ON BURKHOLDER'S SUPERMARTINGALES

BURGESS DAVIS AND JIYEON SUH
In memory of J.L. Doob

Abstract

For $0<p<\infty$, put $Y_{t}(c, p)=Y=B_{t}^{*(p-2)}\left[B_{t}^{2}-t\right]+c B_{t}^{* p}, \quad t>0$, where B_{t} is a Brownian Motion and $B_{t}^{*}=\max _{0 \leq s \leq t}\left|B_{s}\right|$. Then for $0<p \leq 2, Y$ is a submartingale if and only if $c \geq \frac{2-p}{p}$, while for $2 \leq p<\infty, Y$ is a supermartingale if and only if $c \leq \frac{2-p}{p}$. This extends results of Burkholder. The first of these assertions implies a strong version of some of the Burkholder-Gundy inequalities.

1. Introduction

Let $B_{t}, t \geq 0$, be the standard Brownian motion started at 0 . Let $\mathcal{F}_{t}=$ $\sigma\left(B_{s}, s \leq t\right), t \geq 0$. For a function f on $[0, \infty)$ define $f^{*}(t)=\sup _{0 \leq s \leq t}|f(s)|$, $0 \leq t<\infty$. For $p>0$ and $c \in(-\infty, \infty)$ define the process $Y_{t}=Y_{t}(c, p)$, $t \geq 0$, by $Y_{0}=0$ and

$$
Y_{t}=B_{t}^{*(p-2)}\left[B_{t}^{2}-t\right]+c B_{t}^{* p}, \quad t>0
$$

We will prove:
Theorem 1.1.
(i) If $0<p \leq 2$, then Y is a submartingale if and only if $c \geq \frac{2-p}{p}$.
(ii) If $p \geq 2$, then Y is a supermartingale if and only if $c \leq \frac{2-p}{p}$.

Throughout this paper, stopping time, martingale, submartingale, and supermartingale will always mean with respect to $\mathcal{F}_{t}, t \geq 0$. For the values not covered by Theorem 1.1, Y is neither a submartingale or a supermartingale. Burkholder proved, in [3], that Y is a submartingale if $1<p \leq 2$ and if $c \geq \gamma_{p}$, where the explicitly given constants γ_{p} exceed $\frac{2-p}{p}$ except for $p=2$. He also proved a version of this result for the class of all martingales, the focus of [3].

[^0]A famous theorem of Burkholder and Gundy (see [2]) states that, for $p>0$, there are positive constants a_{p} and A_{p} such that for all stopping times τ with respect to the filtration of $B_{t}, t>0$, we have both

$$
\begin{align*}
& \mathrm{E} \tau^{p / 2} \leq A_{p} \mathrm{E} B_{\tau}^{* p}, \text { and } \tag{1}\\
& \mathrm{E} B_{\tau}^{* p} \leq a_{p} \mathrm{E} \tau^{p / 2} \tag{2}
\end{align*}
$$

Theorem 1.1 and the fact that $\left|B_{t}\right| \leq B_{t}^{*}$ immediately give strong versions of (1) for $0<p<2$. It suffices to consider bounded and strictly positive stopping times τ. Then $\mathrm{E} Y_{\tau} \geq 0$, since Y is a submartingale, and this yields

$$
\begin{equation*}
\mathrm{E} \frac{\tau}{B_{\tau}^{*(2-p)}} \leq \frac{2}{p} \mathrm{E} B_{\tau}^{* p}, \quad 0<p<2 \tag{3}
\end{equation*}
$$

Such ratio inequalities, including some for general discrete time martingales, go back to Garsia [5]. See [1]. To see that (3) implies the $0<p<2$ range of (1), with $A_{p}=\left(\frac{2}{p}\right)^{p / 2}$, use Holder's inequality:

$$
\begin{aligned}
\mathrm{E} \tau^{p / 2} & =\mathrm{E}\left(\frac{\tau^{p / 2}}{B_{\tau}^{*(2 / p)(2-p)}} \cdot B_{\tau}^{*(2 / p)(2-p)}\right) \\
& \leq\left[\mathrm{E}\left(\frac{\tau^{p / 2}}{B_{\tau}^{*(p / 2)(2-p)}}\right)^{2 / p}\right]^{p / 2}\left[\mathrm{E}\left(B_{\tau}^{*(p / 2)(2-p)}\right)^{2 /(2-p)}\right]^{(2-p) / 2} \\
& \leq\left(\frac{2}{p} \mathrm{E} B_{\tau}^{* p}\right)^{p / 2}\left(\mathrm{E} B_{\tau}^{* p}\right)^{(2-p) / 2} \\
& =\left(\frac{2}{p}\right)^{p / 2} \mathrm{E} B_{\tau}^{* p} .
\end{aligned}
$$

The inequality (3) implies not only the $p<2$ cases of (1), but also, roughly, that τ cannot be too large where B_{τ} is small. The inequalities (1)-(3) generalize to inequalities for continuous martingales. See [2], [4], and [6]. As has been noted, in [3] Burkholder is mainly concerned with the analogs of (1) for the exponents $1 \leq p \leq 2$ for the class of all martingales. (These analogs are not true for $p<1$.) Burkholder's method for extracting (1)-like inequalities from his submartingales, which is very different from that just given, would yield the $0<p \leq 2$ cases of (1) from our Theorem 1.1 with the same constants $A_{p}=\left(\frac{2}{p}\right)^{p / 2}$ which we obtained. Conversely, our method together with Burkholder's analogs of the submartingales Y will give analogs of (3) for the class of all martingales, for $1 \leq p<2$.

One key to our proof of Theorem 1.1 is the following. Suppose $\tau \leq \eta$ are two stopping times with respect to the Brownian filtration $\mathcal{F}_{t}, t \geq 0$, where \mathcal{F}_{t} is the completion of $\sigma\left(B_{s}, s \leq t\right)$, such that $B_{\tau}^{*}=B_{\eta}^{*}$. Let Y be as in Theorem 1.1, and define Z by $Z_{t}=0$ if $t \leq \tau ; Z_{t}=Y_{t}-Y_{\tau}$ if $t \in[\tau, \eta]$; and
$Z_{t}=Z_{\eta}$ if $t>\eta$. Then Z is a martingale, since

$$
Z_{t}=\int_{0}^{t} f(s) d M_{s}
$$

where $f(s)$ is the adapted integrand $B_{\tau}^{*(p-2)} I(\tau \leq s \leq \eta)$ and M_{s} is the Lévy martingale $B_{s}^{2}-s$. Thus whether Y is a submartingale or supermartingale depends only on what happens at those times t such that $B_{t}=B_{t}^{*}$. We will give the proof of Theorem 1.1(i) in detail. The proof of Theorem 1.1(ii) is a little easier and very similar, using Lemmas 2.1 and 2.2 which hold for all positive p, and is not given.

2. Proof of Theorem 1.1

Let P_{a} and E_{a} denote probability and expectation associated with a process distributed as $B_{t}+a, t \geq 0$.

Lemma 2.1. Let $0<\varepsilon<1, a>0$, and $q>0$. Let $\tau_{a}=\tau_{a, \varepsilon}=\inf \{t \geq 0$: $\left.\left|X_{t}-a\right|=\varepsilon a\right\}$. Then
(i) $\mathrm{E}_{a} X_{\tau_{a}}^{*}-a=a \varepsilon \log 2$,
(ii) $\mathrm{E}_{a} X_{\tau_{a}^{* q}}^{* q}-a^{q}=\varepsilon q a^{q} \log 2+a^{q} f_{q}(\varepsilon)$, where $f_{q}(\varepsilon)=o(\varepsilon)$ as $\varepsilon \downarrow 0$, and
(iii) $\mathrm{E}_{a} X_{\tau_{a}}^{*(q-2)} X_{\tau_{a}}^{2}-a^{q}=\varepsilon a^{q}(q-2) \log 2+a^{q} g_{q}(\varepsilon)$, where $g_{q}(\varepsilon)=o(\varepsilon)$ as $\varepsilon \downarrow 0$.

Proof. (i) First we prove (i) for $a=1$, temporarily dropping both subscripts on $\tau_{1, \varepsilon}$ and the subscripts on P_{1}, E_{1}. Now

$$
\begin{aligned}
\mathrm{E} X_{\tau}^{*}-1 & =\mathrm{E}\left(X_{\tau}^{*}-1\right) I\left(X_{\tau}=1+\varepsilon\right)+\mathrm{E}\left(X_{\tau}^{*}-1\right) I\left(X_{\tau}=1-\varepsilon\right) \\
& =\frac{1}{2} \varepsilon+\mathrm{E}\left(X_{\tau}^{*}-1\right) I\left(X_{\tau}=1-\varepsilon\right)
\end{aligned}
$$

If $0<x<\varepsilon$,

$$
\begin{aligned}
P\left(X_{\tau}^{*} \geq 1+x, X_{\tau}=1-\varepsilon\right)= & P(X \text { hits } 1+x \text { before it hits } 1-\varepsilon \text { and } \\
& \text { then hits } 1-\varepsilon \text { before it hits } 1+\varepsilon) \\
= & \frac{\varepsilon}{\varepsilon+x} \cdot \frac{\varepsilon-x}{2 \varepsilon}
\end{aligned}
$$

Thus

$$
\begin{align*}
\mathrm{E}\left(X_{\tau}^{*}-1\right) I\left(X_{\tau}=1-\varepsilon\right) & =\int_{0}^{\varepsilon} P\left(X_{\tau}^{*} \geq 1+x, X_{\tau}=1-\varepsilon\right) d x \tag{4}\\
& =\frac{1}{2} \int_{0}^{\varepsilon} \frac{\varepsilon-x}{\varepsilon+x} d x=\varepsilon \log 2-\varepsilon / 2
\end{align*}
$$

providing the $a=1$ case. To prove (i) for other a an almost identical computation suffices. However it is even easier to note that under P_{1} the process
$a X_{t / a^{2}}, 0 \leq t \leq \tau_{1}$, has the same distribution as $X_{t}, 0 \leq t \leq \tau_{a}$, under P_{a}, so that, under $P_{a}, X_{\tau_{a}}^{*}-a$ has the same distribution as $a\left(X_{\tau_{1}}^{*}-1\right)$ under P_{1}.
(ii) We have $(y+1)^{q}-1=q y+r_{q}(y)$, where $r_{q}(y)=o(y)$ as $y \rightarrow 0$. So, using the last sentence of the proof of (i) just above, we obtain

$$
\begin{aligned}
\mathrm{E}_{a}\left(X_{\tau_{a}}^{* q}-a^{q}\right) & =\mathrm{E}_{a}\left[\left(X_{\tau_{a}}^{*}-a\right)+a\right]^{q}-a^{q} \\
& =\mathrm{E}_{1}\left\{a\left[\left(X_{\tau_{1}}^{*}-1\right)+1\right]\right\}^{q}-a^{q} \\
& =a^{q}\left\{q \mathrm{E}_{1}\left(X_{\tau_{1}}^{*}-1\right)+\mathrm{E}_{1} r_{q}\left(X_{\tau_{1}}^{*}-1\right)\right\}
\end{aligned}
$$

Now $\left|X_{\tau_{1}}^{*}-1\right| \leq \varepsilon$, and this together with part (i) of this lemma proves (ii), with $f_{q}(\varepsilon)=\mathrm{E}_{1} r_{q}\left(X_{\tau_{1}}^{*}-1\right)$.
(iii) Using again the last line of the proof of (i), we note the joint distribution of $\left(X_{\tau_{a}}, X_{\tau_{a}}^{*}\right)$ under P_{a} is the same as the joint distribution of $\left(a X_{\tau_{1}}, a X_{\tau_{1}}^{*}\right)$ under P_{1}, so that

$$
\mathrm{E}_{a} X_{\tau_{a}}^{*(q-2)} X_{\tau_{a}}^{2}-a^{q}=a^{q}\left(\mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2}-1\right)
$$

Now

$$
\begin{array}{rl}
\mathrm{E}_{1} X_{\tau_{1}} & *(q-2) X_{\tau_{1}}^{2} \\
& =\mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2} I\left(X_{\tau_{1}}=1+\varepsilon\right)+\mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)} X_{\tau_{1}}^{2} I\left(X_{\tau_{1}}=1-\varepsilon\right) \\
& =\frac{1}{2}(1+\varepsilon)^{q}+(1-\varepsilon)^{2} \mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)} I\left(X_{\tau_{1}}=1-\varepsilon\right) \\
& =\frac{1}{2}(1+\varepsilon)^{q}+(1-\varepsilon)^{2}\left[\mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)}-\mathrm{E}_{1} X_{\tau_{1}}^{*(q-2)} I\left(X_{\tau_{1}}=1+\varepsilon\right)\right] \\
& =\frac{1}{2}(1+\varepsilon)^{q}+(1-\varepsilon)^{2}\left\{\left[\varepsilon q \log 2+f_{q}(\varepsilon)+1\right]-\frac{1}{2}(1+\varepsilon)^{q-2}\right\}
\end{array}
$$

where $f_{q}(\varepsilon)=o(\varepsilon)$, using part (ii) of this lemma. Now, again using

$$
\lim _{y \rightarrow 0}\left((1+y)^{\alpha}-1\right) / y=\alpha
$$

for any fixed α, it is easy to finish the proof of (iii).
We put, for $a>0$,

$$
S_{a}=\inf \left\{t>0:\left|B_{t}\right|=a\right\}
$$

and

$$
\gamma_{a, \varepsilon}=\gamma_{a}=\inf \left\{t>S_{a}:\left|B_{t}-a\right|=\varepsilon\right\}
$$

It follows from the fact that $B_{t}^{2}-t$ is a martingale that

$$
\begin{equation*}
\mathrm{E}\left(\gamma_{a}-S_{a} \mid \mathcal{F}_{S_{a}}\right)=\mathrm{E}\left(B_{\gamma_{a}}^{2}-B_{S_{a}}^{2} \mid \mathcal{F}_{S_{a}}\right)=\varepsilon^{2} \tag{5}
\end{equation*}
$$

Lemma 2.2.
(i) $\mathrm{E} \sup _{0 \leq t \leq a}\left|Y_{t}(c, p)\right|<\infty, a>0$,
(ii) $\mathrm{E}\left[Y_{\gamma_{a}}(c, p)-Y_{S_{a}}(c, p) \mid \mathcal{F}_{S_{a}}\right]=\varepsilon(c p+p-2) a^{p} \log 2+a^{p}\left(g_{p}(\varepsilon)+c f_{p}(\varepsilon)\right)+$ $a^{p-2} S_{a}\left(\varepsilon(2-p) \log 2-f_{p-2}(\varepsilon)\right)-\Theta_{p}(\varepsilon) a^{p}$, where f and g are as in Lemma 2.1, and $\Theta_{p}(\varepsilon)=o(\varepsilon)$ as $\varepsilon \downarrow 0$.

Proof. We prove (i) for $a=1$ and $0<p<2$ only. The proof of (i) is immediate for $p \geq 2$. For $0<p<2$, (i) follows from

$$
\mathrm{E} \sup _{0 \leq t \leq 1} \frac{t}{B_{t}^{*(2-p)}}<\infty
$$

Now

$$
\begin{aligned}
\mathrm{E} \sup _{0 \leq t \leq 1} \frac{t}{B_{t}^{*(2-p)}} & \leq \sum_{k=0}^{\infty} \mathrm{E} \sup _{2^{-(k+1)} \leq t \leq 2^{-k}} \frac{t}{B_{t}^{*(2-p)}} \\
& \leq \sum_{k=0}^{\infty} \mathrm{E} \frac{2^{-k}}{B_{2^{-(k+1)}}^{*(2-p)}} \\
& =\sum_{k=0}^{\infty} \mathrm{E} \frac{2^{-k} 2^{(k+1)(2-p) / 2}}{B_{1}^{*(2-p)}}<\infty .
\end{aligned}
$$

To prove (ii), recall that $\left|B_{S_{a}}\right|=B_{S_{a}}^{*}=a$, and write, using the notation of Lemma 2.1,

$$
\left.\begin{array}{rl}
\mathrm{E}\left[Y_{\gamma_{a}}(c, p)-Y_{S_{a}}(c, p) \mid \mathcal{F}_{S_{a}}\right]= & {\left[\mathrm{E}_{a}\right.}
\end{array} X_{\tau_{a}}^{2} X_{\tau_{a}}^{*(p-2)}-a^{p}\right] .
$$

Now

$$
[I]+[I I]=\varepsilon(c p+(p-2)) a^{p} \log 2+a^{p}\left(g_{p}(\varepsilon)+c f_{p}(\varepsilon)\right)
$$

where g_{p} and f_{p} are as in Lemma 2.1. To evaluate III, note that, by Lemma 2.1(ii),

$$
-S_{a} a^{p-2}+S_{a} \mathrm{E}_{a} X_{\tau_{a}}^{*(p-2)}=S_{a} a^{p-2}\left((2-p) \varepsilon-f_{2-p}(\varepsilon)\right)-\mathrm{E}_{a} \tau_{a} X_{\tau_{a}}^{*(p-2)}
$$

The $\Theta_{p}(\varepsilon)$ in the statement of this lemma is $-\mathrm{E}_{a} \tau_{a} X_{\tau_{a}}^{*(p-2)}$. Note that for $0<p \leq 2$,

$$
\mathrm{E}_{a} \tau_{a} X_{\tau_{a}}^{*(p-2)} \leq(a-a \varepsilon)^{p-2} \mathrm{E}_{a} \tau_{a}=(a-a \varepsilon)^{p-2} a^{2} \varepsilon^{2}
$$

while for $p \geq 2$,

$$
0 \leq \mathrm{E}_{a} \tau_{a} X^{*(p-2)} \leq(a+a \varepsilon)^{p-2} a^{2} \varepsilon^{2}
$$

We use the following well known characterizations of sub- and supermartingales to prove Theorem 1.1.

Lemma 2.3. Suppose $Z=Z_{t}, t \geq 0$, has continuous paths, is adapted to $\mathcal{F}_{t}, t \geq 0$, and that $\mathrm{E} Z_{t}^{*}<\infty, t \geq 0$.
(i) Then Z is a submartingale if and only if for every pair of stopping times $\eta_{1} \leq \eta_{2}$ such that $\mathrm{E} Z_{\eta_{2}}^{*}<\infty, \mathrm{E} Z_{\eta_{1}} \leq \mathrm{E} Z_{\eta_{2}}$.
(ii) Also, Z is a submartingale if and only if for stopping times as in (i) $\mathrm{E}\left(Z_{\eta_{2}} \mid \mathcal{F}_{\eta_{1}}\right) \geq Z_{\eta_{1}}$.

Proof of Theorem 1.1. We know that $Y(c, p)$ is continuous (from Lemma 2.2(i)). Furthermore

$$
\begin{equation*}
\mathrm{E} \sup _{0 \leq t \leq S_{a}}\left|Y_{t}(c, p)\right|<\infty \tag{6}
\end{equation*}
$$

for all c, p, a. For $p \geq 2$ this is immediate. For $0<p<2$ it follows from

$$
\mathrm{E} \sup _{0 \leq t \leq S_{a}} \frac{t}{B_{t}^{*(2-p)}}<\infty
$$

Now

$$
\mathrm{E} \sup _{0 \leq t \leq S_{a}} \frac{t}{B_{t}^{*(2-p)}} \leq \mathrm{E} \sup _{0 \leq t \leq 1} \frac{t}{B_{t}^{*(2-p)}}+\mathrm{E} \sup _{1 \leq t \leq \max \left(S_{a}, 1\right)} \frac{t}{B_{t}^{*(2-p)}}
$$

The first summand is finite, by Lemma 2.2(i). And

$$
\mathrm{E} \sup _{1 \leq t \leq \max \left(S_{a}, 1\right)} \frac{t}{B_{t}^{*(2-p)}} \leq \mathrm{E} \frac{1}{B_{1}^{*}} \mathrm{E}\left(\max \left(S_{a}, 1\right) \mid \mathcal{F}_{1}\right) \leq \mathrm{E} \frac{1}{B_{1}^{*}} \mathrm{E} S_{2 a}<\infty
$$

Recall that we prove Theorem 1.1(i) only. The proof of the "only if" part of Theorem 1.1(i) follows from Lemma 2.3(ii), with $\eta_{1}=S_{1}$ and $\eta_{2}=\gamma_{1}\left(=\gamma_{1, \varepsilon}\right)$ for small enough ε. For we have, using Lemma 2.2(ii),

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{-1}\left[\mathrm{E}\left(Y_{\gamma_{1}}(c, p) \mid \mathcal{F}_{S_{1}}\right)-Y_{S_{1}}(c, p)\right]=\left[c p+(p-2)+S_{1}(2-p)\right] \log 2
$$

and this limit is uniform on $\left\{S_{1}<y\right\}$ for every $y>0$. Now $c<\frac{2-p}{p}$ implies $c p+(p-2)<0$, and so on $\left\{0<S_{1}<[(p-2)+c p] /(2-p)\right\}$, this limit is negative. Thus there is a fixed ε where

$$
P\left[\mathrm{E}\left(Y_{\gamma_{1}}(c, p) \mid \mathcal{F}_{S_{1}}\right)<Y_{S_{1}}(c, p)\right]>0
$$

To prove the "if" part of Theorem 1.1(i), first note that it suffices to prove that $Y_{t}\left(\frac{2-p}{p}, p\right), t \geq 0$, is a submartingale, since if $c<\frac{2-p}{p}$,

$$
Y_{t}(c, p)=Y_{t}\left(\frac{2-p}{p}, p\right)+\left[\frac{2-p}{p}-c\right] B_{t}^{*}
$$

and B_{t}^{*} is nondecreasing and thus a submartingale. For the remainder of this paper we put $W_{t}=Y_{t}\left(\frac{2-p}{p}, p\right)$, where $0<p \leq 2$.

To show that W is a submartingale, it suffices to show that if $\theta_{1} \leq \theta_{2}$ are stopping times satisfying $\theta_{2} \leq S_{a}$ for some a, then $\mathrm{E} W_{\theta_{1}} \leq \mathrm{E} W_{\theta_{2}}$. This follows from Lemma 2.3(i), and the fact that $\lim _{a \rightarrow \infty} S_{a}=\infty$, so that if θ_{i} satisfies $\mathrm{E} W_{\theta_{i}}^{*}<\infty, i=1,2$, then

$$
\lim _{a \rightarrow \infty} \mathrm{E} W_{\min \left(\theta_{i}, S_{a}\right)}=\mathrm{E} W_{\theta_{i}}, \quad i=1,2 .
$$

Without loss of generality, we may take $a=1$, and will prove Theorem 1.1(i) by showing that, for any stopping times $\alpha \leq \beta \leq S_{1}$,

$$
\begin{equation*}
\mathrm{E} W_{\alpha} \leq \mathrm{E} W_{\beta} \tag{7}
\end{equation*}
$$

To prove (7), let $0<\delta<1$ and let $\varepsilon \in(0,1)$ be so small that

$$
\begin{equation*}
\varepsilon(2-p) \log 2+f_{p-2}(\varepsilon) \geq 0 \tag{8}
\end{equation*}
$$

where f_{p-2} is the function in the statement of Lemma 2.1. Put

$$
\begin{aligned}
\gamma_{0}(\delta)=\gamma_{0} & =\inf \left\{t: B_{t}^{*}=\delta\right\} \\
\eta_{0}(\delta, \varepsilon)= & \eta_{0}=\inf \left\{t \geq \gamma_{0}:\left|B_{t}-\delta\right|=\varepsilon \delta\right\} \\
\gamma_{1} & =\inf \left\{t \geq \eta_{0}: B_{t}=B_{t}^{*}\right\} \quad\left(\text { note } \gamma_{1}=\eta_{0} \text { if } B_{\eta_{0}}>B_{\gamma_{0}}\right), \\
\eta_{1}= & \inf \left\{t \geq \gamma_{1}:\left|B_{t}-B_{\gamma_{1}}^{*}\right|=\varepsilon B_{\gamma_{1}}^{*}\right\}, \\
& \vdots \\
& \vdots \\
\gamma_{k} & =\inf \left\{t \geq \eta_{k-1}: B_{t}=B_{t}^{*}\right\} \\
\eta_{k} & =\inf \left\{t \geq \gamma_{k}:\left|B_{t}-B_{\gamma_{k}}^{*}\right|=\varepsilon B_{\gamma_{k}}^{*}\right\} .
\end{aligned}
$$

Let $M=\min \left\{k: B_{\eta_{k}}^{*} \geq 1\right\}$. Note $B_{\eta_{M}}^{*} \leq 1+\varepsilon<2$. We have

$$
\begin{equation*}
\frac{1}{2} \varepsilon B_{\gamma_{k}}^{*} \leq \mathrm{E}\left(B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*} \mid \mathcal{F}_{\gamma_{k}}\right) \leq \varepsilon B_{\gamma_{k}}^{*} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left(\eta_{k}-\gamma_{k} \mid \mathcal{F}_{\gamma_{k}}\right)=\varepsilon^{2}\left(B_{\gamma_{k}}^{*}\right)^{2} \tag{10}
\end{equation*}
$$

since the conditional distribution of $\eta_{k}-\gamma_{k}$ given $\mathcal{F}_{\gamma_{k}}$ is the distribution of $\tau_{B_{\gamma_{k}}^{*}, \varepsilon B_{\gamma_{k}}^{*}}$, noting that $B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*}=\varepsilon B_{\gamma_{k}}^{*}$ on $\left\{\left|B_{\eta_{k}}\right|>\left|B_{\gamma_{k}}\right|\right\}$. Thus

$$
\mathrm{E} \sum_{k=0}^{M} \mathrm{E}\left(\eta_{k}-\gamma_{k}\right) \leq 2 \varepsilon \mathrm{E} \sum_{k=0}^{M}\left(B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*}\right)=2 \varepsilon \mathrm{E}\left(B_{M}^{*}-B_{\gamma_{0}}^{*}\right) \leq 4 \varepsilon
$$

Now by Lemma 2.2(ii) and (8), if $a^{-}=\min (a, 0)$,

$$
\begin{align*}
& \mathrm{E} \sum_{k=0}^{M} \mathrm{E}\left(W_{\eta_{k}}-W_{\gamma_{k}} \mid \mathcal{F}_{\gamma_{k}}\right)^{-} \tag{11}\\
& \quad=\mathrm{E} \sum_{k=0}^{\infty} \mathrm{E}\left(W_{\eta_{k}}-W_{\gamma_{k}} \mid \mathcal{F}_{\gamma_{k}}\right)^{-} I(k \leq M) \\
& \quad \geq \mathrm{E} \sum_{k=0}^{\infty}\left[B_{\gamma_{k}}^{*}{ }^{p}\left(g_{p}(\varepsilon)+\left(\frac{2-p}{p}\right) f_{p}(\varepsilon)-\Theta_{p}(\varepsilon)\right)^{-}\right] I(k \leq M) \\
& \quad \geq \sum_{k=0}^{\infty} \Gamma_{p}(\varepsilon) P(k \leq M)
\end{align*}
$$

where $\Gamma_{p}(\varepsilon) \rightarrow 0$ as $\varepsilon \downarrow 0$, since $B_{\gamma_{k}}^{*} \leq 1$ if $k \leq M$. Using (9) and the facts that

$$
\sum_{k=0}^{\infty}\left(B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*}\right) I(k \leq M) \leq 2
$$

and $B_{\gamma_{k}}^{*} \geq \delta$ for $k \geq 0$, we have

$$
\begin{aligned}
2 & \geq \mathrm{E} \sum_{k=0}^{\infty} \mathrm{E}\left(B_{\eta_{k}}^{*}-B_{\gamma_{k}}^{*} \mid \mathcal{F}_{\gamma_{k}}\right) I(k \leq M) \\
& \geq \mathrm{E} \sum_{k=0}^{\infty} \frac{1}{2} \varepsilon B_{\gamma_{k}}^{*} I(k \leq M) \\
& \geq \frac{1}{2} \varepsilon \delta \sum_{k=0}^{\infty} P(k \leq M)
\end{aligned}
$$

Together with (11) this implies

$$
\begin{equation*}
\liminf _{\varepsilon \downarrow 0} \mathrm{E} \sum_{k=0}^{M} E\left(W_{\eta_{k}}-W_{\gamma_{k}} \mid \mathcal{F}_{\gamma_{k}}\right)^{-} \geq 0 \tag{12}
\end{equation*}
$$

Now define $\alpha(\delta, \varepsilon)$ by

$$
\alpha(\delta, \varepsilon)= \begin{cases}S_{\delta}\left(=\gamma_{0}\right) & \text { on }\left\{\alpha \leq S_{\delta}\right\} \\ \eta_{k} & \text { on }\left\{\gamma_{k}<\alpha \leq \eta_{k}\right\}, k \geq 0 \\ \alpha & \text { on }\left\{\eta_{k}<\alpha \leq \gamma_{k}\right\}, k \geq 0\end{cases}
$$

Similarly define $\beta(\delta, \varepsilon)$. Then

$$
\alpha(\delta, \varepsilon) \leq \beta(\delta, \varepsilon) \leq S_{2}
$$

We have $\alpha(\delta, \varepsilon) \geq \max (\alpha, \delta)$, and

$$
\begin{equation*}
\mathrm{E}(\alpha(\delta, \varepsilon)-\max (\alpha, \delta)) \leq \sum_{k=0}^{M} \mathrm{E}\left(\gamma_{k}-\eta_{k}\right) I(k \leq M) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 . \tag{13}
\end{equation*}
$$

Also $\mathrm{E}(\beta(\delta, \varepsilon)-\max (\beta, \delta)) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Since $B_{t}^{2}-t$ is a martingale, and since B_{t}^{*} does not change on $\left[\eta_{k}, \gamma_{k}\right]$, we have that if $T_{1} \leq T_{2}$ are stopping times,

$$
\begin{equation*}
\mathrm{E}\left(W_{\min \left(T_{2}, \eta_{k}\right)} \mid \mathcal{F}_{T_{1}}\right)=W_{T_{1}} \text { on }\left\{\gamma_{k} \leq T_{1} \leq \eta_{k}\right\} \tag{14}
\end{equation*}
$$

using the remarks at the end of Section 1.
On $\left\{\alpha(\delta, \varepsilon)=\eta_{k}\right\}$, recalling that $\beta(\delta, \varepsilon)$ cannot be in $\left(\gamma_{j}, \eta_{j}\right)$ for any j,

$$
\begin{aligned}
W_{\beta(\delta, \varepsilon)}-W_{\alpha(\delta, \varepsilon)}= & \sum_{j=k+1}^{M}\left(W_{\eta_{j}}-W_{\gamma_{j}}\right) I\left(\beta(\delta, \varepsilon)>\gamma_{j}\right) \\
& +\sum_{j=k}^{M}\left(W_{\min \left(\gamma_{j+1}, \beta(\delta, \varepsilon)\right)}-W_{\eta_{j}}\right) I\left(\beta(\delta, \varepsilon)>\eta_{j}\right)
\end{aligned}
$$

Thus, if $\left\{\alpha(\delta, \varepsilon)=\eta_{k}\right\}=F_{k}$,

$$
\begin{aligned}
\mathrm{E}\left(W_{\beta(\delta, \varepsilon)}-\right. & \left.W_{\alpha(\delta, \varepsilon)}\right) I\left(F_{k}\right) \\
= & \sum_{j=k+1}^{M} \mathrm{E}\left(W_{\eta_{j}}-W_{\gamma_{j}} \mid \mathcal{F}_{\gamma_{j}}\right) I\left(\beta(\delta, \varepsilon)>\gamma_{j}\right) I\left(F_{k}\right) \\
& \quad+\sum_{j=k}^{M} \mathrm{E} \mathrm{E}\left(W_{\min \left(\gamma_{j+1}, \beta(\delta, \varepsilon)\right)}-W_{\eta_{j}} \mid \mathcal{F}_{\eta_{j}}\right) I\left(\beta(\delta, \varepsilon)>\eta_{j}\right) I\left(F_{k}\right)
\end{aligned}
$$

All the conditional expectations in the second sum equal zero, while the first sum exceeds $\sum_{k=0}^{M} \mathrm{E}\left(W_{\eta_{k}}-W_{\gamma_{k}} \mid \mathcal{F}_{\gamma_{k}}\right)^{-}$. Thus using (12) we have

$$
\begin{equation*}
\liminf _{\varepsilon \downarrow 0} \mathrm{E}\left(W_{\beta(\delta, \varepsilon)}-W_{\alpha(\delta, \varepsilon)}\right) I\left(F_{k}\right) \geq 0 \tag{15}
\end{equation*}
$$

Similarly if

$$
\begin{aligned}
G_{k} & =\left\{\eta_{k}<\alpha(\delta, \varepsilon) \leq \gamma_{k}\right\}, \quad 1 \leq k \leq M-1 \\
G_{0} & =\left\{\alpha(\delta, \varepsilon)=\gamma_{0}\right\}
\end{aligned}
$$

then

$$
\begin{equation*}
\liminf _{\varepsilon \downarrow 0} \mathrm{E}\left(W_{\beta(\delta, \varepsilon)}-W_{\alpha(\delta, \varepsilon)}\right) I\left(G_{k}\right) \geq 0 \tag{16}
\end{equation*}
$$

The path continuity of W and (6) and (11) give

$$
\mathrm{E} W_{\beta(\delta, \varepsilon)} \rightarrow \mathrm{E} W_{\min (\beta, \delta)}
$$

and

$$
\mathrm{E} W_{\alpha(\delta, \varepsilon)} \rightarrow \mathrm{E} W_{\min (\alpha, \delta)}
$$

as $\varepsilon \rightarrow 0$, so adding all the terms of (15) and (16) gives

$$
\mathrm{E} W_{\min \left(\beta, \gamma_{0}(\delta)\right)} \geq \mathrm{E} W_{\min \left(\alpha, \gamma_{0}(\delta)\right)}, \quad 0<\delta<1
$$

Now we let $\delta \rightarrow 0$ and again (6), (11), and path continuity give (7).

References

[1] R. Bañuelos and C. N. Moore, Probabilistic behavior of harmonic functions, Progress in Mathematics, vol. 175, Birkhäuser, Basel, 1999. MR 1707297 (2001j:31003)
[2] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19-42. MR 0365692 (51 \#1944)
[3] _, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91-105 (electronic). MR 1859027 (2002g:60063)
[4] B. Davis, On time changing continuous martingales to Brownian motion, A Festschrift for Herman Rubin, IMS Lecture Notes Monogr. Ser., vol. 45, Inst. Math. Statist., Beachwood, OH, 2004, pp. 138-139. MR 2126892 (2006b:60085)
[5] A. Garsia, Martingale inequalities: Seminar notes on recent progress, Benjamin, Reading, Mass., 1973. MR 0448538 (56 \#6844)
[6] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)

Burgess Davis, Department of Statistics, Purdue University, West Lafayette, IN 47906, USA

E-mail address: bdavis@stat.purdue.edu
Jiyeon Suh, Department of Mathematics, Iowa State University, Ames, IA 50011, USA

E-mail address: jsuh@iastate.edu

[^0]: Received May 12, 2005; received in final form January 31, 2006.
 2000 Mathematics Subject Classification. Primary 60G44. Secondary 60G65.

