'7xmaxm+l)
m+1
= Ercm,+1 /]R f(Zla 2 ) IE )) Hp'y?QIt (Zj — T — b(j)t) de )
m j=1

where P, ., is the law of the Feller branching immigration process (™1 on

C(R4,Ry), with generator
32

0
+ Vm1Tm+1 55—
xm-{-l

0

A/O _ bO 1—
mE 8mm—&-l

)

¢
It:/ M s,
0

and for y € (0, 00)
6_%

py(2) = (

2y) /2"
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For (y1,92) € (0,00) x [0,00) and & = (x1,...,Zm), let

(19)
G(yh y2) = Gt,z(yh y2) = & f(zla <oy Zmy y?) Hpv;.]le (ZJ — T — bg)t)dzj
m e

Then (18) can be rewritten as
(20) Pif (@1, s Ty Tng1) = Ba, o (G(L, ™)),

PROPOSITION 6. The joint Laplace functional of (x§m+1)7 fot xgmﬂ)ds) 1
given by

(me1) A2 [ 1
LM\, X)) =E,, [exp (—Alxt - ?/ z(m+ Us)}
0

0
bm41

X270 Aoy 0 -
— (COSh( % t) + ﬁ# Sinh( 27m+1 t)) Ym+41

\/>\2/’Yron+1 2
0
14+ — Y2\ coph (/22 0men
0 ( + w/kz/’YSnJrl o < 2
cexp| —Tmi1y/N2/29 11 — .
(coth(\/ —ﬂ;“ t) + 2N )

VA2 7
Proof. See [Y1], Equation (2.1), page 16 (with 7, = 2). O
LEMMA 7.
(a)
By (™) = 2ir + 60,441,
Eacm+1((17§m+1))2) =2y 1 + (200,01 + 27 ) Tmaat + (01 + Vo) O
B (@) = 2n1)?) = 200 g1 @mat 4 i (s + )8,
B . </t mgmﬂ)ds) = Tyt + b%LT'Ht2.
0
(b)

t -p
E(( / :cgm“>ds) )s@(p)tp(tmmmp > 0.
0
©

By (@™ 4 8)72) < er(@myr + )72 for all s > 9,1 t.

Proof. (a) These identities are standard.
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(b) To simplify the notation we set b=6% _,, v =172, and = = 2,41 in
the following calculation and also in (c).

s (([0) ) ([
/ P(I; < uwyu P 'du

/ Du P Ldu

= /F””V”
EVERISSVEY: .

oo
< cp2 e Vis exp{—mﬁc(ﬁt/\l)}u_p_ldu,
o U U

where we used &= > ¢(x A1). Set v = ft SO u = 1152 and du =

ert+te T
—2vt2dvv T3, to see

\ /\

bv

)
Em(I;p) < QCP,Q/O ’771)6_767%Uc(v/\l)v2p+273dvt2t72p72

0o

_ _ _ .z —bv

SQcp,Q'Y Pt 2p/ ,U2p 1e ctv(v/\l)6 T dv
0

=2c, 07 Pt .
Now J < f V2P =1e " dy < 0o (p > 0) and so we can choose ¢p 3 so that
(21) Ey(I;7) < cpst ™.

Assume z > ¢t now. Then

1 oo
J< / 2p—1 70(%)11261@ + / ’U2p71676%vdv
0 1

<z - —2
:/ ' w2p16w2dw<g> p+/°° w2plecwdw(g> ’
0 t x/t t
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and so
t p t2p
- -2

(22) Eo(I;77) < cpat™ [<5> + pr}

< 1 1

= o T o

< %’;} as r > t.

T

(21) and (22) together give

—p c(p) c(p)
E(L7) < tP (2P + tP) = tP(z+ )P’

(c) It follows from Proposition 6 that

(m+1) —TA
2 Ey(e M =1 —b/v .
(23) (e = (e

If s > vt, this gives

Ew((xgmﬂ) +5)7%) = / 2u_3Pm(x§m+1) + s <wu)du

S

o0 1 —
< / 2u_3eET(e_””i " u-s) 1)alu
oo —b/v
t —
< 26/ w3 {1 + "/_} exp{gx}du
s uU— S u— s+t
(o)
< 26/ w3 exp(—z/u)du
s

z/s
26/ w2 exp(—w)dw
0

< c(x—l—s)_2. O

IN

Now let {P? : x > 0} denote the laws of the Feller branching process X
with no immigration (equivalently, the 0-dimensional squared Bessel process)
with generator LOf(x) = vy f"(z). If w € C(R4,Ry) let ((w) = inf{t > 0 :
w(t) = 0}. There is a unique o-finite measure Ny on

Cez ={w e C(R4,RL) : w(0) =0, ¢(w) >0, wit)=0Vt>((w)}

such that for each h > 0, if Z" is a Poisson point process on C,, with intensity
hNg, then

(24) X = / vE"(dv) has law P}
Ce.n
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see, e.g., Theorem I1.7.3 of [P] which can be projected down to the above by
considering the total mass function. Moreover we also have

(25) No(vs > 0) = (v6)~"

and by [P], Thm. I1.7.2(iii), for ¢ > 0,

(26) / 1 dNo(v) = 1.
Cez

For ¢t > 0 let P} denote the probability on C., defined by
B No(A N {I/t > 0})

27 Pr(A
( ) t ( ) NO(Vt > 0)
LEMMA 8. Forallh >0
(28) PY¢(>t)=PY(X;>0)=1—e M) < %

Proof. The first equality is immediate from the fact that X is a non-
negative martingale. The second equality follows from (24) and (25). O

The following result is easy to prove, for example, by modifying the argu-
ments in the proof of Theorem I1.7.3 of [P].

PROPOSITION 9. Let f : C(Ry,Ry) — R be bounded and continuous.
Then for any § > 0,
lgfrolh_lEg(f(X)l(Xg >0)) = / f(v)1(vs > 0)dNg(v).
Ce’m
The representation (24) leads to the following decompositions of the pro-
cess ximﬂ) that will be used below. Recall ximﬂ) is the Feller branching

immigration process with coefficients b9, 1 > 0,79, .1 > 0 (b3, > 0 suffices
for this result) starting at x,,11 and with law P, .

LEMMA 10. Let 0 < p < 1. (a) We may assume
(29) D = x|+ X,

where X, is a diffusion with generator A\ f(z) = 79 1z f"(x) + b0, f' ()
starting at prg,,y1, X1 is diffusion with generator 79n+1xf’/(:c) starting at
(1= p)xms1 >0, and X}, X1 are independent. In addition, we may assume

Ny
(30) X, (t) = /C () = e(t),
j=1

ex

where = is a Poisson point process on Ce, with intensity (1 — p)xm+1No,
{e;,j € N} is an iid sequence with common law P}, and N; is a Poisson

(lfp)wwﬂrl

random variable (independent of the {e;}) with mean 0
m+1
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(b) We also have

(31) /X1 ds—/ /usdsl (v # 0)=(dv)
/ /ysdsl = 0)Z(dv)

_ZTJ +Il

Ny

(32) /O t 2" ds =Y "ri(t) + L(t),

j=1

where r;(t fo e;j(s)ds, I(t) = Li(t +f0 X{(s)ds.

(c) Let _’L be a Pozsson point process on Cey wzth intensity hy+1No (Rt >
0), independent of the above processes. Set =**P = = 4+ Zh and X} =
[ E"(dv). Then

(33) Xt = (D | xh(p) = / WETH (dv) + XU(0)
Cey

is a diffusion with generator Af, starting at Tm+1 + hme1. In addition

(34) / vy 22 (dv) Zej
Cea

where N/ is a  Poisson  random  wvariable — with — mean
(1= p)Zms1 + hmg1)(W041t) ™t such that {e;} and (Ny, N{) are indepen-
dent.

Also
t Ny
(35) / Xothds =3 (1) + Lo(t) + Ih(D),
0 =

where I3 (t) = o fo vsdsl (v, = 0)Z(dv).

Proof. (a) (29) follows from Theorem XI.1.2 of [RY]. (30) follows from (24)
and (25). The other parts, (b), (c), follow in a similar way. O

We next give a first application of the representation of the catalytic semi-
group to obtain some preliminary results that will be needed below.

LEMMA 11. Let Gy, be as in (19). Then:
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(a) Fori=1,...,m,

0Gh.» _
(36) 8; (y1,92)| < [ flloo(¥0y1) 12,
and more generally for any j € N, there is a c; such that
Gy, —j
(37) 2 )| < ol i
Ly
(b) We have
0G4
(38) ‘ 3 52 (g1, y0)| < 1| Flloo /Y15
Y1
and more generally there is a sequence {c;} such that for i1,i2 €
{1,...,m},
§itki+k2 —j—(k1+ka)/2
(39) ’ﬁGt@(thD) < Cjphatha | fllooyy 77T
Oy 2 Oyl

for all j, k1,ko € N.
(¢) Vy2 >0, (z,41) — Gra(y1,y2) isC? on R™ x (0, 00).

Proof. (a) We have

m
Gru(y1,y2) = /f(’wl 00t Wi + D)t y2) szv?yl (wj — ;) dw,
j=1

and so

t,x

oz, (y1,92)

(40)

(w; — ;)

dw;
2701 !

m
— '/f(wl + b(l)t, ey Wy bgnt, y2) szv?m (w; — ;)
j=1

= Jwl _
Ul | oo w)do < (o) 2
The general case can be proved by an induction.

(b) If j = 0, this follows by arguing as in (a) and using the product form of
the density. In fact one can handle any number of x;; variables. Recall that

aGt,x _ “ 062 t,x
8y1 (yla y?) - Z’YJ 63??

(Y1, ¥2)
j=1
by the heat equation. Hence the general case follows from the j = 0 case, as
extended above.

(c) This is an exercise in Dominated Convergence. g
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LEMMA 12. If f : R™ x R, is a bounded Borel function, then, for each
t>0, P.f € Co(R™ x Ry); in fact,

[P f(z) = Pof(2')] < caa|[ flloot ™ |z — 2.
Proof. Recalling (20), we have for z, 2’ € R™,

|Pf (21, s Ty Tms1) — Pef (2, 2 Bt1)]

<NBppiy (GraLry ™) = Gy (L, 2T

= |$z—$ﬂ —1/2
41 <N flloo Y L E,,, . (I by (36
(41) < £l ; e ( ) (by(36))
(42) < ¢ flloot ™ max{(~)~/?} i |z; — ;] (by Lemma 7(b)).
i=1

For h > 0 let " denote an independent copy of z(™*1) starting at h but with
b0,41 = 0, and let T), = inf{t > 0 : ! = 0}. Then z(™+V) 4 2" has law
Py oytn and so if I,(t) = [y x!ds, then

|Pif(z1, oy @mg1 + ) — Bef(x1, .o Ty Tint1)|
=BG + In(t), 2" + ) — G(I;, (" ))|
< B(er| flloeIn () I + G, 2™ + ) — G, 2™ V)
(by(38))
< crllf oo ETn () E(I7Y) + 2|/ flloo P(Th > t)
< ol fllaohtt™ + 2| fllaoh(t9% 1)~ (by (28) and Lemma 7(b))
= cl|flsoh(t™Y).

This and (42) imply the result. O

Finally, we give an elementary calculus inequality that will be used below.

LEMMA 13.

(a) Let g:(0,00) — R be C?. Then for all A, A', A" y € (0,00),

lg(y+ A+ A") —gly+A) —gly + A') + g(y)|
(AA)

< sup lg" (1)
{y1€ly,y+A+A"]}
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and

|g(y+A+A/+AN)—g(y+A+A/)—g(y+A+A”)_g(y+A/+A//)
+9(y+A) +g(y+A) + gy + A") — g(y)(AAA") ™

= sup 9" (y1)I-
{y1€ly,y+A+A+A]}

(b) Let f: R x (0,00) — R be C3. Then for all Ay € R non-zero, and all
Ao, AIQ >0,

|f(y1 + Av,y2, +82) — f(yr + Ar,y2) — f(y1,y2 + A2) + f(y1,92)]
(|A1]A2)

S sup . a9 (ylvyl2)7
vien el | Oy2 Oy 7!

and

If(y1+ A1, 02+ Ao+ AY) — flyr +Av,ya + Do) — f(yr + A1, y2 + AY)
+ f(yr + A1, y2) — f(y1,y2 + Do+ AY) + f(y1,y2 + Do)
+ flyr,y2 + A%) = f(y1, v2)] (|A1]AA5) 7!
9% 9

< up —_—
2
yi €l ,yhel) Jdy3 Oy

Tyt v)|,

where I; is the closed interval between y; and y; + A;, and Ij is the
interval between yo and yo + Ag + Al

Proof. (a) Fix A’ > 0 and let h(z) = (9(z + A") — g(2))/A’. By the mean
value theorem,
9y + A+ A") —gly+A) — gy + A) + g(y)[(AA)
= |h(y +A) = h(y)|Aa™!
=M (A" +y)| 3A" €(0,4)
=lg' (A" +y+A) = g (A" +y)I(A) !
— ‘g//(y_'_A// +A///)| ElA/// e (()7 A/)

Now consider the second bound. If h(z) = w, the left-hand side
is
|h(y + A+ A) —h(y+A) = h(y + A') + h(y)|
(AAY)
and so we may apply the first bound to h and then the mean value theorem
to get the second bound.
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(b) We only prove the slightly more involved second bound. If g = af

oy1’
then the left-hand side is

y1+4A1
/ 9, y2 + Do+ A%) — gy, y2 + D2) — g(yh, y2 + A%) + 9(y1, y2)dyy |-
Y1

Now apply (a) to y2 — g(¥;,y2) to obtain the required bound. O

2.2. Existence of derivatives of the catalytic semigroup. In this
subsection A! and P, are as in the previous subsection. We will show that
this semigroup takes bounded Borel functions to C? functions and describe
the derivatives in terms of the canonical measure Ny introduced in the pre-
vious subsection. In order to simplify the notation, in this and the next two
subsections, we will work with the special case m = 1 and then indicate how
the general case m > 1 will follow by some simple modifications. This means
we have N =0, I = ZNC = {2}, N; = Ry = {1}, Sy = R x R and so for
f RxRy =R,

43) |f

s = | flaz = sup{|f(z + h) — f(2)|[|h| =25’ v |h[*/?]
he >0,z € R x R, }.

Let G be given as in (19) with m = 1. Then

Ptf(x17w2) = E:EQ (Gt,xl (It7x1(§2)))7

where now

t
(44) I, = / ¢ ds.
0

If X e CR4,Ry), v,V € Cey, let

t
(45) AGi ., (X,V,v) =Gty (/ Xo + Ve +veds, Xy + vy + Vt)
0

t
— Gy (/ X+ ngs,Xt + y;)
0

t t
_Gt,an (/ X5+V5dS,Xt+Vt> +Gt,zl (/ XSdS7Xt>.
0 0

ProrosiTION 14. If f is a bounded Borel function on R x Ry and t > 0,
then P,f € CZ(R x Ry) and fori,j € {1,2}

1l

(46) [Pl < sty
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Moreover if f is bounded and continuous on R x Ry, then

(47) (Pt = zz (/ Gy ,T1 (/ x(2) + vsds, LL'( ) + Vt)
e ( / 2Pds x§2)>No(dy)>,

(48) (P f)a(z) = </ AGy, ( ,’,y)dNo(u)dNO(y’)>.

Proof. In view of Lemma 12, and the fact that P, f = P, /5(P,/2f), it suffices
to consider bounded continuous f. Let us assume (P;f)o exists and is given
by (47). We will use this to prove the existence of, and corresponding formula
for, (P f)22(x). It should be then clear how to derive (47). Let 0 < § < ¢. If
vs =1y =0, use Lemmas 13 and 11(b) to see that

(49)  |AGy ., (m(Q), V)|

t t §
= ‘Gt,ajl </ x‘(f)ds_;'_/ Vsd5+/ y dS I(Q))
0 0 0
t 5
=Gy (/ zPds +/ v ds a:(2)>
0 0
t t ¢
— G, (/ (2 ds +/ vsds, 1: (2) ) + Gtz (/ xf)ds,z?))‘
0 0
< c|f||oo(/ ods) / ’ ds/ vods.

If v§ = 0 and 14 > 0, then by Lemma 11(b)
(50)  |AGta, (22,0 )]

t s
< |Gt ( / e® + vyds + / Vids, al® + ut)
0 0
t
= G, (/ 2@ 4 u,ds, 2 + yt)‘
0
t S5 ¢
+ ‘Gt,xl (/ z?ds —|—/ V;ds,x§2)> — G (/ ng)ds,x§2)>‘
0 0 0
t —1 5
< 2¢1||flloo </ x§2)ds> / Vds.
0 0

A similar argument shows if 5 > 0 and v; = 0, then

t -1 t
B0 180 e <2l [ oPas) [ Cuds
0 0
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Finally, if v5 > 0, vy > 0, then we have the trivial bound
(52) |AGt 2, (2P0, 1) <4 f oo

Combine (49)—(52) to conclude

(53) |AG75,11 (x(Q),V/7V)|
t =2 6 t
< |1(v5 =0, =0) (/ xg)ds) / vids | vsds)
0 0 0
t -1 56
+ 1(v5 = 0,1, > 0) (/ a:gz)ds> / v.ds)
0 0
t -1t
+1(v5 > 0,1, =0) (/ ng)ds> / vsds)
0 0

TR oﬂ el flloe
= gt,(s(x(Z)a Z/a V)'

Let X" be independent of #(?) satisfying

Xth—h+/ \/299X"hdB., (h > 0)

(i.e., X" has law P?) so that #(2) + X" has law P,, . Therefore (47) implies

(54)  —[(Fif)2(x + hez) = (Pif)a()]

1
=5 / / AG(z®, X" 1)dNy(v)dP,,dPy.

==

In addition (53) implies (use also (25) and (26) and Lemma 7(b) with p =1
or 2)

(55) %///|AG(9:(2),X}’,V)|1(X§‘ = 0)dNgdP,,dP}

t 721 ) t
§c||f||oo{ m(/ x§2>ds) hEQ(/ Xﬁds)// vedsdN,
0 0
-1 )
+Ex(< x<2>ds) )%ES(/ ngs)No(ut>0)}
0

< | flloo(t (w2 +1) 20t +t (o + 1) tot )
< el flloo(t?)d.
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As G is bounded and continuous on Ry x (0, 00), Proposition 9 implies

(56) lim A IEN(AG (=P, XM v)1(X]E > 0)

/AG )1(v5 > 0)dNo (")
for all 6 > 0, pointwise in (z,v) € C(Ry,Ry) X Cep. Use (53) to see that
R ER(AG (P, X v)|1(X] > 0))

AL ) o]

<c|f||oo{ Y /O;US ds /(JVst+1(Vt>0)
t -1

§c|f||oo(5_1[</0 x@ds) /Ousds—i—l(ut>0)},

the last by (28). The final expression is integrable with respect to Py, x Ny
and so by dominated convergence we conclude from (56) that

(57) 1’11?811—1// AG(z?, X" 1)1(X} > 0)dNo(v)dP,,dP

= E,, (/ AG(z v)1(vs > 0)dNo (v )dNo(z/)> V3> 0.
Use (53) as in the derivation of (55) to see
(58)
E,, ( / sup |AGy o, (=@ v ) |[1(vf = O)dNO(V)dNO(u’)> < || flloo(t73)d.

Use (54), (55), (57) and (58) and take ¢ | 0 to conclude

Recall from Lemma 11(a) that

8Gt,11 (yla 92)
3131

This, together with (58) and Lemma 7(b), implies for 0 < 6 <t

‘sz ( / (AG1 4, (2,0 1) = AG 4 (P, 0/, u))dNo(v)dNo(z/)) ‘
<l flloo(t%)8

el flloo ' ,
+ B, <// vs > 0,05 > 0)—— ftx(Q)ds T dNo(1)dNo (V") ) |z1 — 2]

< el flloo[(t7)8 + 672 ary — a4 ).

(59)

< ()2 fllooyr M.
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(28) was used in the last line. By first choosing § small and then |x; — 2]
small, one sees the right hand side of (59) is continuous in 1, uniformly in
x9 > 0. If 25 T a9, then we may construct {z"} such that 2™ 1 2 in
C(Ry,Ry), 2™ with law Py and 2(®) with law P,, (e.g., 2”1 — 2™ has law
ng,l_xg and are independent). Then AG ., (2", V', V) — AGy 4, (2,0 1)
pointwise (by an elementary argument using (45) and the continuity of f) and

(by (53))
|AGt,a:1 (xna Vl) V)‘ S gt,é(l‘la l/a V)a

which is integrable with respect to P,, X Ny x Ny by Lemma 7(b). Dominated
convergence now shows that

lim Emg (/ AGt7lE1 (33(2)’ 1/” y)dNo(l/)dNo(yl))

n—oo

= FE,, ( / AGy o, (@ u)dNO(V)dNO(V’)>.

A similar argument holds if 2% | xs, so the right-hand side of (59) is also con-
tinuous in x5 for each x;. Combined with the above this shows §’°—++(Ptf)2(ac)
T

is continuous in x € R x Ry. An elementary calculus exercise using the
continuity in x5 shows this in fact equals (P;f)a2(z) and so

(Pif)az(z) = E,, < / AGml(x(Q),y’,y)dNO(u)dNO(z/)>.

This together with (53), Lemma 7(b), (25) and (26) give the upper bound

I(Pf)eal < 1 Tee.

Turning to derivatives with respect to z1, let us assume 27Y = 1 to ease
the notation.

Lemma 7(b) and dominated convergence allows us to differentiate through
the integral sign and conclude (by Lemmas 7(b) and 11(a)) that

0 ! @) /1
(60) —P,f(z) = E,, (G; . (/ P ds, )) <e=
(9171 L 0 t

s " ! (2) (2) [
(61) 81‘2 Ptf(x) = E932 Gt,:l?l ‘rs d87xt S c t2 :
1 0

Now use (61), Lemma 11(b) with 7 = 3, and Lemma 7(b) to see that
aa—;%Pt f(z1,z2) is continuous in 1 uniformly in zo. The weak continuity of E,,

in x5 (e.g., by our usual coupling argument), the continuity of 8‘9—;th11 (y1,y2)

in y; € (0,00) (see Lemma 11(b)), the bound (37) with j = 2, and Lemma

7(b) imply ;—;Ptf(ml, x9) is continuous in x5 for each xy. Therefore (P;f)11
1

is jointly continuous.
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For the mixed partial, first note that by Lemma 11(b)

0 2

62 ‘¢ < oy 2,
(62) o0 b )| < el fllooyn

Let

t t
AlG;’ml(l'(Q% v) =G, (/0 @ 4 usdsmc?) + 1/t> -G, (/0 xg)d&x?))

and argue as for (P,f)a2, using (62) in place of Lemma 11(a) (in fact the
argument is simpler now), to see that

(Pif)i2(x1, 2) = E, (/Angm(x(Q),V)No(dz/)>.

From (62) we have for 0 < ¢ <t,

63 Eua( [ 51018160, 20105 = 0)aNo() )

t -3/2 5
SclfnooEm(( / ng)ds) ) [ [ vasaiot

< | flloot ™78,

the last from Lemma 7(b) and (26). Just as for (P;f)22, we may use this
with (37) (for j = 2) and dominated convergence to conclude that (P;f);2 is
continuous in x1, uniformly in z5. Continuity in o for each z; is obtained by
an easy modification of the argument for (P;f)a2, using the bound (63). This
completes the proof that P, f is C2.

Finally to get a (crude) upper bound on |[(P;f)12] use (63) with § = ¢ and
(37) with j =1 to see

(P f)12(2)]

< B, ( 18460, e = O)dNo(V))
G/

t
+ Exg (/ l(l/t > O)|: tan </ ng) + v, dS,x?) + Vt)
0
t
Gl ( / P ds, x§2>> ’dNO(V)D
0

t —1/2
< el fllost 2 + el flloo s, (( / x§2>ds) )Nom > 0)
0

< cll flloot ™2,

by Lemma 7(b) and (25). O

+
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REMARK 15. It is straightforward to extend Proposition 14 to general
m > 1. One need only replace the one-dimensional Gaussian distribution by
an m-dimensional one and make minor changes. One can then apply this
to the semigroup P; in (12) from Section 1.3 via a Fubini argument and
conclude that if i € CNZ, Z; = ({z;,] € Ri},x3), T ={z; : j ¢ Ry U{i}}
and ji,j2 € R;, then (P.f);,;, is continuous in Z; for each &; and

flloe
1Pl < el

2.3. L*™ bounds on the catalytic semigroup and equivalence of
norms. We continue to work with the semigroup P; on the state space RxR
from Section 2.2 associated with A! and m = 1. The main objective of this
section is to establish L>° bounds on the first order partial derivatives of the
semigroup and use these results to establish the equivalence of the weighted
Holder norm and semigroup norm from Section 1.4. The derivatives with
respect to x; are considerably easier.

PROPOSITION 16. If f is a bounded Borel function on R x Ry, then

0 c16llf lloo
64 —P, _—
(69 lomrt| <ol
and
o c6l|flloo
(65) iUQa—m%PtfHoo < f

If f € 5%, then

0 016|f|at%_% a_q
66 —P, — < ot ,
(66) Haaa tf‘oo Vot = aslllet?
and
0? a1
(67) xg—Ptf ‘ < Clﬁ‘f|o¢t?_ .
0z? -

Proof. We begin with the first derivative for f bounded Borel measurable.
Use (41) (here m = 1), Proposition 14 (for the existence of (P, f);) and Lemma
7(b) to see that

— P, f(x)

0
81‘1

1
<l f o B 37
It

_ clf e
o \/i\/iEz—Ft

We now turn to the second derivative. Note that A! and % commute and

therefore the semigroup P; and 8_21 commute. Therefore a double application
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of (64) gives

0 0
=||— Pt —P:
(©8) H3$1 L ‘&Tl 20y QfHoo
c 0
= —x2+ 8 t/Qf‘
< Sl
(t+.’E2)

This proves the first two inequalities and also shows that

(69) tlim HPt =0.
If f € S, we proceed as in [ABP] and write
0 0 0
‘8 Py f — Pff‘al (P f — f)'

Applying the previous estimate to ¢ = P;f — f and using the definition of
| fla we get

0 0 cll gl
I p L pgl< CllIlo
’81'1 2tf 81’1 tf‘ = \/E /712 T
< ata/2;.
Y N

This together with (69) implies that

‘—Ptf 35U1 P2ktf P2<k+1>tf)( )
<@t L
B Pt Vg + 2%
N 1
<clflat? e

VT2 Ft

This then immediately yields (66). Use the above in (68) to derive (67). O
NortAaTION. If w > 0, set p;(w) = %e*w. If {r;(t)} and {e;(¢t)} are as in

Lemma 10, let Ry, = Ry,(t) = S5 r;(t) and Sy = Si(t) = X5 e;(t).
ProroSITION 17. If f is a bounded Borel function on R x Ry, then

a7l flloo

0
(70) Haxgptf = ViV it
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and
2
crrm2|| fllo _ cr7llflloo
71 —P, < <
(71) xz@x% tf‘ T ot(t+ze) T t
If f € S, then
0 C17|f|at%7% a1
72 — P, < — < t2
™ |z < 22 e
and
02 oy
(73) xg—Ptf‘ < crnlflat® .
z3 o

Proof. As in the proof of Proposition 14 we may assume without loss of
generality that f is bounded and continuous. From Proposition 14 we have

(Pif)a2(z) = Ex, (/ |:Gt,:cl </0 P + v.ds, x(2)>
— G, </Ot xf)ds,wgz))} 1 = O)dNo(l/)>
+ E,, (/ [Gml (/Ot 2® +vods, 2t + yt)
— G, < /0 t xgﬂds,x?)ﬂ 1y > O)dNo(z/)>

= E1 +E2

By Lemmas 11 and 7, and (26),

t 1
(74) |E1| < C”f”oo// VstdNO(V)E:m( t (2) )
0 fo xs’ds

t _ cflle
tt+x2) t4ag

<l flloo

We now use the decomposition of Lemma 10 with p = 0. Use (30) and (31)
to conclude that if G = Gy ,, then

Ni+1 N¢+1
Ey = ct—1E<G( S i)+ L), Y e;(t) +Xé(t))

Jj=1 J'—l

—G(Zr] + Iyt Ze] )+ X{(t ))
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Let w = % and recall that |Glle < ||f]lco. We may sum by parts and use
the independence of N; from (I, X{(t),{e;}) to see that

|Ey| = ct™! Zpk G(Riq1 + Ia(t), Sk1 + Xo(t))

— G(Ry, + Ly(t), Sk + X{(t)))

< et flloo Y Ipr-1(w) = pr(w)| + et e flloo

k=1

<l ) B et
k=1

1 = k—w|

< et flleo 3 palw)
k=0

< || flloot T (B((Ny — w)?)Y2 A E(N; + w))

_ lfl

T VitEt o

This and (74) give (70).

Next consider the second derivative for continuous f and use the notation
and conventions in the above argument. Proposition 14 and symmetry allows
us to write

(Puf)os(x) =E, ( / AGED v, 1)1 (v = 0, = O)dNo(z/)dNO(u’))
+ 2E,, </ AG =z, v, ) 1(v = 0,1, > O)dNo(u)dNo(z/)>

+ E,, ( / AG(z? v, )1 (v > 0,1] > O)dNO(z/)dNO(V’)>
= E1 + 2E2 + Eg.

Use Lemma 11(b), (¢) and Lemma 13(a) with g(y;1) = G(yl,x§2)) to show
that if x; = 1(1» = v{ = 0), then

E1|—‘ x(//[ (/ x(2)+l/s+l/)dsx(2)> (/Otx@ur,/ ds x())
_G</ @@ + v,) ds, 2 >+G< 2@ ds, o )} AN () dNo ( )>‘
<[ flle m(/// Vsds/ V. dsdNo(v)dNo (v (Q)ds) )

el flloo
< C”fHoo £2(t +x2) (tJr 72)2’
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where in the last line we have used (26) and Lemma 7(b).

For FE5 we may drop v; from the expression for G(X, v, '), regroup terms,
and use Lemma 11(b) and (25) to write

R T
—G(/ 2@ 4/ ds, zl? +yt>‘ (vy > 0)
0

t t
+ ‘G(/ ) 4 v, ds,x?)) — G</ @ ds,x§2)> ‘l(ug > O)}
0 0

dNO(du)dNo(V’))
i [ ([ 24) )
< M

where in the last line we have again used (26) and Lemma 7(b).
Again using the decomposition and notation of Lemma 10 with p = 0 and
(25), we have

(75)

|E3| = (v9) 2t 352(// (/ @y, + v dsa:t —|—Vt—|—l/t>
t
- G(/ 2@ 4 ds, 2P + V£> - G(/ 2@ 4y ds, 2P + 1/t>
0 0
¢
+ G(/ 2 ds, x§2)>dPt*(z/)dPt*(V’)> ’
0

c N +2 N¢+2
. E(G(z_j 0+ 100 3 0) +Xa<t>)
N;+1 Ni+1
~26( Y ri)+ 100, 3 es(0)+ X400
j=1 Jj=1

+G(er + Iyt Zej )+ X{(t ))’

c(wat)” G(Riq2 + I2(t), Sp42 + X0 (t))

— 2G(Ry41 + I2(t), Sk1 + X((t)) + G(Ri, + I2(t), Sk + X((2))]|-
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Recall here that w = J#. Now sum by parts twice and use |G| < Ifleo toO
2

bound the above by
el (aat) ™ ol-(w) + +Z wlpr-a) = 201(w) + (0]
< el flloe2t)” [Zp w + () + up (0)

< llntoan [ Lt | oo
< el lotzt)™

On the other hand if we use the trivial bound |G| < ||f]le in (75) we get
[By] < ¢l f ot 2 and so

cllfllse
Bsl < e t(t +x2)’

Combine the above bounds on Ey, E2 and Es5 to obtain (71).
The bounds for f € S¢ are then obtained from the above just as in the
proof of Proposition 16. O

Set J; = 2901, where I; is given by (44) and recall Convention 1, as
adapted in (17). Recall that in our current setting, |f|ca is as in (43).

LEMMA 18. For each M > 1 and a € (0,1) there is a c15 = c15(M, ) > 0
such that if MY < M, then

(76) [fala < aslflegllgllos + [ flloolgla
and
(77) [fglla < cislllfllcallgllos + 1 flloclglal

Proof. Let x = (x1,25) € R x Ry and define f(y) = f(y) — f(x). Then
(18) gives

(78)  |Pi(f9)(@) — Fo(@)| < |P.Fo)(@)] + | F(2)l|Prgle) — g(c)
< lglloE (/fa: |th<z—x1—bt>d)

+ 1 f lloolglat®’?.
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Write
@) B[ 1o (e - o - th0)0:)

<5, ( [ 176 = felpate — o - b?t)dz)

+ E,, </ |f(2,22) — f(x1 + b9, 20)|pg, (2 — 21 — b?t)dz)
+ | f (w1 + 0, 22) — f()|
= E1 + Eg + E3.
The definition of |f|a,; gives

E1 < |fla2Be, (o) — za]®25 %% A ll® — 2a]2/?)
2 o —a/2 2 a
< flaz [Ezm% ) o)y % A By (o2 — waf?) /4}.

Lemma 7 (a) gives
By, (|20 — 22[?) < eM(8 + w5t)
for some universal constant c. Therefore
By < [fla2e(M, @)[(( + w2t)*/2y %) A (8 + 2at)*/ ]
< (M, Q)| flaat®?[(t/z2 + 1) A (1 + 22/)/4]
< (M, @)2°72| f|a 0t/

Similarly we have

Ba < IflaaBos [11: = @4 a0y ) A s = 08+ o)
py(z—x1 — b?t)dz)
< |flas (Emuf/ 2,70/2) Emuf‘/‘*))

< Cf|a,2(<Emz(Jt)a/2x2a/2) A E:m(Jt)aM)

Lemma 7(a) shows that F,,(J;) < 2M (t*> +zot). Put this in the above bound
on Fy and argue as above to see

Ey < ¢(M, a)|f|a2t""?.
Put the above bounds on E; and Es into (79) and then in (78) to see that
|Pi(f9)(x) = fg()]

< Nglloo[e(M, @) (| fla2 + fla2 + 09121 fla2)]t*2 + || fllclglat®’
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and so

1fgla < (M, a)|fleg gl + 1 fllolgla-
This gives (76) and (77) is then immediate. O

THEOREM 19.

(80) 2+ c16 + c17) U flog < |fla < cislflog.
In particular C& = S and so S contains C' functions with compact support

inR xR,

Proof. Set g =1 in Lemma 18 to obtain the second inequality in (80).
Let z,h € R x R4, t > 0 and use Propositions 16 and 17 to see that

(81) [f(x +h) = f(2)] < 2If|at®? + [P.f(x + D) = Pof ()]
< 2| flat®? + (c16 + c17) | flat®* 2 (22 + 1) 712 |R].
First set ¢t = |h| and bound (z +t)~'/2 by t~1/2 to see that (81) is at most
(82) (2 + c16 + c17)| flal B2

Next for m5 > 0, set t = |h|2/22 and bound (2 + t)~1/2 by 25 /? to bound
(81) by

(83) (2 + c16 + e17)| flawy */2[R]°.

The first inequality in (80) is now immediate from (82) and (83) and the proof
is complete. O

We next state versions of Propositions 16 and 17 for general m > 1, i.e.,
for the semigroup P, on R™ x Ry given by (18). The proofs are minor mod-
ifications of those already given for m = 1 as one replaces a one-dimensional
Gaussian density by an m-dimensional one and then makes some obvious
changes. We have only stated the extensions we will actually need below.

ProrosiTION 20.
(a) If f is a bounded Borel function on R™ x R, then

m—+1

3 0 c20||floo
84 — P < 4N
( ) Jj=1 833_] tfHoo N \/7E Tm+1 +t
(b) If f € S, then
m+1 a 1
3 620|f|at2 2 a_q
9 gy < lflat22E s
(85) Z oz v f L} S Tt S 20| f]

Jj=1
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and
+
(86) _Z

REMARK 21. The proof of Theorem 19 now goes through with only minor
changes to prove (80) in this m + 1 dimensional setting. For m = 0, i.e., for
the semigroup of Al f(z) = b3 f'(z) +xf"(x) (x > 0), this result was proved
in Section 7 of [ABP] assuming only b? > 0 (as opposed to the b? > 0 assumed
here). This strengthening will be used in Section 3 below.

2
xm-‘rla 2Ptf S 620|f‘(xt57

oo

2.4. Weighted Holder bounds on the catalytic semigroup. In this
section we will obtain bounds on the weighted Holder norms of P;f. We
continue to work in the same setting as Sections 2.2 and 2.3 with m = 1. As
usual, the z; derivatives are easier.

PROPOSITION 22. If f is a bounded Borel function on R x Ry, then for
allz,h e R x Ry,

or f opr,f co2 | fll oo
bl 228 _ 2t < 2211/ oo
(s7) o G o) < bl
and
0P, f O*P.f ca2 || f oo
- <2l p)
89 el n —a @) < el oy,
If f € 5%, then for all x,h € R x Ry,
OP.f OP.f . s
— < 272
8 |G - G| < cnlflattHan 02,
and
3213 82P @ 3
(90) |(z+ h)2 Zf (z +h) — w2 ;f (@)| < ool flat® "2 (w2 +1)7V/2[h),
Ox? O0xy

Proof. As in the proof of Proposition 14 it suffices to consider f bounded
and continuous. As (87) is simpler, we only give a proof of (88). Recall
¢; is the ith unit basis vector and the definition (44) of I;. From (61) and
Lemma 11(a) we have (recall G, denotes the second derivative with respect
to 1),

91)  |w2(Pef)u(@ + haér) — z2(Pef)1(2)]
= 22| Bey (G, o, — G ) (L))
< @203 oo Baa (1)
< 93| flloocrt =/ (2 + t)~3/?|hy| (by Lemma 7(b))
< el flloot ™ (o + )72 |
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Turning now to increments in x2, (61) implies that for he > 0,
(z2 + h2)(Prf)11(x + haéa) — 22(P f)11 ()
= (w2 + 12) By ny = 22 B2 (GYly, (T 2”))

= Mo By iy (Gl g, (I, 27)) + 22(Euyiy — B )Gy, (I, 22)))
=F + Es.

By Lemmas 11(a) and 7(b),
|Er| < hoent || fllooBagtns (I71) < el flloot™ (a2 + 1) he.

For E; we use the decompositions (33), (34), (35) and notation from
Lemma 10 with p = % Then

<G;’xl(zm )+ Io(t) + I (¢ Zea )+ X4 (t >
-G/, (Z i (t) + L (t i e;(t) + Xé(t))) ‘

=1

|Ea| = x2

< 9 < tlrl (ZTJ )+ Io(t +I3 Zej )+ Xt >
-Gy, <ZTJ )+ Ia(t Zea )+ Xo(t ))‘
N} Ny
vl (om0 + 10, S0+ 400
j=1 J=1
Ny
—GQ',:“(ZTJ + It Ze] )+ X (t ))’
j=1
= Ega + Egb.

By Lemmas 11(b) and 7(b), and the independence of z(?) and =",

t —2
|Bsal < 22¢]|flloo By (( / x@ds) )E(I:?(t))

¢
< zy || fllsocrt 2 (22 +t)_2h2// vsdsdNo(v)
0

< ll flloot™ (w2 + 1) " ha,
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where (26) is used in the last line. Recall that Ry = 2521 r;(t) and py(w) =
e~ww" /k!. The independence of N/ from the other random variables appear-
ing in the first term in F9, allows us to condition on its value. The same
is true for N; in the second term in Eo. Therefore, if w = x5/279t and
w’ = w + (ha/48t), then by Lemma 11(a),

|Eop| = 2

1) ~ el B, (e + 0, + Xé(t)))'
=0
/ " ) du ||f|ooE(< / X)) d))

o0
< ctw Z
k=0

w' o . —1
< c||f|\ootw/ Zpk(u) Ik~ ul dut™! (E + t) (by Lemma 7(b))
= U 2

w

w

§c||f|\ootw/ w2 dut™ @y + )71

w

< | flloow 2 hat ™ (z2 +1) 7!
< | fllsohat ™% (g + £) /2.

The above bounds on |E1|, |E2e| and |Eg|, and (91) give (88).
Let f € S® We only prove (90) as (89) is then proved by the same
argument. If g = P,f — £, then ||g]lce < |flat®/?, and so by (88),
|(@ + h)2(Parf — Pef)ii(x + h) — z2(Parf — Pif)11(z)]
= |(z + h)2(Peg)ir(z + h) — z2(Prg)1 (z)]
< c|f\at%_%(x2 +1)"Y2|h| — 0 as t — oo.

Therefore we may write the left-hand side of (90) as a telescoping sum and
use the above bound to show

|(x + h)2(Pf)ir(x + h) — z2(P )i ()]

o0

> (@ + h)o(Paref — Por-1yf)ua(z + 1)
k=1

— 2o(Por [ — Por—1,f)11()

< el (@) 3 (g + 2612
k=1

<l flat? 2 (e + )20, O
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ProPOSITION 23. If f is a bounded Borel function on R x Ry, then for
allz,h e R x Ry,

OP, f oP,f ca3[ f oo
_ 2t < 2311/ lloo
®2) ' oz, "M T g, ’ s 1)
and
O*P, f O*P.f 23| fll oo
bl 2 _ < 231/ 1lee
If f € 5%, then for all z,h € R x Ry,
OP, f OP,f a_q 1
_ < 2
o |G e m - G @) < calslatt o+
and
%P, 9?P, o
95) |(@+ 122 @+ ) — 222 (@) < £t E (o 4 1)1,
Oxs Oxs

Proof. The last two inequalities follow from the first two just as in the
proof of Proposition 22. As the proof of (92) is similar to, but much easier
than, that of (93), we only prove the latter. As usual we may assume f is
bounded and continuous.

To simplify the write-up we assume 7 = 1 but note that our constants, as
usual, will be uniform in € <~y < e~!. Recall the notation AG; ., (X,v,v/)
from (45) just before Proposition 14. That result shows

(96) (Pif)22(x) = Eg, (/ AGi ., (@ v, I//)dNO(V)dNO(I/I)>

ZE (AG] ,, (2@))
j=1
where
AGE, (X / Ay (X, 1,0/ ) 1 (s = v, = 0)dNo(v)dNo (),
AGE, (X / AGy.a, (X, 0,0)1 (v > 0,1, = 0)dNo(v)dNo (1)),
AGY, (X / AGy ., (X, v,V )1(vy = 0,1, > 0)dNg(v)dNo(v/'),
and

AGE, (X) / A0y (X, v,0) (g > 0,0 > 0)dNo(1)dNo (1)),

= (,ygt)_Q/ AC;’t,w1 (X7 v, Z/)l(l/t > O,Vé > O)dPt*(V)dPt*(y/)
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In the last line P} is the probability defined by (27) and we have used (25).
AG{,Qcl (X) depends on X only through X; and fot Xsds, and so we will abuse
the notation and write AG{w1 (X4, fot X,ds) when it is convenient.
Consider first the increments in 2. Let hy > 0 and use (96) to write
(97) (@2 + ho) (P f)2z (@1, 22 + ha) — 22(P; f)az (21, 22)]
< ha|(Pf)22(w1, w2 + ho)|

4
+ 3 |((@2 + 2h) Euy 1, — 22E2,)(AGH ,, (X))].
j=1

In the following lemmas we again use the decompositions of x?) and X} +h

from Lemma 10 with p = %
LEMMA 24. We have

(X))| < C24||f||ooh

|(($2 + 2h2)Ex2+h2 - xQExz)(AGl — t({EQ + t) 2

t,xl

Proof. Write AGY for AG{,I1 and G for Gig,. The left-hand side is
bounded by

2ho By, i, (JAG (X))

t t
E(AGl ( / z(? +des,Xf+h> — AG! ( / xff)ds,Xerh))‘
0 0
t t
(a0 ([ aaet? s xt) - ([ a2 )
0 0

=F + Ey + Es.
Use Lemmas 13(a) and 11(b), and (26) to get

¢ ¢ ¢
Eiyin, <// (G(/ X.ds +/ veds +/ V(gds,Xt)
0 0 0
¢ ¢ ¢ ¢
— G< Xsds+/ I/st,Xt) — G( Xsds—|—/ V;ds,Xt>
0 0 0 0
¢
+ G( / Xsds,Xt)>1(ut —y = O))dNo(u)dNo(z/)> ‘
0

< 20965 flloo By sy <</Ot Xsds) 2> V /Ot I/Sdsto(V)} 2

< cha|| flloot (22 + 1) 77 = cha|| flloo (2 + )72

+ X9

+$2

By < 2hy

The integrand in Ej is a third order difference in G(-, X**") to which we
may apply Lemma 13(b) and the bound on %37?@1’ y2) from Lemma 11, and
J1
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the independence of z(? and X" to conclude that

By < za¢s]| flloo By ((/Ot xg2>d5) _3)E</Ot ngs)> (/ /Ot Vsdsto(z/))Q

< || flloot 3 (zo + 1) 3hot3
< el fllso(2 + ) 2ha.

Finally bound Fs5 by

t
2oF <1(Xth > 0)‘AG1 </ 2 @ds, 2 + Xth) D
0

t
+x2E<1(Xth > O)‘AGl (/ zgz)ds,m?)) D
0

Each term can be handled in the same way, so consider the first. The integrand
defining AGl(fOt xEQ)ds, :ng) + X}') is a second order difference in G(-, x§2) +
X") to which we may apply Lemma 13(a) and the bound on ‘?;T?(yl, y2) from
Lemma 11. This allows us to bound E3 by

call flloot2 B, ((/Ot xg2>ds> 2>P(Xth > 0) (/ /Ot usdsto(V))z

< || flloomat ?(t + z2) Phot ™'t
< C”f”ootil(lé + t)ilhg.

We have also used (28) in the second line to bound P(X}* > 0). The above
bounds on F; — Ej3 give the required result. O

LEMMA 25. For j = 2,3 we have

25| fll oo

taa+1t) =

(22 + 2h2) By, — 022 )(AGH ,, (X))] <

Proof. By symmetry we only need consider j = 2. As before we let w =
st wn = (% +ha) (08071, S = X7 ¢5(), Ri = 5y (1), and No(- N
{vy > 0}) = (\9t)71P7(-) by (27). We also write G for G ,,. Let Q) be
the law of I!(t). As this last random variable is independent of the others
appearing below by an elementary property of Poisson point processes, we
may condition on it and use (33), (34) and (35) to conclude
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t
(332 + 2h2)E1-2+h2 (AG2 ( Xds, Xt)>
0

(]

t t
|:G<Iz(t) +z+ Ry; +/ vsds +/ vids, X§(t) + St + Vt)
0 0
¢
_ G(Iz(t) +z+ Ry, + / vids, X (t) + SN{)
0
¢
— G<12(t) +2+ Ry, + / veds, X (t) + Sn; + Vt)
0

+ G(I2(t) + z + Ry, Xo(t) + SN;)} (v = O)dPt*(I/)dNo(V/)th(z)).

Recall that py(u) = e~ %u¥/k!. N/ is independent of (I5(t), {Rx}, {Sk}, X}(t))
and so we may condition on its value to see that the above equals

(98) 2thpk wp,) <// { ( I(t) + 2

+ Riq1 +/ veds, X5(t) + 5k+1>
0

- G(Ig(t) +z+ R+ /0 vids, X{(t) + Sk>
— G(Ix(t) + 2 + Ris1, Xo(t) + Spt1)
+ G(L2(t) + 2z + Ry, Xj(t) + Sk)] dNo(y’)th(z))
=23 au(wn) [ (Grar(2) ~ Gul2)dQu(:),
k=0
where g, (y) = ypx(y) = (k + 1)pr+1(y) and
Gr(z) = E(/ 1(v; =0) |:G<Ig(t) +z+ Ry +/0 vids, X{(t) + Sk)

— G(Ix(t) + = + Ry, X\ () + Sk)} dNo(z/’)>.

When working under E,, there is no I%(¢) term and so similar reasoning leads
to

o0

(99) ngm(AGQ( /Otxf)ds,x§2)>) 23" u(w)(Gr41(0) — G (0)).

k=0
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If Hi, = [ Gi(2)—Gr(0)dQn(2), and di, = g (wp) — g (w), where d_; = q_1 =
0, we may take differences between (98) and (99) and then sum by parts to
get

(100)

t
’ |:(l‘2 + h2)Ex2+2h2 — I2E12:| (AG2 (/ XSdS,Xt>) ‘
0

oS atwn)| [ Gra (o) - Gk<z>th<z>] - )G 0) - G (0)
k=0

A v St

:22:(d;C 1—dg) /Gk )dQnr(z +ZQk1 — qr(w)) Hy|.
k=0

k=0

Now
t
= E(// 1(v; = 0) [G(Ig(t) +z+ Ry + / vids, X{(t) + Sk>
0
— G(Ix(t) + =z + Ry, X{)(t) + Sk)
t
- G(Iz(t) + Ry + / Vids, X}(t) + Sk>
0
+ G(Ix(t) + Ry, X((t) + Sk)} dNo(z/’)th(z)>.
The expression inside the square brackets is a second order difference in the

first variable of G to which we may apply Lemmas 13(a) and 11(b), and
conclude

(101)

2] < el [ 104 =0) /Otu;dstow) [zt ((/ (s ))

t —2

< |l looths / / z/;dstO(z/)(% +t> £2 (by Lemma 7(b))
0

<o fllooha (s + 1)~

For all k > 0, gx—1(w) — gr(w) = pr(w)(k —w) and we therefore may conclude
that

(102) > lage-1(w) = gr(w)| = Zpk )k —w| < w'/?.
k=0
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mma 11(b) implies that

Guta < e ([ Xé(s)ds)_l) [ [ viasaio)

+t)! (by (26) and Lemma 7(b)).

Use the identity kp),(v) = k(pr—1(u) —pr(u)), for all £ > 0, and some algebra

< cf| flloo (2

to see that
(104) D ko —di| =Y
k=0 k=0

?Dnﬂg

o

2 LJe

IA

g

= 2hy

Use (101)—(104) in (100) to see t

((.132 + 2h2)Ew2+h2 -

cl| fllocha

Wh

I

Wh,

kpp.(u) = (k + 1)pjy1 (u)du

1 (1) — g, (u)du

w

Wh

I

' Li_.;pk(u)(k — u)2u_1} + 1du

(yat)~".

hat

r9F,,) (AG2 ( /O t X,ds, Xt>> ‘

VT2 || flloche

o

= 9t(xy +t)

< C”fHooh?’
- t(.’ﬂQ +t)

as required.

LEMMA 26. We have

|((£€2 + 2h2)E12+h2 - xQEmz)(

A /'ygt (1‘2 + t)2

AG?

t,x1

26| f | o
(X)) < th

Proof. We use the same setting and notation as in Lemma 25. Also intro-

duce
Gk (Z)

and

Hy, =

E(G(I

(t) + Ry + 2z, X\ (t) + Sk)),

/ (Gr(2) — Gr(0)) dQn(2).
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As in the derivation of (98) we have

(105)

(23 + 2h9) Egyin, (AG (/ X,ds Xt)>
- [

+/0 vsds +/0 vids, Xo(t) + Sn; + v + Vg)
_ G(Ig(t) + Ryy + 2 + / vsds, Xo(t) + Sn: + ut)
0
_ G(Ig(t) + Ry + 2+ / vids, Xo(t) + Sn: + ut’)
0
+G(I2(t) + Ryy + 2, X4(t) + SN;)} AP} (v)dP; (u’)th(z))
Ot)il thpk(wh) /(ék-{-Q(Z) - 2ék+1(z) + ék(z’))th(z)
k=0
207 gi(wn) / (Grra(2) — 2Gii1(2) + Gr(2))dQ (2).
k=0

A similar argument holds under P,, but now there is no I%(t) term and
hence no @}, integration. This leads to

(106) zyExo (AG4 (/t Xds, Xt>)

2(75t)” qu )(Grp2(0) — 2G111(0) + Gr(0)).

Recall that dp = qr(wp) — qx(w) and pr = dp = @ = 0 if k < 0. Take
differences between (105) and (106) and then sum by parts twice to see that

(107)

t
(2o 4 2h2)Epyiny, — 22 E,,) (AG4 (/ Xsds,Xt)> ‘
0

S awtwn) [ (Grsal) 26 (2) + Gu:)d@n(2)
k=0

() (Gry2(0) — 26111 (0) + Gk<0>>\
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2(v5t)” / (Grya — 2G4 + Gi)(2)dQn(2)
+ qr(w)[Higo — 2Hyp1 + Hy
2086 (s~ 2dims + o) [ Gu(2)dQu(2)
k=0

Z Ge—2(w) — 2q—1(w) + qi(w)) Hy|-

Lemmas 11(a) and 7(b) imply

(108) |Hi| = |E(G(La(t) + Ry + I5 (), Xo(t) + S)
G(I5(t) + Ry, Xo(t) + k)|

< | fllE ( [ xas) 1)E<I§:<t>>
< |t 1<‘T; +t>_1//0tusdstO(u)hg

< el flloo (@2 + 1) ha

We also have

(109) D lae—2(w) = 251 (w) + gr(w)]
k=0
> _wwk k(k —1) — 2kw + w?
Pt e
k=0
< Zpk(w)[(w_iﬂ — 9.
k=0

Finally g (u) = (k + 1)pr+1(u) implies for k > —2,
i (u) = (k + 1)y (u) = (k + 1) (pr(u) — prsa(u)).
Use this and a bit of algebra to see that if

h(k,u) = (k —u)® — 2(k — u)® + 3u(u — k) + k,
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then
(%S) wp
(110) 3 1des— 21+l =3 [t = 26,0 + dhla) du
k=0 k=0'"W
0 Wh,
:Z/ pr(u )h(ku) du|.
k=0'"W u?

If N = N® is Poisson with mean u, then for u > 1,

(111) u 2E(|h(N,u)|) < cu™2(u¥? + u+ 3u? + u) < cu”V/2.
For 0 <u <1,
(112) pk u)| = e u? — v 4w + e uT Hu(—2 4 du — u?)|
> e Uy k2
+2Tm<kyu>\
k=2
7uuk 2
<e Uu+1)4eY —2+4u—u2|+ZTck2(k—1)
k=2
> e~ Uy k2
SC+CZWI€:C+C(U+2) SC
k=2
Use (111) and (112) in (110) to show that
(113) > ldp—o — 2dx_1 + dy)|
k=0

oo

wp,
/ Zpk w2 |h(k, u)|du

Wh
< / clu+1)"2du < e(w+ 1)V 2hy(798)
Chg
< 2
\/Z\/IQ +t

Substitute (108), (109), (113) and the trivial bound |Gy (2)| < ||f]lee into
(107) to conclude

t
‘((sz + 2h2)Ew2+h2 — .Z‘QEQUZ) <AG4 (/ Xds, Xt>> ‘
0

cl[fllsohe c|[ flloohe
- t3/2($2+t)1/2 t(l’z +t) ’

as required. O
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Finally we consider the increments in x;.

LEMMA 27. If f is a bounded Borel function on R x Ry, then for all
r€R xRy and all hy € R,

2 2
P f 9 b f
(114) xga—‘rg(ﬂjl +h1’x2)_x26—x%(x17x2)
< car|| flloot ™32 (w2 + 1) 2| ).
Proof. Let

AGl, (X)=AG], 1, (X) = AG], (X), j=1,....4,

so that by (96),
(115) @o(Prf)2(w1+h1, w2) —22(P f)22(21, 22) ZMEW (A2GY,, (=),

Considering the j = 1 contribution in the above sum first, write

2B, (MG, (2?))

—xQE@(// Vt—yt—O[GmlJrhl(/ )—l—us—i—udsx )
— Gty ihs </ @ 4 usds7x§2)> — Gtz +hy (/ @ + ngsmgz))
+ Gtz +hy </ x(2)ds x(2)> — G,y </ 2 4+ Vs + U, ' ds x(2))

+ G0y (/ @ + Vsds,xg2)> + Gty </ @ + V;ds,zgz))
— Gy (/ xgz)ds,x?))} dNO(V)dNO(V')>.

The expression in square brackets on the righthand side is a third order dif-
ference of Gy, (y1,X:) (first order in z7 and second order in y;) to which we

3
may apply Lemma 13(b) and the bound on 9.6

W(yl,yz) from Lemma 11,

and conclude

(116)  |22E4, (MG, (¢?))]

—5/2 2
< ol flocEn, <(/Ot mgQ)ds) >|h1|(/ /Ot ysdsto(u))

< canl|flloot ™2 (w2 + )72 a2
< ellflloolhalt ™12 (w2 + )72,
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Turning to A2G7 ., set
t
Hy o (It Xe, v, ha) = Giogy 1y ([t +/ Vsd57Xt) — Gtzy4hy (11, X¢)
0

t
— Gt,.’ﬂl (It =+ / Vst, Xt) + Gt,$1 (Ita Xt)
0
Then
(117) |2 By, (A*GE,, («?))]

t
o[ 100 =015 0 [Ho ([ 4 s 10
0
t
— Hy o, (/ xgz)ds,xﬁz), v, hl)} dNo(l/)dNo(u'))> ’
0

We may apply Lemmas 13(b) and 11(b) to see that

t
Hy o, (I, X1sv, )| < el flloo L2 1] / Vyds.
0

Use this to bound each term in the integrand on the righthand side of (117)
and so conclude

(118)

w2 Buy (MG, (22)))]

t —3/2 t
§c|f||oox2Ew2(</0 xg2>ds> >|h1//0 vedsdNo(V)No({V/ : 1] > 0})

< || fllooat ™2 (o + )72/ |hy |t
< | flloot ™3P (g + )7 |hy.

By symmetry the same bound holds for |22 E,, (A%G} | (z@))].

To bound the j = 4 term in (115), we use the notation and setting intro-
duced for Lemma 10 (with p = 1/2) and in the proof of Lemma 25. For hy
fixed, let DGy 4, (y1,92) = Gt,2y4h, (Y1,Y2) — Gt,z, (1, y2) and define

AGy = E(DGt7x1 (Rk + Ig(t), Sk + Xé(t)))
The Mean Value Theorem and the bound on |0G; 5, /021 (y)| in Lemma 11

implies

(119) AGK] < cllflloclh |, (( / t X6<8>d8)_1/2)

< el flloolhalt 12 (22 +£)71/2.
Recall that w = x2(279t) ™! and g (w) = wpg(w).
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Then
w2 By, (AQG?M( )

= 25(73t)” x2{/ DGtm(/ —|—V3+Vd8.17t +Vt+Vt>
— DGt 4, (/ +V5ds xt +yt)
0

¢
— DGy 4, (/ 2@ 4 ds, 2P + Vt)
0
¢
+ DG 4, (/ +Pds, x?))dPt*(u)dPt* (u’)}‘
0

cw
= T\E(DGt,ml (I2(t) + Ry, 12, Xo(t) + S, 12)
- 2DGt7Z1 (IQ(t) + RNH'l? X(/)(t) + SNt+1)
+ DGy 4, (I(t) + Rn,, X((t) + Sn,))|

=ct 'Y wp(w)[AGki2 — 2AGk11 + AGy]
=ct ™' (gr-2(w) — 2qx-1(w) + g (w)) AGk|,
k=0

where we sum by parts twice in the last line and use ¢ = 0 for k£ < 0. Use
(109) and (119) in the above to see that

(120) |22 By (MG 4, (2 )] < et Y| flloolhalt™ (22 + )71/
< el flloolhalt 2 (22 +1)71/2.

Putting (116), (118) and (120) into (115), we complete the proof of Lemma 27.
O

We now may finish the proof of Proposition 23. Use Lemmas 24, 25, and
26, and (71) from Proposition 17 in (97) to obtain

[(z2 + ha)(Pyf)22(z1, x2 + he) — x2( Py f)o2(z1, x2)|
< 17l fllooho cll flloch < c|| flloch2
tt+x2) 32+ xo)' /2 T 32(t 4 ag) /2

Lemma 27 gives the corresponding bound for increments in z; and so the
proof of (93) is complete, as required. O

Finally we state the required extensions of Propositions 22 and 23 to general
m > 1, i.e., for the semigroup P; on R™ x R, given by (18). The proofs are
again minor modifications of those already given for m = 1.
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PROPOSITION 28.
(a) If f is a bounded Borel function on R™ x Ry, then for all z,h €

RmXR+,
m+1

aptf 3Ptf -3 —-1/2
Y| @+ ) = G @) < caslfllct ™ st +0)7 AL

j=1
(b) If f € S%, then for all x,h € R™ x Ry,

m+1

OP f opP, f
e~ G )
; 8$j 8xj
02P, 02P, f

a_ 3 _
< cas| flat® 2 (Tmpr + )7 2A).

Proof. The only step which is slightly different is the derivation of the
bound (91) for

(121) |Zm+1(Pef)ii(x + héj) — Tmi1(Prf)ii(2)]

for i # j. We again omit the analogous bound for the first derivative. As in

(91), (121) equals
PCrurne;  0?Gig m41
B (552 - T ot

As in Lemma 11 one easily checks that

‘828

xm+1

—-3/2
G (y1,y2)| < cll fllooyr™

and the upper bound (91) for (121) now follows just as before. The other
steps in the proof are trivial modifications of those used for m = 1. O

REMARK 29. If m = 0 so that P; is the semigroup of

Al f(z) = b f'(2) + e f"(2),

Propositions 20 and 28 continue to hold as we may consider functions which
depend only on x,,,1. Here we assume b9 > 0 but in fact these results (with
m = 0) were proved in [BP1] (see Section 4 of that reference) for b9 > 0.
There the weighted Holder norm | [ca was used but these are equivalent by
Remark 21. This extension will be used in the next section to handle the
coordinates i € No.
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3. Multi-dimensional bounds

We return to the setting of Section 1.3 and recall the notation introduced
there. In particular we will work with the multi-dimensional semigroup P; =
[I,c; P/ on the state space Sy = {(x1,...,24) : ©; > 0 Vi ¢ N1}, where
I = (ZNnC)U N;. It is now relatively straightforward to use the results
from the previous sections on the semigroups P}, i € I, to prove the required
bounds on the resolvent Ry of P;. The arguments are easy modifications of
those in Section 5 of [BP1], although the setting is a bit more complex as in
[BP1] the P} are all one-dimensional. Recall that if i € Z N C, then b? > 0.

For k € I let

yk = ({Z/j}jeRk,yk)7 itkeZzZn 07
Yk = Yk lfkeNQ,

Uk = ({yi}igriumy) if k€ ZNC,

Uk = (Y1, Yk—1,Yk+15 - - -, Ya) if k € No,
and R, = RIF xR if k € ZNC and Ry = Rif k € Ny, If hy € Ry,
and j € Ry, set hpé, = hypép + ZjeRk hjé;, respectively hpéy, according as

ke ZnC (and hy = ({h;}jers, hi)) or k € Na (and hy, = hy).
Let f: Sy — R be a bounded Borel function. For k € I define

Felgwitein) = [ 1) T] Pitods).
i€l itk
Then
(122) Pif(z) = PF(Fy(-t,2%))(Zy) for all k € 1.
If h € Ry, and k € ZNC, then
|Fy (G + s t, &) — Fr(Gr3 t, @)
=| fir+ e - s T PiGenan)
iel itk
< |l 1By " A R]/).

A similar argument works if k € Ny with h“y,;a/2 in place of [|71|ay,;a/2 A
g
Therefore

(123) |Fk(~;t,fﬁk)|cg < |f|a,k forall ke I.

Here [Fy(+;t, Zx)|co is defined as in Section 1.4 with {k} N (ZNC), {k} N Ny
playing the roles of Z N C, and N, respectively.
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If F:5)— R, let

0Ty, 830]- jER Oxy,

oF oF ‘ OF
—| = — —1 ifkeZnC,
0Ty, j;k O0x; oxy,

oF or

a—jk = a—xk’ if k S NQ,

and for k € I, set

oF

(125) ’ .

. = sup{’g—i(x) rx € SO}.
Similarly introduce
2 2
ALF = <{l’ka]§} ,I’kalj), ifke ZNC,
075 ) jen, O

2

0°F
AkF = .’Eka—x%,

and define |ApF| and ||AiF||o by the obvious modifications of (124) and
(125).

if k€ Ny,

ProrosiTIiON 30. There is a constant csg such that
(a) forall f € CX(Sp), t >0, 2 €Sy, and k € I,

OF f

_ _1 _
0Ty, (x) < 030|f|a,kta/2 1/2(t+xk) 2 < CBO‘fla,kta/Q 1’

and
[AKP; flloo < esol flast® ™
(b) for all f bounded and Borel on Sy and all k € I,

or.f

(126) < csol flloot ™

‘ o0

Proof. By (122) and Proposition 20 (see Remark 29 if k € Na),
1ARPflloe < esup [Fu(-5t, &) ot/
T
< csup |Fy(-;t, i:k)\cgta/%l (by Theorem 19 and Remark 21)

S C|f|a,kta/2_17

the last by (123). The inequalities for the first derivatives are similar. Use
Proposition 20(a) for part (b). O
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LﬁEMMA 31. There is a constant ¢z such that for all bounded measurable
Ry =R, t>0,kel and z,h € Ry,

(a)
|Pff(z+h) — PFf(x)] < el flost®? V2 (ap + ) 7/2 ),
(b) ) )
|Pf f(z+h) — PFf(2)] < ca1l fllsct .

Proof. This is a simple application of the Fundamental Theorem of Calcu-
lus and the bounds on |0PF f /0% (z)| from Proposition 30. O

Let I; = R;U{j},if j € ZNC, and I; = {j}, if j € Na, so that (J;c; I; is
a partition of V. If j # k € I, define

.’i‘j’k = (xi,i ¢ Ij U Ik) S R{l’“"d}_ljujk.
For f: ]Ri — R be a bounded Borel function and y; € I;,yi € I, let
iel—{j,k}

Define |F} (;t, 25 k)|a,; and |Fj (-5t &%) |a,k as in Section 1.3 with {j,k} N

ZNC and {j, k} N Ny playing the roles of Z N C and Na, respectively. Then
just as for (122) and (123) we can show

(127) Pif(r) = // Fye (g, Ui t, 25,0 P (25, dg;) PF (T, di),
and
(128) |F k(58 250 0 < 1 flanss [F k(5825 0) ok < [ flak-

PROPOSITION 32.  There is a constant czz such that for all f € C5(So),
i,kel and h; € R;,

(@
0P, - 0P, -
29) |G ot i) = S 0)| < canl ot/ )],
(v

(130) [Ak(Pf) (2 + hi&i) — Ap(Pef) ()| < ol f

Proof. Assume first that ¢ = k € I. By (122) and Proposition 28, we have

I(P.f) Ty o)

a,it_3/2+a/2(73i _~_t)—1/2|]’7,i‘.

(131) ‘

o _. - o _.
< LRt ) (s 5. Ot A ) (s
> ‘axi Py (Fi(5t,24)) (T + hiey) (%i‘ipt (Fi(sst,2:))(2s)

< |5ty @) 0t ™23 2 (2 + 1) V2 Ryl
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Note that if k& € No we may still apply Proposition 28 by Remark 29. The-
orem 19 (see Remark 21) and (123) imply |F;(-;¢,34)|a < ¢|f|as and so the
proof is complete in this case.

Next consider ¢ # k. Then (127) implies

o(P,
g;j) D)= 5 // (s G s ) PR (Ers dige) P (24, i)

/ Fog (5,1, 240 (20) P (24, i),

where differentiation through the integral is easily justified using

(132)

’ o0

H zk yzy it & k))

< ¢|F; k(i) - t,:%i’k)|a,kto‘/2_1 (by Proposition 30)
< | flait®?7 (by (128)).
Let
Kig(Fist.0) = o PEFLa (01,530 (1),

For i € I, the above representation and notation together with Lemma 31
give

o(P.f)
0Ty, ($>

= /Ki,k(ﬂi;t, i) [PH(Zi + haés, i) — Pf(xi,dyi)]‘
< e Kip( 1,8 oat™> 2 (s + £) V2[R,

If hy e R; and k € ZNC, then

| K (Gi + hayt, &) — K (G t, 22))|

' (PEFup (s + his st 5.0)) () Pf(Fi,k@i,~;t,aei,k>><mk>}\

(133)

(x + hi&;) —

’3(13 1)
8xk

< \/E\/t——i——;vk”Fi’k@i + Bia '§t7§3i,k) - Fi,k@h '%taii,k)Hom

the last by Proposition 20. The same reasoning also applies to k& € Ny by
Remark 29. Now use (128) in the above to conclude that

(134) |Kik(5t,24)|ca < ct_1|f|a,i forallie I and ke ZnNC.
Finally, combine (134) with (133) to see that for all 4,k € I,

0 - 0 _
_— ) - < 40 /2=3/2( .. —1/215,.1.
D7 n Ptf(x + hzez) EEn Ptf(x) > C|f|a,zt (xz + t) ‘hz|

This proves (a).
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The proof of (b) is similar. Instead of K j, one works with

Li k(i t, &) = ApPF(F; 1 (Fiy 5 t, &) ) (Th). 0
COROLLARY 33. For f € C%, P,f is in C}(So) and for all j1,ja € V
(135) 1Pl < s 21

Proof. We focus on the second order partials. Let ji,j2 € V and choose
k; € I so that j; € I,,. Then

0? . .
(136) (Ptf)jth ({L‘) = 7(9.% Oz Ptk[Fk(';t,l'k)](ffk) if k1 =ky = k,
J1 J2
and
(137)
) o i ) N
(Pusn(@) = o [ | 5o P (Buta 5 00 )) )| B 0 i)
J1 J2

if Ky # k.

Differentiation under the integral sign is easy to justify as in (132). The
required bound on |[(P;f) s lcc now follows from Remark 15 if k; = ko, and
a double application of Proposition 20(a) if k1 # ka.

Turning now to the continuity of (P, f);, j,, assume first that k; = ko = k.
Then by (136) and Remark 15

O?P,f

1 -t
( 38) 8xj18xj2

(x) is continuous in Zy, for @y, fixed.

If ¢+ € I is distinct from k, then
|(Pf) ]17]2(x + h; i€i) — (Ptf)ﬁ ]2( )|

89: Fi o (Ti, 5 t, #0)) (Z8) [P (Zi + hi€s, dTi) — Pl(Z;, dg;)]
J2
“hy |SUP|( F(Fy k(i i, 0.k)) 1.2 ()] (by Lemma 31(b))

(by Remark 15).

| /\

IA
Q

This and (138) give the continuity of (P.f);, j,- For ki # ko continuity
in z; for j ¢ {ki,k2} uniformly in the other variables is proved as above,
and continuity in Zj, (say) uniformly in the other variables is proved using
Proposition 28(a). The details are left for the reader. O

Recall that Ry f(z) = fooo e P, f(z)dt is the resolvent associated with P;.
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THEOREM 34. There is a constant cza such that for all f € C$(Sp), A >1
and k,i €1,

(a)

OR,
H ’\fH + | AR flloo < 34N flaks

(b)
+|AkRAf|w§cz4[(|f| “F1e )V (Fa 2D

< czalflca-

OR\f
2

Proof. (a) This follows by integrating the inequalities in Proposition 30
over time. ~ -
(b) If t > 0 and h; € R;, then
(139)  |Ap(Raf) (@ + hiei) — Ag(Raf)()]
t
< [ 1P+ Biga)| + 1Bu(P) o)l
0

+

/too e MAR(PS) (x4 hi;) — Ap(Pof)(x)]dt

t oo
g/ cta/271|f\a7kdt+/ | flait®?732 (x; + )7V 2|hy|dt,
0 t

where we used Proposition 30 to bound the first term and Proposition 32 to
bound the second. The above is at most

i I
| Flawt®? 4 €| flat®/> V22 hy).

Set t = |f[2;

f|;72k|l_zi\2xi_1, to conclude that
(140)  |AR(BAS) (@ + hiei) — Ap(Raf)(@)] < el fIL0 118 sy Bl .
Use (z; +t)~Y/2 <t71/2 in (139) to conclude that for any ¢ > 0,

| Ac(Baf) (@ + higi) — Ap(Raf) ()] <

Now set ¢ = |f\az|f|;1k|7u| to conclude

7 t_a/2+0|f|a,it_a/2_llhi|.

(141)  |AR(RA) (@ + hir) — Ap(Baf)(@)] < el 15010120 /2.

(140) and (141) together imply the required bound on [AgR) f|a,; in (b).
The required bound on |OR)f/0%k|q,; is proved in the same way. O
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4. Proof of uniqueness

In this section we complete the proof of uniqueness of solutions to the
martingale problem M P(A,v), where v is a probability on S and

) =D (@), wifig (2) + D (@) fi (@) + D bi ) ()
JER j&R jev
We first give the proof of Lemma 5 which shows that S is the natural state
space for solutions to the martingale problem using the following result.

LEMMA 35. Let Z; > 0 be a continuous adapted process for which fot Zsds
is strictly increasing in t. Assume b(s,w,x) is a Px Borel real-valued function
(P is the predictable o-field) which is continuous in s and satisfies b(s,w, x) >
go if © < & for some fized positive €y, d. For some adapted Brownian motion
B and stopping time T < oo assume that for some x > 0,

t t
X, =z +/ b(s, Xs)ds +/ VZsXsdBs >0 fort <T.
0 0
Then X >0 on {(s,w) : 0< s < T, Zs(w) < e9/2} a.s.

Proof. Let ¢ = [} Zyds < oo and define 7 : [0,¢) — [0,T) by [* Zeds = t.
If Z, = Z(r,) and X,, = X(7,) for u < ¢, then standard arguments allow
us to define a time-changed filtration F, and an (F,)-Brownian motion B so
that Z and X are (F;)-predictable and satisfy

t
Xt:x—l—/b(TmXu 1du—|—/ \/ XudB,, t<(
0

If {[T;,U;] : i € N} are the stochastic intervals on which Z completes its
upcrossings of [e9/2, eo] (T; < oo, U; < (), it suffices to fix ¢ and show

X >0on (T;,U;]N(0,¢) as.
Let V =inf{t > T : X, < §/2}AU; and W = inf{t > V : X, > 6} AU;. Then
for u € [V, W], X(r,) = X, < and Z, < £y and so

b X) _ brn X(n) | |

Zu Zy

A standard comparison theorem (see V.43 of [RW]) shows that X; > Y (t—V)
on [V, W], where Y is the pathwise unique solution of

t
Yt:XV—&—t—i—/ VYidBoiy >0 V> 0.
0

Here the last inequality holds because 4Y is the square of a 4-dimensional
Bessel process. This shows X > 0 on (V, W], and on [V, W] if Xy, > 0. The
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same reasoning shows X >0on subsequent upcrossing intervals of [6/2, ] by
X in (T}, U;] and so we conclude that X > 0 on (T}, U;]N(0, ¢) as required. O

Proof of Lemma 5. By conditioning we may assume v = 0. Fix an edge
(1,7) € €. We apply Lemma 35 with Z; = 2; (xt)xy) and X; = xgj). The fact
that b;|1;,—0y > 0 (since i € C) easily shows that fg Zds is strictly increasing
in ¢. If b} (x) = bj(z1 A M, ..., zq A M), then inf b} [, _oy = 2ear > 0 by
Hypothesis 2 (since j € R) and so for some dp > 0, z; € [0,9] implies
bé‘/f (z) > epr- Applying the previous result with

T=TM =inf{t >0: 2V v...val? > M},

we see that (xﬁ” + :E,Ez)) > 0 P-a.s. on [0,7™] and so letting M — oo we are

done. O

Let A° be given by (7) with coefficients satisfying (8) and (9).

Recall that AY is the generator of a unique diffusion on S(z°) given by
(10) with semigroup P; and resolvent Ry given by (12) and (11) respectively.
Recall also MY is defined by (15). We next consider perturbations around
this diffusion. Let 2° € S be fixed.

PROPOSITION 36. Assume that

(142)
Af() =D bi@) fi (@) + > Aj(@)ae, fi;+ Y Ai(@)w;fi;,  w € 8(0),

JEV JEN, JEN1

where b; : S(z°) — R and 7; : S(z°) — (0, 00)

d
T => |Filleg + Ibillcg < oo.
=1
Let
d ~
Eo =3 1% = Wlloe + 1B = b7 lloo>
=1

where {b°,7°} satisfy (8). Let Bf = (A — A°)f. Then there is an &1 =
e1(M°) >0 and a \y = \;(M°,T) > 0 such that if &g < &1 and X\ > )1, then
BRy : C2 — C2 is a bounded operator with ||[BRy|| < 1/2.
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Proof. Let f € C& and recall definition (15). Then

IBRxfllce == [(A— AO)RAf|C$
OR
< > 11(bs() — b)) a*fnc
JjeV
- O*Ryf
+ D () —V?Wcjwﬂ(;g
JEN: J
O’Ryf
+ 30 1G5 (@) = )2 =55 lles.
JEN1 I

Consider the first term on the right hand side with j € V. Then first using
the triangle inequality and then Theorem 34, yields

0,() = 1) G2 @)

OR = OR
L (o + 1B 2) — B ol 2
J J

< C[(F —+ M0)034>\ a/2 —+ 50634”f|c

Carrying out similar calculations for the other terms using the appropriate
bounds from Theorem 34, we obtain

< b (x) — 0 (@)]aq]

w

(143) IBRAfllcg < coléo + (T + M)A/ fleg
for some cg = co(MP) and therefore
1
(144) IBRxf|lca < §Hf||c;;
provided that & < (4co)~! and A > (4co(T + M©))2/«, O

If v is a probability on S(2°), as before we say a probability, P, on
C(R,, S(x")) solves the martingale problem M P(A,v) if under P, the law of
zo(w) = wp is v and for all f € CZ(S(zY)) (z:(w) = w(t)),

Mj(t) = f(z0) — f(zo) — / Af(r) ds

is a local martingale with respect to the canonical right-continuous filtration

(Ft).

THEOREM 37. Assume that A is given by (142) with coefficients 7; :
S(2%) — (0,00) and b; : S(z°) — R which are Hélder continuous of index

€ (0,1), constant outside a compact set and 5j|xj:0 >0 for all j € V\Ny.
Assume also that g < e1(MP), where b?,~? satisfy (8). Then for each prob-
ability v on S(z°) there is a unique solution to MP(A,v).
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Proof. Existence of solutions to M P(A, v) is standard and the assumptions
on the coefficients {b;} ensure solutions remain in S(z°). Hence, we only
need consider uniqueness. By conditioning we may assume v = ., z €
S(z°) (see p. 136 of [B]). By Krylov’s Markov selection theorem it suffices to
show uniqueness of a strong Markov family {P*" 2’ € S(z°)} of solutions to
MP(A,,) (see the proof of Proposition 2.1 in [ABBP]). Let (Rx, A > 0) be
the associated resolvent operators.

LEMMA 38. For f € C%, Ryxf = Ryf + R\BRxf.

Proof. An easy application of Fatou’s Lemma shows that E,(z;(t)) < x; +
b ]|lsct for all 5 € V\N; (recall these coordinates are non-negative). This
implies the square functions of the martingale part of each coordinate are
integrable. It follows that for g € CZ(S(z?)), M, is a martingale and so

Ex(g(wt)) :g(:c)+/0 E.(Ag(zs))ds.

Multiply by Ae=*! and integrate over ¢ > 0 to see that for g € CZ(S(z?)),
(145) ARxg = g+ Ra(Bg) + Ra(A9).

Let f € CS and for § > 0, set gs(z) = [ e P, f(z)dt. Corollary 33 implies
that gs € CZ(S(z°)). Moreover using the bounds in Proposition 30 it is easy
to verify that for i € V,

(146) (g5)i(z) — (Rxf)i(x) as & | 0 uniformly in z € S(2°),
forie CNZ jeR;,
(147) 2:(gs)ji(x) — zi(Rxf);;(x) as & | 0 uniformly in = € S(2),
and for i ¢ Ny,
(148) 2i(9s5)ii — ©i(Rxf)i; as 0 | 0 uniformly on S’(xo).
Since {b;}, {7:} are bounded, (146), (147), (148) imply that
(149) Bgs — BRyf as ¢ | 0 uniformly on S(z).
An easy calculation using P,gs = P,A%s — AYgs as ¢ | 0 shows that
(150)  A%s = Ags — e *°Psf — ARxf — f uniformly on S(z°) as ¢ | 0.

Now set g = gs in (145) and use (149), (150) and the obvious uniform
convergence of g5 to Ry f to see that

ARN(RAf) = Raf + RA(BRAf) + RA(ARAf — f).

Rearranging, we get the required result. O
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Continuing with the proof of Theorem 37, note that the Holder continuity
of 4; and b; and the fact that they are constant outside a compact set imply
I' < 0o. Therefore we may choose A; as in Proposition 36 so that for A > Ay,
BRy : C& — C2 with norm at most 1/2. If f € C%, we may iterate Lemma
38 to see that

Raf(@) = 3 Ra((BRA)"f) (@),
n=0

where the series converges uniformly and the error term approaches zero by
the bound

I(BRA)" flloo < (BRA)" fllcg < 27" fllcg-

This shows that for all f € CF, Ry f(x) is unique for A > X\; and hence so is
Pif(z) = E.(f(x¢)) for all t > 0. As C2 is measure determining, uniqueness

of Py(z,dy) and hence P* follows. O

Proof of Theorem /. Existence of a solution to M P(A,v) is standard be-
cause the coefficients are continuous and the |b;| have linear growth at oo (see,
for example, the proof of Theorem 1.1 in [ABBP]). By Lemma 5 the solutions
remain in S.

Turning to uniqueness, we may assume by conditioning that v = 4,, z € S.
Let 7 = inf{t > 0 : X; ¢ [0,R]¢}. By path continuity of our solutions,
TR T o0 a.s. as R T co. Therefore it suffices to prove uniqueness of Xinr,
and then let R | co. By redefining b;,~; outside [0, R]¢ we may assume that
{biYiev, {ziVitiev\rs {Z¢, %V }icr are all bounded and uniformly Holder con-

tinuous (e.g., for i € R redefine v;(x) to be y;(x1 AR, . .. JdAR)W;.vR))'

By the localization argument of Stroock and Varadhan (see Theorem 6.6.1
of [SV] and also the proof of Theorem 1.1 in [ABBP]) it suffices to show
that for all 20 € S there is an 7(z°) > 0 and continuous b; : S(z°) — R,
i+ S(x%) — (0,00) such that for z € B(z°,r) "R

(151) by(a) = by(a) Vi€ V,
7;(x) = v, (x) for j € Ny
55(2) = 0,3 () for j € R\N,
(@) = () for j ¢ R,

and

(152) there is a unique solution to M P(A, d,) for all € S(z°).

Here A is defined as in (142) and a solution of the martingale problem is
defined to be a law on C(Ry, S(2°)) in the usual way. Some explanation is
in order here. First note that it is easy to check that Af(z) = Af(z) for
x € B(2%r)nS(zY). If T = inf{t > 0 : J;Ei) —i—xgj) < 1/R for some j €
R;, i € CN Z}, then by Lemma 5 T T oo a.s. as R — oo. It therefore
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suffices to prove uniqueness of X (-A7gATg) and so we may apply the covering
argument in Theorem 6.6.1 of [SV] to the compact set K = [0, R]¢ — { :
x; +x; < 1/R for some j € R;, i € C'N Z} to arrive at the above reduction.
The Borel measurability in the initial point assumed in [SV] follows as in Ex.
6.7.4 of [SV], and the boundedness of b;, Jiz;, etc. (also assumed in [SV]) is
not needed (as long as the original coefficients can be assumed to be bounded
which is the case by the reduction made above). Also the larger state space
S(z%) is convenient but not really used as the solutions are stopped before
they exit Ri.

Let b = b;(2°), 7§ = ;(2°) (i.e., the right-hand side of (151) when z =
20), and note by the definition of S (and 2° € S) 'y? > 0, while Hypothesis 2
implies b9 > 0 if j € Z, and b9 > 0if j € ZN (C U R). In particular if
MO = M%) is as in (15), then M°(2°) < oo for 2° € S.

Case 1. We first assume that for all j € Ny, b;(2°) > 0. Let b;(x), #;(x)
be defined by the right side of (151) for z € R% and

Hr=Y s B@-R+Y s B -
jerEB(IO,QT)ﬂ]Ri jevmeB(aco,Qr)ﬂ]Ri

We use continuity of the coefficients to choose 0 < 7 < min;gz(,0) 2?/2 such
that &y(r) < e1(M°(2?)) (1 is as in Theorem 37). Let p, : [0,00) — [0,1] be
the function that is 1 on [0, 7], 0 on [2r, 00) and linear on [r, 2r]. For z € S(z?)
define 2 = (z7,...,2)), and

bi(z) = pr(le = 2°bi(a™) + (1 = pr(|Jo — 2°)))87,
and

Fi(z) = pr(lz = 2°))3i(z) + (1 = pr(Jz — 2°])7;
Clearly b;(x) = bi(z) and ;(z) = %;(z) for z € B(2°,r) N R4.

We claim that (9;, b;) satisfy the hypotheses of Theorem 37. The condition
that b(; > 0 for j € Ny (defining this case) implies bg > 0 for all j ¢ Ny
(as b > 0if j € Z N C) and so the required condition (8) on the constants
holds. The a-Holder continuity of 4; and Ej follows easily from the a-Holder
continuity of 4; and b; = b;. Clearly 4; and b; are constant outside of B(x?, 2r)
and hence also bounded. If i € (RUC) N Z(x0), then b > 0 and b;|,,—¢ > 0
(by Hypothesis 2) imply b;|5,—01 > 0. If i € Z(2°) the same reasoning shows
that b;|,,—o > 0. Note that r < min; gz (,0) 27 /2 implies 7;(z) > 0 for all z.
Finally we have

sup [bj(x) —bJ| + Y sup |3;(x) =]
jev z€S(x0) jev zeS(z0)

< &o(r) <er(M?).
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We may therefore apply Theorem 37 to derive (152) and the proof is complete
in this case.

Case 2. Finally, we must deal with the case in which b;(z%) < 0 for
some j € Na, say for j € N, . This implies I? > 0 by Hypothesis 2. In order
to prove the required uniqueness (152) we first prove uniqueness for the case
in which for j € Ny we replace b;(x) by Bj (), which satisfies Hypothesis 2,
agrees with b;(z) outside B(z°,r), and Bj(xo) = 0. Here r > 0 is chosen so
that z;v;(z) > €; > 0in B(z, 2r). The martingale problem with the modified
coefficients {b;(-)} satisfies the conditions of Case 1 and so the required result
is established as above for these modified coefficients. We can then obtain
uniqueness for MP(A, d,) for all z € S(z°), where the coefficients of A agree
with the original coefficients {b; : 5 € V} on B(z%7’) for some 0 </ < r
using Girsanov’s theorem as in Case 2 of the proof of Theorem 1.2 in [BP1].

O
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paper.
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