Illinois Journal of Mathematics Volume 50, Number 2, Summer 2006, Pages 313-322 S 0019-2082

ON BURKHOLDER'S SUPERMARTINGALES

BURGESS DAVIS AND JIYEON SUH

In memory of J.L. Doob

Abstract. For 0 , put

 $Y_t(c,p) = Y = B_t^{*(p-2)}[B_t^2 - t] + cB_t^{*p}, \quad t > 0,$

where B_t is a Brownian Motion and $B_t^* = \max_{0 \le s \le t} |B_s|$. Then for $0 is a submartingale if and only if <math>c \geq \frac{2-p}{p}$, while for $2 \leq p < \infty, Y$ is a supermartingale if and only if $c \leq \frac{2-p}{n}$. This extends results of Burkholder. The first of these assertions implies a strong version of some of the Burkholder-Gundy inequalities.

1. Introduction

Let $B_t, t \ge 0$, be the standard Brownian motion started at 0. Let $\mathcal{F}_t =$ $\sigma(B_s, s \le t), t \ge 0$. For a function f on $[0, \infty)$ define $f^*(t) = \sup_{0 \le s \le t} |f(s)|$, $0 \leq t < \infty$. For p > 0 and $c \in (-\infty, \infty)$ define the process $Y_t = Y_t(c, p)$, $t \ge 0$, by $Y_0 = 0$ and

$$Y_t = B_t^{*(p-2)}[B_t^2 - t] + cB_t^{*p}, \quad t > 0.$$

We will prove:

Theorem 1.1.

- (i) If 0 2-p</sup>/_p.
 (ii) If p ≥ 2, then Y is a supermartingale if and only if c ≤ ^{2-p}/_p.

Throughout this paper, stopping time, martingale, submartingale, and supermartingale will always mean with respect to \mathcal{F}_t , $t \geq 0$. For the values not covered by Theorem 1.1, Y is neither a submartingale or a supermartingale. Burkholder proved, in [3], that Y is a submartingale if $1 and if <math>c \ge \gamma_p$, where the explicitly given constants γ_p exceed $\frac{2-p}{p}$ except for p = 2. He also proved a version of this result for the class of all martingales, the focus of [3].

©2006 University of Illinois

Received May 12, 2005; received in final form January 31, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60G44. Secondary 60G65.

A famous theorem of Burkholder and Gundy (see [2]) states that, for p > 0, there are positive constants a_p and A_p such that for all stopping times τ with respect to the filtration of B_t , t > 0, we have both

(1)
$$\operatorname{E} \tau^{p/2} \le A_p \operatorname{E} B_{\tau}^{*p}$$
, and

(2)
$$\mathbf{E} B_{\tau}^{*p} \le a_p \, \mathbf{E} \, \tau^{p/2}.$$

Theorem 1.1 and the fact that $|B_t| \leq B_t^*$ immediately give strong versions of (1) for 0 . It suffices to consider bounded and strictly positive $stopping times <math>\tau$. Then $EY_{\tau} \geq 0$, since Y is a submartingale, and this yields

(3)
$$\operatorname{E} \frac{\tau}{B_{\tau}^{*(2-p)}} \le \frac{2}{p} \operatorname{E} B_{\tau}^{*p}, \quad 0$$

Such ratio inequalities, including some for general discrete time martingales, go back to Garsia [5]. See [1]. To see that (3) implies the $0 range of (1), with <math>A_p = (\frac{2}{p})^{p/2}$, use Holder's inequality:

$$\begin{split} \mathbf{E} \, \tau^{p/2} &= \mathbf{E} \left(\frac{\tau^{p/2}}{B_{\tau}^{*(2/p)(2-p)}} \cdot B_{\tau}^{*(2/p)(2-p)} \right) \\ &\leq \left[\mathbf{E} \left(\frac{\tau^{p/2}}{B_{\tau}^{*(p/2)(2-p)}} \right)^{2/p} \right]^{p/2} \left[\mathbf{E} \left(B_{\tau}^{*(p/2)(2-p)} \right)^{2/(2-p)} \right]^{(2-p)/2} \\ &\leq \left(\frac{2}{p} \mathbf{E} B_{\tau}^{*p} \right)^{p/2} (\mathbf{E} B_{\tau}^{*p})^{(2-p)/2} \\ &= \left(\frac{2}{p} \right)^{p/2} \mathbf{E} B_{\tau}^{*p}. \end{split}$$

The inequality (3) implies not only the p < 2 cases of (1), but also, roughly, that τ cannot be too large where B_{τ} is small. The inequalities (1)–(3) generalize to inequalities for continuous martingales. See [2], [4], and [6]. As has been noted, in [3] Burkholder is mainly concerned with the analogs of (1) for the exponents $1 \le p \le 2$ for the class of all martingales. (These analogs are not true for p < 1.) Burkholder's method for extracting (1)-like inequalities from his submartingales, which is very different from that just given, would yield the 0 cases of (1) from our Theorem 1.1 with the same con $stants <math>A_p = (\frac{2}{p})^{p/2}$ which we obtained. Conversely, our method together with Burkholder's analogs of the submartingales Y will give analogs of (3) for the class of all martingales, for $1 \le p < 2$.

One key to our proof of Theorem 1.1 is the following. Suppose $\tau \leq \eta$ are two stopping times with respect to the Brownian filtration \mathcal{F}_t , $t \geq 0$, where \mathcal{F}_t is the completion of $\sigma(B_s, s \leq t)$, such that $B^*_{\tau} = B^*_{\eta}$. Let Y be as in Theorem 1.1, and define Z by $Z_t = 0$ if $t \leq \tau$; $Z_t = Y_t - Y_{\tau}$ if $t \in [\tau, \eta]$; and

 $Z_t = Z_\eta$ if $t > \eta$. Then Z is a martingale, since

$$Z_t = \int_0^t f(s) dM_s,$$

where f(s) is the adapted integrand $B_{\tau}^{*(p-2)}I(\tau \leq s \leq \eta)$ and M_s is the Lévy martingale $B_s^2 - s$. Thus whether Y is a submartingale or supermartingale depends only on what happens at those times t such that $B_t = B_t^*$. We will give the proof of Theorem 1.1(i) in detail. The proof of Theorem 1.1(ii) is a little easier and very similar, using Lemmas 2.1 and 2.2 which hold for all positive p, and is not given.

2. Proof of Theorem 1.1

Let P_a and E_a denote probability and expectation associated with a process distributed as $B_t + a, t \ge 0$.

LEMMA 2.1. Let $0 < \varepsilon < 1$, a > 0, and q > 0. Let $\tau_a = \tau_{a,\varepsilon} = \inf\{t \ge 0 : |X_t - a| = \varepsilon a\}$. Then

- (i) $E_a X_{\tau_a}^* a = a\varepsilon \log 2$, (ii) $E_a X_{\tau_a}^{*q} a^q = \varepsilon q a^q \log 2 + a^q f_q(\varepsilon)$, where $f_q(\varepsilon) = o(\varepsilon)$ as $\varepsilon \downarrow 0$, and (iii) $E_a X_{\tau_a}^{*(q-2)} X_{\tau_a}^2 a^q = \varepsilon a^q (q-2) \log 2 + a^q g_q(\varepsilon)$, where $g_q(\varepsilon) = o(\varepsilon)$ as $\varepsilon \downarrow 0$.

Proof. (i) First we prove (i) for a = 1, temporarily dropping both subscripts on $\tau_{1,\varepsilon}$ and the subscripts on P_1, E_1 . Now

$$E X_{\tau}^{*} - 1 = E(X_{\tau}^{*} - 1)I(X_{\tau} = 1 + \varepsilon) + E(X_{\tau}^{*} - 1)I(X_{\tau} = 1 - \varepsilon)$$
$$= \frac{1}{2}\varepsilon + E(X_{\tau}^{*} - 1)I(X_{\tau} = 1 - \varepsilon).$$

If $0 < x < \varepsilon$.

 $P(X_{\tau}^* \geq 1 + x, X_{\tau} = 1 - \varepsilon) = P(X \text{ hits } 1 + x \text{ before it hits } 1 - \varepsilon \text{ and}$ then hits $1 - \varepsilon$ before it hits $1 + \varepsilon$)

$$= \frac{\varepsilon}{\varepsilon + x} \cdot \frac{\varepsilon - x}{2\varepsilon}.$$

Thus

(4)
$$E(X_{\tau}^{*}-1)I(X_{\tau}=1-\varepsilon) = \int_{0}^{\varepsilon} P(X_{\tau}^{*} \ge 1+x, X_{\tau}=1-\varepsilon)dx$$
$$= \frac{1}{2}\int_{0}^{\varepsilon} \frac{\varepsilon-x}{\varepsilon+x}dx = \varepsilon \log 2 - \varepsilon/2,$$

providing the a = 1 case. To prove (i) for other a an almost identical computation suffices. However it is even easier to note that under P_1 the process $aX_{t/a^2}, 0 \le t \le \tau_1$, has the same distribution as $X_t, 0 \le t \le \tau_a$, under P_a , so that, under P_a , $X_{\tau_a}^* - a$ has the same distribution as $a(X_{\tau_1}^* - 1)$ under P_1 . (ii) We have $(y+1)^q - 1 = qy + r_q(y)$, where $r_q(y) = o(y)$ as $y \to 0$. So,

using the last sentence of the proof of (i) just above, we obtain

$$\begin{aligned} \mathbf{E}_a(X_{\tau_a}^{*q} - a^q) &= \mathbf{E}_a[(X_{\tau_a}^* - a) + a]^q - a^q \\ &= \mathbf{E}_1\{a[(X_{\tau_1}^* - 1) + 1]\}^q - a^q \\ &= a^q\{q\,\mathbf{E}_1(X_{\tau_1}^* - 1) + \mathbf{E}_1\,r_q(X_{\tau_1}^* - 1)\}.\end{aligned}$$

Now $|X_{\tau_1}^* - 1| \leq \varepsilon$, and this together with part (i) of this lemma proves (ii), with $f_q(\hat{\varepsilon}) = E_1 r_q (X_{\tau_1}^* - 1).$

(iii) Using again the last line of the proof of (i), we note the joint distribution of $(X_{\tau_a}, X^*_{\tau_a})$ under P_a is the same as the joint distribution of $(aX_{\tau_1}, aX^*_{\tau_1})$ under P_1 , so that

$$E_a X_{\tau_a}^{*(q-2)} X_{\tau_a}^2 - a^q = a^q (E_1 X_{\tau_1}^{*(q-2)} X_{\tau_1}^2 - 1).$$

Now

$$\begin{split} \mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2} \\ &= \mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2} I(X_{\tau_{1}} = 1 + \varepsilon) + \mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2} I(X_{\tau_{1}} = 1 - \varepsilon) \\ &= \frac{1}{2} (1 + \varepsilon)^{q} + (1 - \varepsilon)^{2} \, \mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} I(X_{\tau_{1}} = 1 - \varepsilon) \\ &= \frac{1}{2} (1 + \varepsilon)^{q} + (1 - \varepsilon)^{2} [\mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} - \mathbf{E}_{1} \, X_{\tau_{1}}^{*(q-2)} I(X_{\tau_{1}} = 1 + \varepsilon)] \\ &= \frac{1}{2} (1 + \varepsilon)^{q} + (1 - \varepsilon)^{2} \{ [\varepsilon q \log 2 + f_{q}(\varepsilon) + 1] - \frac{1}{2} (1 + \varepsilon)^{q-2} \}, \end{split}$$

where $f_q(\varepsilon) = o(\varepsilon)$, using part (ii) of this lemma. Now, again using

$$\lim_{y \to 0} ((1+y)^{\alpha} - 1)/y = \alpha,$$

for any fixed α , it is easy to finish the proof of (iii).

We put, for a > 0,

$$S_a = \inf\{t > 0 : |B_t| = a\}$$

and

$$\gamma_{a,\varepsilon} = \gamma_a = \inf\{t > S_a : |B_t - a| = \varepsilon\}.$$

It follows from the fact that $B_t^2 - t$ is a martingale that

(5)
$$\mathrm{E}(\gamma_a - S_a | \mathcal{F}_{S_a}) = \mathrm{E}(B_{\gamma_a}^2 - B_{S_a}^2 | \mathcal{F}_{S_a}) = \varepsilon^2.$$

Lemma 2.2.

- (i) $E \sup_{0 \le t \le a} |Y_t(c, p)| < \infty, \ a > 0,$
- (ii) $E[Y_{\gamma_a}(c,p) Y_{S_a}(c,p)|\mathcal{F}_{S_a}] = \varepsilon(cp+p-2)a^p \log 2 + a^p(g_p(\varepsilon) + cf_p(\varepsilon)) + a^{p-2}S_a(\varepsilon(2-p)\log 2 f_{p-2}(\varepsilon)) \Theta_p(\varepsilon)a^p$, where f and g are as in Lemma 2.1, and $\Theta_p(\varepsilon) = o(\varepsilon)$ as $\varepsilon \downarrow 0$.

Proof. We prove (i) for a = 1 and $0 only. The proof of (i) is immediate for <math>p \ge 2$. For 0 , (i) follows from

$$\operatorname{E}\sup_{0 \le t \le 1} \frac{t}{B_t^{*(2-p)}} < \infty.$$

Now

$$E \sup_{0 \le t \le 1} \frac{t}{B_t^{*(2-p)}} \le \sum_{k=0}^{\infty} E \sup_{2^{-(k+1)} \le t \le 2^{-k}} \frac{t}{B_t^{*(2-p)}}$$
$$\le \sum_{k=0}^{\infty} E \frac{2^{-k}}{B_{2^{-(k+1)}}^{*(2-p)}}$$
$$= \sum_{k=0}^{\infty} E \frac{2^{-k}2^{(k+1)(2-p)/2}}{B_1^{*(2-p)}} < \infty.$$

To prove (ii), recall that $|B_{S_a}| = B^*_{S_a} = a$, and write, using the notation of Lemma 2.1,

$$\begin{split} \mathbf{E}[Y_{\gamma_a}(c,p) - Y_{S_a}(c,p) | \mathcal{F}_{S_a}] &= [\mathbf{E}_a \, X_{\tau_a}^2 X_{\tau_a}^{*(p-2)} - a^p] \\ &+ [c(\mathbf{E}_a \, X_{\tau_a}^{*p} - a^p)] \\ &+ [S_a a^{p-2} - S_a \, \mathbf{E}_a \, X_{\tau_a}^{*(p-2)} - \mathbf{E}_a \, \tau_a X_{\tau_a}^{*(p-2)}] \\ &=: [I] + [II] + [III]. \end{split}$$

Now

$$[I] + [II] = \varepsilon (cp + (p-2))a^p \log 2 + a^p (g_p(\varepsilon) + cf_p(\varepsilon))$$

where g_p and f_p are as in Lemma 2.1. To evaluate III, note that, by Lemma 2.1(ii),

$$-S_a a^{p-2} + S_a \operatorname{E}_a X_{\tau_a}^{*(p-2)} = S_a a^{p-2} ((2-p)\varepsilon - f_{2-p}(\varepsilon)) - \operatorname{E}_a \tau_a X_{\tau_a}^{*(p-2)}$$

The $\Theta_p(\varepsilon)$ in the statement of this lemma is $-E_a \tau_a X_{\tau_a}^{*(p-2)}$. Note that for 0 ,

$$\mathbf{E}_a \,\tau_a X_{\tau_a}^{*(p-2)} \le (a-a\varepsilon)^{p-2} \,\mathbf{E}_a \,\tau_a = (a-a\varepsilon)^{p-2} a^2 \varepsilon^2,$$

while for $p \ge 2$,

$$0 \le \mathcal{E}_a \,\tau_a X^{*(p-2)} \le (a+a\varepsilon)^{p-2} a^2 \varepsilon^2. \qquad \Box$$

We use the following well known characterizations of sub- and supermartingales to prove Theorem 1.1.

LEMMA 2.3. Suppose $Z = Z_t$, $t \ge 0$, has continuous paths, is adapted to $\mathcal{F}_t, t \geq 0, \text{ and that } \mathbf{E} Z_t^* < \infty, t \geq 0.$

- (i) Then Z is a submartingale if and only if for every pair of stopping times $\eta_1 \leq \eta_2$ such that $\operatorname{E} Z_{\eta_2}^* < \infty$, $\operatorname{E} Z_{\eta_1} \leq \operatorname{E} Z_{\eta_2}$. (ii) Also, Z is a submartingale if and only if for stopping times as in (i)
- $\mathrm{E}(Z_{n_2}|\mathcal{F}_{n_1}) \geq Z_{n_1}.$

Proof of Theorem 1.1. We know that Y(c, p) is continuous (from Lemma 2.2(i)). Furthermore

(6)
$$\operatorname{E}\sup_{0 \le t \le S_a} |Y_t(c,p)| < \infty,$$

for all c, p, a. For $p \ge 2$ this is immediate. For 0 it follows from

$$\operatorname{E}\sup_{0 \le t \le S_a} \frac{t}{B_t^{*(2-p)}} < \infty.$$

Now

$$E \sup_{0 \le t \le S_a} \frac{t}{B_t^{*(2-p)}} \le E \sup_{0 \le t \le 1} \frac{t}{B_t^{*(2-p)}} + E \sup_{1 \le t \le \max(S_a, 1)} \frac{t}{B_t^{*(2-p)}}.$$

The first summand is finite, by Lemma 2.2(i). And

$$E \sup_{1 \le t \le \max(S_a, 1)} \frac{t}{B_t^{*(2-p)}} \le E \frac{1}{B_1^*} E(\max(S_a, 1) | \mathcal{F}_1) \le E \frac{1}{B_1^*} E S_{2a} < \infty.$$

Recall that we prove Theorem 1.1(i) only. The proof of the "only if" part of Theorem 1.1(i) follows from Lemma 2.3(ii), with $\eta_1 = S_1$ and $\eta_2 = \gamma_1 (= \gamma_{1,\varepsilon})$ for small enough ε . For we have, using Lemma 2.2(ii),

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{-1} [\mathbb{E}(Y_{\gamma_1}(c, p) | \mathcal{F}_{S_1}) - Y_{S_1}(c, p)] = [cp + (p-2) + S_1(2-p)] \log 2,$$

and this limit is uniform on $\{S_1 < y\}$ for every y > 0. Now $c < \frac{2-p}{p}$ implies cp + (p-2) < 0, and so on $\{0 < S_1 < [(p-2) + cp]/(2-p)\}$, this limit is negative. Thus there is a fixed ε where

$$P[\mathbf{E}(Y_{\gamma_1}(c, p) | \mathcal{F}_{S_1}) < Y_{S_1}(c, p)] > 0.$$

To prove the "if" part of Theorem 1.1(i), first note that it suffices to prove that $Y_t(\frac{2-p}{p}, p), t \ge 0$, is a submartingale, since if $c < \frac{2-p}{p}$,

$$Y_t(c,p) = Y_t\left(\frac{2-p}{p},p\right) + \left[\frac{2-p}{p} - c\right]B_t^*,$$

and B_t^* is nondecreasing and thus a submartingale. For the remainder of this paper we put $W_t = Y_t(\frac{2-p}{p}, p)$, where 0 .

To show that W is a submartingale, it suffices to show that if $\theta_1 \leq \theta_2$ are stopping times satisfying $\theta_2 \leq S_a$ for some a, then $\mathbb{E} W_{\theta_1} \leq \mathbb{E} W_{\theta_2}$. This follows from Lemma 2.3(i), and the fact that $\lim_{a\to\infty} S_a = \infty$, so that if θ_i satisfies $\mathbb{E} W_{\theta_i}^* < \infty$, i = 1, 2, then

$$\lim_{a \to \infty} \mathbf{E} \, W_{\min(\theta_i, S_a)} = \mathbf{E} \, W_{\theta_i}, \quad i = 1, 2.$$

Without loss of generality, we may take a = 1, and will prove Theorem 1.1(i) by showing that, for any stopping times $\alpha \leq \beta \leq S_1$,

(7)
$$E W_{\alpha} \leq E W_{\beta}.$$

To prove (7), let $0 < \delta < 1$ and let $\varepsilon \in (0, 1)$ be so small that

(8)
$$\varepsilon(2-p)\log 2 + f_{p-2}(\varepsilon) \ge 0,$$

where f_{p-2} is the function in the statement of Lemma 2.1. Put

$$\begin{split} \gamma_{0}(\delta) &= \gamma_{0} = \inf\{t : B_{t}^{*} = \delta\},\\ \eta_{0}(\delta, \varepsilon) &= \eta_{0} = \inf\{t \geq \gamma_{0} : |B_{t} - \delta| = \varepsilon\delta\},\\ \gamma_{1} &= \inf\{t \geq \eta_{0} : B_{t} = B_{t}^{*}\} \quad (\text{note } \gamma_{1} = \eta_{0} \text{ if } B_{\eta_{0}} > B_{\gamma_{0}}),\\ \eta_{1} &= \inf\{t \geq \gamma_{1} : |B_{t} - B_{\gamma_{1}}^{*}| = \varepsilon B_{\gamma_{1}}^{*}\},\\ &\vdots\\ \gamma_{k} &= \inf\{t \geq \eta_{k-1} : B_{t} = B_{t}^{*}\},\\ \eta_{k} &= \inf\{t \geq \gamma_{k} : |B_{t} - B_{\gamma_{k}}^{*}| = \varepsilon B_{\gamma_{k}}^{*}\}. \end{split}$$

Let $M = \min\{k : B^*_{\eta_k} \ge 1\}$. Note $B^*_{\eta_M} \le 1 + \varepsilon < 2$. We have

(9)
$$\frac{1}{2}\varepsilon B_{\gamma_k}^* \leq \mathbf{E}(B_{\eta_k}^* - B_{\gamma_k}^* | \mathcal{F}_{\gamma_k}) \leq \varepsilon B_{\gamma_k}^*,$$

and

(10)
$$\mathrm{E}(\eta_k - \gamma_k | \mathcal{F}_{\gamma_k}) = \varepsilon^2 (B^*_{\gamma_k})^2,$$

since the conditional distribution of $\eta_k - \gamma_k$ given \mathcal{F}_{γ_k} is the distribution of $\tau_{B_{\gamma_k}^*,\varepsilon B_{\gamma_k}^*}$, noting that $B_{\eta_k}^* - B_{\gamma_k}^* = \varepsilon B_{\gamma_k}^*$ on $\{|B_{\eta_k}| > |B_{\gamma_k}|\}$. Thus

$$\operatorname{E}\sum_{k=0}^{M}\operatorname{E}(\eta_{k}-\gamma_{k}) \leq 2\varepsilon \operatorname{E}\sum_{k=0}^{M}(B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*}) = 2\varepsilon \operatorname{E}(B_{M}^{*}-B_{\gamma_{0}}^{*}) \leq 4\varepsilon.$$

Now by Lemma 2.2(ii) and (8), if $a^- = \min(a, 0)$,

(11)
$$E\sum_{k=0}^{M} E(W_{\eta_{k}} - W_{\gamma_{k}} | \mathcal{F}_{\gamma_{k}})^{-}$$

$$= E\sum_{k=0}^{\infty} E(W_{\eta_{k}} - W_{\gamma_{k}} | \mathcal{F}_{\gamma_{k}})^{-} I(k \leq M)$$

$$\ge E\sum_{k=0}^{\infty} \left[B_{\gamma_{k}}^{* p} \left(g_{p}(\varepsilon) + \left(\frac{2-p}{p}\right) f_{p}(\varepsilon) - \Theta_{p}(\varepsilon) \right)^{-} \right] I(k \leq M)$$

$$\ge \sum_{k=0}^{\infty} \Gamma_{p}(\varepsilon) P(k \leq M),$$

where $\Gamma_p(\varepsilon) \to 0$ as $\varepsilon \downarrow 0$, since $B^*_{\gamma_k} \le 1$ if $k \le M$. Using (9) and the facts that

$$\sum_{k=0}^{\infty} (B_{\eta_k}^* - B_{\gamma_k}^*) I(k \le M) \le 2$$

and $B^*_{\gamma_k} \ge \delta$ for $k \ge 0$, we have

$$2 \ge \mathbf{E} \sum_{k=0}^{\infty} \mathbf{E} (B_{\eta_k}^* - B_{\gamma_k}^* | \mathcal{F}_{\gamma_k}) I(k \le M)$$
$$\ge \mathbf{E} \sum_{k=0}^{\infty} \frac{1}{2} \varepsilon B_{\gamma_k}^* I(k \le M)$$
$$\ge \frac{1}{2} \varepsilon \delta \sum_{k=0}^{\infty} P(k \le M).$$

Together with (11) this implies

(12)
$$\liminf_{\varepsilon \downarrow 0} \mathbf{E} \sum_{k=0}^{M} E(W_{\eta_{k}} - W_{\gamma_{k}} | \mathcal{F}_{\gamma_{k}})^{-} \ge 0.$$

Now define $\alpha(\delta, \varepsilon)$ by

$$\alpha(\delta,\varepsilon) = \begin{cases} S_{\delta}(=\gamma_0) & \text{ on } \{\alpha \leq S_{\delta}\},\\ \eta_k & \text{ on } \{\gamma_k < \alpha \leq \eta_k\}, \ k \geq 0,\\ \alpha & \text{ on } \{\eta_k < \alpha \leq \gamma_k\}, \ k \geq 0. \end{cases}$$

Similarly define $\beta(\delta, \varepsilon)$. Then

$$\alpha(\delta,\varepsilon) \le \beta(\delta,\varepsilon) \le S_2.$$

We have $\alpha(\delta, \varepsilon) \geq \max(\alpha, \delta)$, and

(13)
$$\operatorname{E}(\alpha(\delta,\varepsilon) - \max(\alpha,\delta)) \le \sum_{k=0}^{M} \operatorname{E}(\gamma_k - \eta_k) I(k \le M) \to 0 \text{ as } \varepsilon \to 0$$

Also $E(\beta(\delta, \varepsilon) - \max(\beta, \delta)) \to 0$ as $\varepsilon \to 0$. Since $B_t^2 - t$ is a martingale, and since B_t^* does not change on $[\eta_k, \gamma_k]$, we have that if $T_1 \leq T_2$ are stopping times,

(14)
$$\mathbf{E}(W_{\min(T_2,\eta_k)}|\mathcal{F}_{T_1}) = W_{T_1} \text{ on } \{\gamma_k \le T_1 \le \eta_k\},$$

using the remarks at the end of Section 1.

On $\{\alpha(\delta,\varepsilon) = \eta_k\}$, recalling that $\beta(\delta,\varepsilon)$ cannot be in (γ_j,η_j) for any j,

$$W_{\beta(\delta,\varepsilon)} - W_{\alpha(\delta,\varepsilon)} = \sum_{j=k+1}^{M} (W_{\eta_j} - W_{\gamma_j}) I(\beta(\delta,\varepsilon) > \gamma_j) + \sum_{j=k}^{M} (W_{\min(\gamma_{j+1},\beta(\delta,\varepsilon))} - W_{\eta_j}) I(\beta(\delta,\varepsilon) > \eta_j).$$

Thus, if $\{\alpha(\delta, \varepsilon) = \eta_k\} = F_k$,

$$E(W_{\beta(\delta,\varepsilon)} - W_{\alpha(\delta,\varepsilon)})I(F_k)$$

$$= \sum_{j=k+1}^{M} E E(W_{\eta_j} - W_{\gamma_j}|\mathcal{F}_{\gamma_j})I(\beta(\delta,\varepsilon) > \gamma_j)I(F_k)$$

$$+ \sum_{j=k}^{M} E E(W_{\min(\gamma_{j+1},\beta(\delta,\varepsilon))} - W_{\eta_j}|\mathcal{F}_{\eta_j})I(\beta(\delta,\varepsilon) > \eta_j)I(F_k).$$

All the conditional expectations in the second sum equal zero, while the first sum exceeds $\sum_{k=0}^{M} E(W_{\eta_k} - W_{\gamma_k} | \mathcal{F}_{\gamma_k})^-$. Thus using (12) we have

(15)
$$\liminf_{\varepsilon \downarrow 0} \mathbb{E}(W_{\beta(\delta,\varepsilon)} - W_{\alpha(\delta,\varepsilon)})I(F_k) \ge 0.$$

Similarly if

$$G_k = \{\eta_k < \alpha(\delta, \varepsilon) \le \gamma_k\}, \quad 1 \le k \le M - 1, G_0 = \{\alpha(\delta, \varepsilon) = \gamma_0\},$$

then

(16)
$$\liminf_{\varepsilon \downarrow 0} \mathbb{E}(W_{\beta(\delta,\varepsilon)} - W_{\alpha(\delta,\varepsilon)})I(G_k) \ge 0.$$

The path continuity of W and (6) and (11) give

$$\operatorname{E} W_{\beta(\delta,\varepsilon)} \to \operatorname{E} W_{\min(\beta,\delta)}$$

and

$$\operatorname{E} W_{\alpha(\delta,\varepsilon)} \to \operatorname{E} W_{\min(\alpha,\delta)}$$

as $\varepsilon \to 0$, so adding all the terms of (15) and (16) gives

 $\operatorname{E} W_{\min(\beta,\gamma_0(\delta))} \ge \operatorname{E} W_{\min(\alpha,\gamma_0(\delta))}, \quad 0 < \delta < 1.$

Now we let $\delta \to 0$ and again (6), (11), and path continuity give (7).

References

- R. Bañuelos and C. N. Moore, Probabilistic behavior of harmonic functions, Progress in Mathematics, vol. 175, Birkhäuser, Basel, 1999. MR 1707297 (2001);31003)
- [2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 0365692 (51 #1944)
- [3] _____, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91–105 (electronic). MR 1859027 (2002g:60063)
- [4] B. Davis, On time changing continuous martingales to Brownian motion, A Festschrift for Herman Rubin, IMS Lecture Notes Monogr. Ser., vol. 45, Inst. Math. Statist., Beachwood, OH, 2004, pp. 138–139. MR 2126892 (2006b:60085)
- [5] A. Garsia, Martingale inequalities: Seminar notes on recent progress, Benjamin, Reading, Mass., 1973. MR 0448538 (56 #6844)
- [6] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)

Burgess Davis, Department of Statistics, Purdue University, West Lafayette, IN 47906, USA

E-mail address: bdavis@stat.purdue.edu

Jiyeon Suh, Department of Mathematics, Iowa State University, Ames, IA 50011, USA

E-mail address: jsuh@iastate.edu