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EMPIRICAL PROCESSES IN PROBABILISTIC NUMBER
THEORY: THE LIL FOR THE DISCREPANCY OF (nkω)

MOD 1

ISTVÁN BERKES, WALTER PHILIPP, AND ROBERT F. TICHY

Dedicated to the memory of Joseph L. Doob

Abstract. We prove a law of the iterated logarithm for the Kolmogorov-

Smirnov statistic, or equivalently, the discrepancy of sequences (nkω)

mod 1. Here (nk) is a sequence of integers satisfying a sub-Hadamard
growth condition and such that linear Diophantine equations in the
variables nk do not have too many solutions. The proof depends on
a martingale embedding of the empirical process; the number-theoretic
structure of (nk) enters through the behavior of the square function of
the martingale.

1. Introduction

Let X1, X2, . . ., be i.i.d. random variables, uniformly distributed in (0, 1),
and let

Fn(t) =
1
n

card{k ≤ n : Xk ≤ t}

denote the empirical distribution function of the sample X1, . . . , Xn. The
empirical process

αn(t) =
√
n (Fn(t)− t), 0 ≤ t ≤ 1,

captures important properties of the sequence X1, X2, . . ., and plays an im-
portant role in probability theory and statistics. By the classical theory we
have

(1.1) αn(·) D[0,1]−→ B(·),
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where B is the Brownian bridge and the convergence is weak convergence in
the Skorohod space D[0, 1]. As a special case we have the well known results
of Kolmogorov and Smirnov:

lim
n→∞

P

(
sup

0≤t≤1
|αn(t)| < x

)
=

∞∑
k=−∞

(−1)k exp(−2k2x2) (x > 0)

and

lim
n→∞

P

(
sup

0≤t≤1
αn(t) < x

)
= 1− exp(−2x2) (x > 0).

The basic result (1.1) grew out of Doob’s famous heuristics [9] for the Kolmo-
gorov-Smirnov theorems; this was made precise by Donsker [8] some years
later, leading to the development of the theory of weak convergence in metric
spaces in the 1950’s. The a.s. behavior of αn is described by the Chung-
Smirnov LIL

(1.2) lim sup
n→∞

(log log n)−1/2 sup
0≤t≤1

|αn(t)| = 1/
√

2 a.s.

A functional version of (1.2) was given by Finkelstein [14]. All these results
are contained as special cases in Kiefer’s [17] strong approximation theorem

sup
0≤s≤1

|n(Fn(s)− s)−
∑
j≤n

Bj(s)| = O(n1/3(log n)2/3) a.s.,

where Bj(s), j = 1, 2, . . ., are independent Brownian bridges.
There is an extensive literature dealing with generalizations of the above

results for dependent random variables. The case of weak dependence is rel-
atively simple: Berkes and Philipp [2] showed that Kiefer’s approximation
theorem remains valid, with a slightly weaker remainder term, for stationary
mixing sequences (Xn) with a polynomial mixing rate. The only difference is
that Bj(s) should be replaced by Gj(s), where Gj(s), 0 ≤ s ≤ 1, are indepen-
dent Gaussian processes with mean zero and covariance function Γ explicitly
expressed by the covariances of (Xn). The case of strongly dependent (Xn) is
radically different: as Dehling and Taqqu [7] showed, in the case when Xn are
nonlinear functions of a strongly dependent Gaussian process (Yn), the limit
process in (1.1) will be a quasi-deterministic process, whose trajectories are
random multiples of a fixed deterministic function. For a survey of the liter-
ature over such phenomena and empirical processes of dependent sequences
see Dehling and Philipp [6].

Remarkably, empirical processes appeared much earlier in classical anal-
ysis and number theory, through their connection to the theory of uniform
distribution mod 1, developed in a fundamental paper of H. Weyl [25]. For
a finite numerical sequence (x1, . . . , xN ) in (0, 1), the discrepancy DN of the
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sequence, measuring its closeness to uniformity, was defined by Weyl as

DN = DN (x1, . . . , xN ) =: sup
0≤s≤1

∣∣∣∣ 1
N

card (k ≤ N : xk ≤ s)− s
∣∣∣∣ .

An infinite sequence (xn) in (0, 1) is called uniformly distributed in the Weyl
sense if DN (x1, . . . , xN ) → 0 as N → ∞. Clearly, this is equivalent to the
uniform convergence of the empirical distribution function FN of the sample
(x1, . . . , xN ) and

√
NDN is the Kolmogorov-Smirnov statistic of (x1, . . . , xN ).

There is an extensive literature on uniform distribution, for which we refer to
Kuipers and Niederreiter [18] or Drmota and Tichy [11]. A much investigated
problem in the theory is the study of the discrepancy of special sequences
like {nkω}, where nk is an increasing sequence of integers and {·} denotes
fractional part. By a classical result, {kω} is uniformly distributed for any
irrational ω, and the same holds for {nkω} for many concrete sequences nk,
e.g., polynomials with integer coefficients. For other sequences nk (for exam-
ple, nk = k!) the result fails, but Weyl [25] proved that for any increasing
sequence (nk) of integers, {nkω} is uniformly distributed for almost all ω in
the sense of Lebesgue measure. For notational simplicity, let

ηk = ηk(ω) := nkω (mod 1)

and

DN (ω) = sup
0≤s≤1

∣∣∣∣ 1
N

card (k ≤ N : ηk(ω) ≤ s)− s
∣∣∣∣ .

The quantity
√
NDN (ω) is the Kolmogorov-Smirnov statistic of the sequence

{nkω} and Weyl’s theorem expresses the Glivenko-Cantelli theorem for the
sequence {nkω}. Probabilistically, {nkω} is a sequence of dependent random
variables over the probability space (0, 1) equipped with Lebesgue measure; its
dependence structure is very complicated and unusual from the probabilistic
point of view. As a consequence, studying the asymptotic behavior of DN (ω)
is a hard problem and very few precise results are known. Cassels [5] and
Erdős and Koksma [12] proved independently that for almost all ω ∈ [0, 1)

NDN (ω) = O(N1/2(logN)(5/2)+ε), ε > 0.

The best result so far has been achieved by R.C. Baker [1] who reduced the
exponent 5/2 on the logarithm to 3/2. The exact exponent of the logarithm
is still an open problem, except for the fact that it cannot be less than 1/2,
as was shown by Berkes and Philipp [3].

The only case when a precise asymptotics for DN (ω) is known is the case
nk = k, when its connection with the continued fraction expansion of ω makes
the problem tractable. Kesten [15] showed that in this case

NDN (ω) ∼ 2
π2

logN log logN
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in measure. This asymptotics is not valid in the a.s. sense, but Khinchin [16]
proved that for any positive nondecreasing function g on (0,+∞) the relation

NDN (ω) = O((logN)g(log logN)) a.s.

holds if and only if
∑∞
n=1 g(n)−1 converges. Another case when the order of

magnitude of the discrepancy of {nkω} is known (although less precisely than
in the above case), is when nk grows very rapidly. Philipp [20] proved that if
(nk) satisfies the Hadamard gap condition

(1.3)
nk+1

nk
≥ 1 + ρ, ρ > 0, k = 1, 2, . . . ,

then we have for almost all ω ∈ [0, 1)

(1.4)
1
4
≤ lim sup

N→∞

NDN (ω)√
N log logN

≤ C(%),

where C(%) � 1/%. Berkes and Philipp [3] constructed sequences (nk) sat-
isfying (1.3), for which the lower bound 1/4 in (1.4) can be improved to
c log log 1/% with an absolute constant c. Hence there cannot be an upper
bound C in (1.4), independent of %, that works for all sequences (nk) satisfy-
ing a Hadamard gap condition (1.3). A similar construction (see Berkes and
Philipp [3], Theorem 3) shows that for every εk ↓ 0 there exists a sequence
(nk) of integers satisfying

nk+1/nk ≥ 1 + εk, k = 1, 2, . . . ,

such that

lim sup
N→∞

NDN (ω)√
N log logN

= +∞ a.e.

Thus, under the slightest weakening of the Hadamard gap condition (1.3), the
LIL (1.4) becomes generally false. No precise asymptotic result for DN (ω) in
the subexponential domain is known except an LIL, proved in Philipp [21]
for the Hardy-Littlewood-Pólya sequences (nk). These are defined as follows.
Let (q1, q2, . . . , qτ ) be a finite set of coprime positive integers and let (nk)
be the multiplicative semigroup generated by (q1, q2, . . . , qτ ) and arranged in
increasing order. Thus

(nk)∞k=1 = (qα1
1 qα2

2 . . . qαττ , αi ≥ 0, 1 ≤ i ≤ τ).

Then relation (1.4) holds with a constant C(r) on the right side depending only
on the number r of primes involved in the prime factorization of q1, . . . , qτ .
(See Philipp [21].)

The purpose of this paper is to prove an LIL for the discrepancy DN (ω)
for a very large class of subexponentially growing sequences (nk). Actually,
we will see that in some sense ‘almost all’ sequences (nk) in this domain
will satisfy the LIL. Our main result will show that a sub-Hadamard growth
condition plus certain Diophantine properties of (nk) imply the LIL (1.4). To
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formulate our theorem, we introduce some terminology. We will say that a
sequence (nk) satisfies

Condition (B), if there exist constants 0 < α < 1/2 and C > 0 such that
for each positive integer b and for each R ≥ 1 the number of solutions (h, ν)
of the Diophantine equation

hnν = b

with h ∈ N, 1 ≤ h ≤ R, does not exceed CRα.

Condition (C), if there exist constants 0 < β < 1/2 and C0 > 0 such that
for each N ≥ 1 and for fixed integers hi with 0 < |hi| ≤ N3, i = 1, 2, 3, 4, the
number of solutions (ν1, ν2, ν3, ν4) of the Diophantine equation

(1.5) h1nν1 + h2nν2 + h3nν3 + h4nν4 = 0

subject to

(1.6) 1 ≤ νi ≤ N, i = 1, 2, 3, 4,

does not exceed C0N
1+β , provided that no proper subsums in (1.5) vanish.

Condition (G), if there exists a constant 0 < η ≤ 1 such that for all
k ≥ k0(η) we have

(1.7) nk+k1−η/nk ≥ k.

(Here, and in the sequel, nj is meant as n[j] if j is not an integer.)
With these notations we can formulate now our main result.

Theorem 1. Let (nk) be an increasing sequence of positive integers sat-
isfying conditions (B), (C) and (G). Then there is a constant D, depending
only on the constants α, β, η, C and C0 in these conditions, such that for
almost all ω ∈ [0, 1)

1
4
≤ lim sup

N→∞

NDN (ω)√
N log logN

≤ D.

In Section 2 we will discuss examples of applications of Theorem 1. In
particular, we will show that conditions (B), (C) and (G) are satisfied not only
for the Hardy-Littlewood-Pólya sequences, but, in some sense, for ‘almost all’
sequences (nk) with a suitable minimal speed. For concrete sequences (nk),
verifying conditions (B) and (G) requires usually only elementary arguments,
but condition (C) is different: for example, the proof that condition (C) holds
for the Hardy-Littlewood-Pólya sequences requires the latest version of the
subspace theorem of Evertse, Schlickewei and Schmidt [13].

It is worth pointing out that Theorem 1 does not contain the LIL (1.4) for
Hadamard gap sequences. Indeed, while conditions (B) and (G) are trivially
satisfied under (1.3), the example nk = 2k−1 shows that condition (C) can fail
under the Hadamard gap condition. There is in fact a basic difference between
the Hadamard and sub-Hadamard cases: while under (1.3) the discrepancy of
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(nkω) satisfies the LIL regardless of the arithmetic structure of (nk), for sub-
Hadamard sequences the asymptotic behavior of DN (ω) depends sensitively
on the number-theoretic properties of (nk). Assuming ‘nice’ number-theoretic
properties for a Hadamard sequence (nk) will improve the constant C(%) in
(1.4), but the exact value of the limsup in (1.4) seems to be unknown even in
the simplest case nk = 2k.

The lower bound 1/4 in Theorem 1 will be deduced from the following the-
orem, which gives a strong asymptotic result for the sums

∑
k≤N cos 2πnkω.

Theorem 2. Let (nk) be an increasing sequence of positive integers satis-
fying condition (G) and condition (C) with hi = ±1 only. Then there exists a
sequence {Yk(ω1, ω2)}∞k=1 of independent standard Gaussian random variables
defined on the unit square [0, 1)2, equipped with the two-dimensional Lebesgue
measure, such that for almost all (ω1, ω2) ∈ [0, 1)2

(1.8)
√

2
∑
k≤N

cos 2πnkω1 −
∑
k≤N

Yk(ω1, ω2)� N1/2−λ

for some λ > 0, depending on β, η and C0 only.

Applying the classical law of the iterated logarithm for independent stan-
dard Gaussian random variables, relation (1.8) implies that for almost all
ω1 ∈ [0, 1)

(1.9) lim sup
N→∞

|
∑
k≤N cos 2πnkω1|√
N log logN

= 1.

Koksma’s inequality [11, p. 11] or [18, p. 143] implies 1/(4
√

2) as a lower
bound in Theorem 1. However, the complex version of (1.9) that considers
e2πinkω1 instead of cos 2πnkω1 together with an improved version of Koksma’s
inequality will yield 1/4 as a lower bound in Theorem 1, as claimed. For the
details see Philipp [21].

Letting

(1.10) Fn(t) = Fn(t, ω) =
1
n

card {k ≤ n : ηk(ω) ≤ t}, 0 ≤ t ≤ 1,

denote the empirical distribution function of the sequence {nkω}, Theorem 1
provides a law of the iterated logarithm for the Kolmogorov-Smirnov statistic√
N sup0≤t≤1 |FN (t)−t|. The following stronger theorem will give information

on the modulus of continuity of the process

βN (t) =

√
N

log logN
(FN (t)− t), 0 ≤ t ≤ 1.

Theorem 3. Let (nk) be an increasing sequence of positive integers sat-
isfying conditions (B), (C) and (G). Then there exist constants δ > 0 and D,
depending only on α, β, η, C and C0, with the following property. For almost
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all ω ∈ [0, 1) there is an N0 = N0(ω, α, β, η, C,C0) such that for all N ≥ N0

and all s and t with 0 ≤ s < t ≤ 1

max
n≤N

n|Fn(t)− Fn(s)− (t− s)| ≤ D(t− s)δ(N log logN)1/2 +N1/2.

As a consequence, for each ε > 0 there exists with probability 1 a random
index N0 = N0(ε, ω) such that

(1.11) |βN (t)− βN (s)| ≤ D|t− s|δ + ε

for all 0 ≤ s < t ≤ 1 and all N ≥ N0. Here the constants D > 0 and
δ > 0 depend only on the parameters in conditions (B), (C) and (G). From
(1.11) one can infer without difficulty (for the details see Philipp [20], Section
3.1) that the sequence βN (t) is with probability 1 relatively compact in the
space D(0, 1) endowed with the supremum norm. To identify the limit func-
tions as the unit ball of the reproducing kernel Hilbert space associated with
the covariance function of the Gaussian process accompanying the sequence
(ηk, k ≥ 1) would require additional assumptions on the sequence of integers.
Corollary 4.1 of Philipp [20] provides an example where the set of limit func-
tions can be identified as such. We shall not pursue this issue in the present
paper. Of course, (1.11) immediately implies Theorem 1.

For additional results on the connection between the asymptotic properties
of {nkω} and the Diophantine properties of the sequence (nk) we refer to
Berkes, Philipp and Tichy [4].

The structure of our paper is the following. In Section 2 we give examples
of applications of our theorems. In Sections 3–7 we give the proof of Theorem
3. Our argument makes substantial use of the ideas of Philipp [21], Theorem
2. In particular, we will streamline and improve upon the chaining argument
presented in Section 3 of [21]. The bulk of the proof of Theorem 3 to be pre-
sented in Sections 3–7 consists of a martingale approximation of the sequence
{Fk(t) − Fk(s) − (t − s)}∞k=1. This involves blocking techniques, centering at
conditional expectations, Doob’s maximal inequalities for martingales and es-
timates of the conditional variances, in order to prepare for an application of
an exponential bound for the martingale.

The proof of Theorem 2 is technically considerably simpler than those
of Theorems 1 and 3 and can be modelled after the proof of Philipp [21],
Theorem 2. We shall give it in Section 8 below. Finally, in the Appendix
we formulate, for easier reference, some classical results on martingales and
maximal inequalities that we will need for the proofs of our theorems. For
further background reading we refer the interested reader to Dehling and
Philipp [6] and Philipp [22].
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2. Examples

The results of our paper establish a close connection between the asymp-
totic behavior of the discrepancy of {nkω} and the Diophantine properties
of the sequence (nk). The Diophantine property (B) is generally easy to
handle; in contrast, verifying (C) in concrete cases usually requires very sub-
stantial tools from number theory. For example, the proof below that Hardy-
Littlewood-Pólya sequences satisfy condition (C) requires the latest version of
the subspace theorem of Evertse, Schlickewei and Schmidt [13]. On the other
hand, random constructions provide a very large class of sequences satisfying
the conditions of Theorems 1–3. For example, we will show below that almost
all sequences (nk) growing with a minimal speed specified by condition (G)
satisfy the conclusion of Theorems 1–3.

We begin by showing that the Hardy-Littlewood-Pólya sequences satisfy
conditions (B), (C) and (G).

Lemma 2.1. Let (nk) be a Hardy-Littlewood-Pólya sequence. Then there
is a constant C > 0 such that for each positive integer b and for each R ≥ 1
the number of solutions (h, ν) of the Diophantine equation

(2.1) hnν = b

with h ∈ N, 1 ≤ h ≤ R, does not exceed C(logR)r. Here r is the number of
primes involved in the prime factorization of q1, . . . , qτ .

Proof. Let p1, . . . , pr be the primes appearing in the prime factorization of
q1, . . . , qτ and write b = pα1

1 . . . pαrr M , where αi ≥ 0 are integers and M is not
divisible by p1, . . . , pr. The number nν in (2.1) has the form nν = pβ1

1 . . . pβrr
with integers βi ≥ 0, and thus (2.1) implies that βi ≤ αi, i = 1, . . . , r, and

h = pα1−β1
1 . . . pαr−βrr M = pδ11 . . . pδrr M

with integers δi ≥ 0. Now h ≤ R implies pδ11 . . . pδrr ≤ R/M ≤ R, and
consequently δi ≤ logR/ log 2, i = 1, . . . , r. Thus the number of r-tuples
(δ1, . . . , δr), and consequently the number of h’s that can possibly yield a
candidate h for a solution (h, ν) of (2.1), is at most (1 + logR/ log 2)r. As h
in (2.1) determines ν uniquely, Lemma 2.1 is proved. �

Lemma 2.2. A Hardy-Littlewood-Pólya sequence satisfies condition (C)
with any β > 0 and

C0 = exp(189(τ + 1)),

where τ denotes the number of generating elements of the sequence.

Proof. The number of choices for ν4 in (1.5) is N , and thus the lemma
follows from Theorem 1.1 of Evertse-Schlickewei-Schmidt [13] upon fixing ν4

and dividing (1.5) by h4nν4 . (Note that Hardy-Littlewood-Pólya sequences
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satisfy the Diophantine property in condition (C) even with β = 0. However,
for technical reasons condition (C) was defined only for β > 0.) �

Lemma 2.3. A Hardy-Littlewood-Pólya sequence (nk) satisfies condition
(G).

Proof. Let q1, . . . , qτ be the generating elements of (nk). Clearly, an ele-
ment nj = qδ11 . . . qδττ of the sequence (nk) satisfies nj ≤ R iff

δ1 log q1 + . . .+ δτ log qτ ≤ logR,

and thus the number A(R) of elements of (nk) in [0, R] equals the number of
lattice points (δ1, . . . , δτ ) in the τ -dimensional ’tetrahedron’

x1 log q1 + . . .+ xτ log qτ ≤ logR, x1 ≥ 0, . . . , xτ ≥ 0.

The volume of the tetrahedron is c1(logR)τ , where

c1 = c1(τ) =
1

τ ! log q1 . . . log qτ
,

and thus by a well known argument in analysis we have, as R→∞,

(2.2) A(R) = c1(logR)τ +O((logR)τ−1).

From (2.2) and the trivial relation A(nk) = k we get

(2.3) lognk ∼
(
k

c1

)1/τ

.

Formulas (2.2), (2.3) and log knk ∼ log nk (which is a consequence of (2.3))
imply that the number of nj ’s in the interval [nk, knk] is

c1[(log knk)τ − (log nk)τ ] +O((log knk)τ−1) ∼ c1τ(log k)(log nk)τ−1

∼ c2k(τ−1)/τ log k

as k →∞. Thus for k ≥ k0 we have

nk+2c2k(τ−1)/τ log k ≥ knk,

and consequently (1.7) holds with any η < 1/τ . �

We now show that, in some sense, almost all sequences (nk) growing like a
polynomial with a fixed large degree will satisfy conditions (B) and (C). We
shall construct these sequences by induction. Let n1 = 1 and suppose that
n1 < n2 < · · · < nk−1 have already been constructed and satisfy

(2.4) (j − 1)50 < nj ≤ j50, j = 1, 2, . . . , k − 1.

Then the cardinality of the set of integers of the form

a1nµ1 + a2nµ2 + a3nµ3
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with 1 ≤ µ1, µ2, µ3 ≤ k−1, |a1|, |a2|, |a3| ≤ k11, is at most (2k11+1)3(k−1)3 =
O(k36). Hence the cardinality of the set of integers included in the set of
rational numbers

(2.5)
1
a

(a1nµ1 + a2nµ2 + a3nµ3), a ∈ Z− {0}, |a| ≤ k11,

subject to 1 ≤ µ1, µ2, µ3 ≤ k − 1, |a1|, |a2|, |a3| ≤ k11, is O(k47). Thus,
the interval ((k − 1)50, k50] contains at most that many integers of the form
(2.5). This number is at most O(1/k2) times the total number of integers
in the interval. Calling these numbers “bad”, we choose now nk from the
“good” integers (which constitute an overwhelming majority for k large), and
note that (2.4) is satisfied also for j = k. This construction yields an infinite
increasing sequence (nk) with the property that for k ≥ k0 the Diophantine
equation

(2.6) a1nµ1 + a2nµ2 + a3nµ3 + a4nµ4 = 0

with 1 ≤ µi ≤ k, i = 1, 2, 3, 4, and max(|ai|, i = 1, 2, 3, 4) ≤ k11 has no
solution if one of the indices, say µ4, equals k and the corresponding factor
a4 6= 0, while the other three indices µi are strictly less than k. Call this
property (NS) (for “no solutions”).

We now show that the constructed sequence (nk) satisfies condition (C). Let
N ≥ N0 be given and consider (1.5) subject to 0 < |hi| ≤ N4, i = 1, 2, 3, 4,
fixed and 1 ≤ ν1 ≤ ν2 ≤ ν3 ≤ ν4 ≤ N. We can assume without loss of
generality that ν4 > 3N4/11, since otherwise (1.5) can have only (3N4/11)4 =
O(N1+β) solutions, where β = 5/11 < 1/2. We now distinguish several cases
according to the relative size of the indices νi. If ν4 > ν3, we set k = ν4.
Then using property (NS) it follows that (1.5) has no solutions subject to
0 < |hi| ≤ N4, since then |hi| ≤ N4 < k11 by k = ν4 > 3N4/11. (Note that the
validity of (NS) has been established only for k ≥ k0, but by k = ν4 > 3N4/11

this is satisfied if N ≥ N0. For the finitely many remaining values 1 ≤ N < N0

condition (C) is trivially satisfied.) If ν4 = ν3 > ν2, then (1.5) reduces to

(2.7) h1nν1 + h2nν2 + h∗nν4 = 0

with h∗ = h3+h4 6= 0, since otherwise the proper subsum h1nν1 +h2nν2 would
vanish. In (2.6) we set a1 = h1, a2 = h2, a3 = 0, a4 = h∗ and µ4 = k, and
conclude that by property (NS), (2.7) has no solutions since |h∗| ≤ 2N4 < k11.
If ν4 = ν3 = ν2 > ν1, then (1.5) reduces to

(2.8) h1nν1 + h∗∗nν4 = 0

with h∗∗ = h2 + h3 + h4 6= 0, since otherwise we would have h1 = 0, contrary
to the assumption. In (2.6) we set a1 = h1, a2 = a3 = 0, a4 = h∗∗ and µ4 = k,
and conclude that (2.8) cannot have a solution since |h∗∗| ≤ 3N4 < k11.
Finally, if ν4 = ν3 = ν2 = ν1, then there are only N possibilities for the
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4-tuple (ν1, ν2, ν3, ν4), and thus for fixed hi the number of solutions of (1.5)
is at most N, regardless of the restrictions on hi.

To verify that (nk) also satisfies condition (B), let R ≥ 1, b ≥ 1 be given
and consider the equation hnν = b with h ∈ N, 1 ≤ h ≤ R. If this equation
has a solution (h, nν) at all, let (l, nµ) denote its solution with the largest µ.
This means that we have to study the Diophantine equation

(2.9) hnν − lnµ = 0

subject to ν ≤ µ and 1 ≤ h ≤ R. Set k = µ. If k ≤ R1/4, then ν ≤ R1/4, and
since ν uniquely determines h in (2.9), in this case the number of solutions
(h, nν) of (2.9) does not exceed R1/4, regardless of the restriction on h. If
k > R1/4, then by property (NS), equation (2.9) has no solutions other than
h = l, ν = µ, since from ν < µ, 1 ≤ h ≤ R it follows that 1 ≤ l ≤ h ≤ R ≤
k4 ≤ k11. (As we noted above, the validity of (NS) has been established only
for k ≥ k0, but by k > R1/4 this is satisfied if R ≥ R0. For the finitely many
remaining values 1 ≤ R < R0 condition (B) is trivially satisfied.) Thus the
impossibility of a solution follows by setting in (2.6) a1 = a2 = 0, a3 = h and
a4 = −l.

If instead of (2.4) we require nj ∈ Ij , where I1, I2, . . ., are disjoint intervals
on the positive line, each lying to the right of the preceding one, then the same
construction will work as long as the length |Ij | of the interval Ij satisfies
|Ij | ≥ j49. Specifically, if n1 < n2 < · · · < nk−1 are given, the number of
“bad” choices for nk in the interval Ik is O(1/k2) times the total number
of integers in the interval, and thus if we choose nk at random, uniformly
among all integers in the interval Ik, then the Borel-Cantelli lemma shows
that with probability one, all choices for k ≥ k0 will be “good”. Hence the
above construction yields the following result.

Corollary. Let I1, I2, . . . be disjoint intervals on the positive line, each
lying to the right of the preceding one, such that |Ik| ≥ k49, k = 1, 2, . . ., and
let (nk) be a random sequence such that nk is uniformly distributed over the
integers of the interval Ik. Then (nk) satisfies conditions (B) and (C) with
probability one.

With a proper choice of the intervals Ik we can “regulate” the speed of
growth of (nk); in fact, we can guarantee an arbitrarily prescribed speed of
growth provided this exceeds kγ , γ large. Specifically, if φ(k), k ≥ 0, is a
sequence of integers with φ(0) = 0 and φ(k) − φ(k − 1) > 2k49, k = 1, 2, . . .,
then choosing Ik = [φ(k)−k49, φ(k)+k49] will imply nk ∼ φ(k). In particular,
we can guarantee the validity of Condition (G) as well.
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3. Preliminary lemmas

For technical reasons, in the proof of our theorems we will need condition
(C) in a slightly different form. We say that a sequence (nk) satisfies

Condition (C∗), if there exist constants 0 < β < 1/2, γ > 0 and
C0 > 0 such that for each N ≥ 1 and for fixed integers hi with 0 < |hi| ≤
N3(1+γ), i = 1, 2, 3, 4, the number of solutions (ν1, ν2, ν3, ν4) of the Dio-
phantine equation

(3.1) h1nν1 + h2nν2 + h3nν3 + h4nν4 = 0

subject to

(3.2) 1 ≤ νi ≤ N1+γ , i = 1, 2, 3, 4,

does not exceed C0N
1+β , provided that no proper subsums in (3.1) vanish.

Choosing γ > 0 so small that

(3.3) (1 + β)(1 + γ) < 3/2,

and applying condition (C) with N1+γ instead of N , we see that condition (C)
implies condition (C∗), and thus the two conditions are actually equivalent.
It is also clear that if condition (C∗) is satisfied with constants β, γ then it
is also satisfied with β, γ′ for arbitrary 0 < γ′ < γ, and thus without loss of
generality we can always assume that γ is small, e.g., relation (3.3) holds.

Lemma 3.1. Assume that condition (G) holds. Then for any integer
A ≥ 1 we have for k ≥ k0(A)

nk(1+k−η)A/nk ≥ kA,

and consequently

nk+2Ak1−η/nk ≥ kA.

Proof. We use induction on A. We apply (G) to k(1 + k−η)A instead of k
and obtain, writing n(k) instead of nk, in order to avoid subscripts,

n(k(1 + k−η)A+1)
n(k)

≥ n(k(1 + k−η)A)(1 + (k(1 + k−η)A)−η)
n(k(1 + k−η)A)

· n(k(1 + k−η)A)
n(k)

≥ k(1 + k−η)A · kA ≥ kA+1,

since the sequence (nk) is increasing. �

For fixed s and t with 0 ≤ s < t ≤ 1 we write

xν = xν(s, t) = 1(s ≤ ην(ω) < t)− (t− s).
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Lemma 3.2. Let N be a finite set of positive integers with card N = N .
Then for 0 ≤ s < t ≤ 1

E

(∑
ν∈N

xν(s, t)

)2

� (t− s)εN,

where

(3.4) ε = 1− α
(

5
4
− 1

2
α

)2

>
1
2

and where the constant implied by � depends only on α and C in condition
(B).

Here, and through Section 8, the symbols E and P respectively denote the
expectation and probability defined in the probability space [0, 1), equipped
with Lebesgue measure.

Proof. For simplicity we set

% =
1
2
− α, δ =

1
2
α%, Θ = α+ δ = α

(
1 +

1
2
%

)
.

Let
∑
h6=0 che

2πihω be the Fourier-expansion of 1[s,t)(ω) − (t − s), assuming
that the indicator 1[s,t) has been extended with period 1. Then

(3.5) |ch| ≤
1
π|h|

, h 6= 0.

We follow the proof of [21, Lemma 2.2] until the end of the first (unnumbered)
display on p. 711. Applying condition (B) instead of the direct argument used
to estimate the number of solutions of the Diophantine equation hnν = lnµ,
and using (3.5) we can continue the chain of inequalities and get that the L2

norm of
∑
ν∈N xν(s, t) is at most

2C1/2N1/2
∑
u≥0

2uα/2

 ∑
2u≤|h|<2u+1

|ch|2
1/2

(3.6)

� N1/2
∑
u≥0

2−uδ/2

 ∑
2u≤|h|<2u+1

|ch|2−α−δ
1/2

� N1/2

∑
u≥0

2−uδ

1/2∑
u≥0

∑
2u≤|h|<2u+1

|ch|2−Θ

1/2

� N1/2

∑
h6=0

|ch|2−Θ

1/2
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� N1/2

∑
h6=0

|ch|2−(2+%)Θ · |h|−(1+%)Θ

1/2

� N1/2

∑
h6=0

|ch|(2−(2+%)Θ)p

1/(2p)∑
h6=0

|h|−(1+%)Θq

1/(2q)

with
1
p

= 1− 1
2

(2 + %)Θ = 1− 1
q
,

so that
q =

2
(2 + %)Θ

> 2.

Indeed,

1
q

=
(

1 +
1
2
%

)
Θ =

(
1 +

1
2
%

)2

α =
(

1 +
1
2
%

)2(1
2
− %
)
<

1
2

as 0 < % < 1/2. Since

(1 + %)Θq = (2 + 2%)/(2 + %) > 1,

the second sum in the last line of (3.6) converges. In the first sum in the same
line, the exponent of |ch| equals 2 by the choice of p, and thus this sum equals
‖1[s,t)(·)− (t− s)‖22 ≤ 4(t− s). Hence we obtain the result observing that

1
p

= 1−
(

1 +
1
2
%

)2

α = 1−
(

5
4
− 1

2
α

)2

α = ε. �

Lemma 3.3. For 0 ≤ s < t ≤ 1 and all H ≤ N1+γ we have

E

(
H+N∑
ν=H+1

xν(s, t)

)4

� (t− s)2εN2 +N1+β log4N,

where ε is defined by (3.4) and the constant implied by � depends only on
C,C0, α, β and γ.

Remark. Of course, the factor log4N could be absorbed into the expo-
nent 1 + β on N. All that will be needed is that the exponent on N is less
than 3/2. However, keeping the logarithmic factors in the formulation and
proof of the lemma facilitates reading as the individual steps become more
transparent. The same applies for the logarithmic factors in the proof of later
lemmas.

Proof. We expand again 1[s,t)(ω)− (t− s) into a Fourier series∑
h6=0

ch exp(2πihω),
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assuming that the indicator 1[s,t) has been extended with period 1. Substi-
tuting nνω into this series we obtain

xν = xν(s, t) = 1[s,t)(nνω)− (t− s) = x∗ν + x∗∗ν ,

where
x∗ν =

∑
0<|h|≤N3(1+γ)

ch exp(2πihnνω)

and
x∗∗ν =

∑
|h|>N3(1+γ)

ch exp(2πihnνω).

Note that for all ω and all ν

(3.7) |x∗∗ν | ≤ |xν |+ |x∗ν | ≤ 1[s,t)(nνω) + (t− s) +
∑

0<|h|≤N3(1+γ)

|ch| < 15 logN

and

(3.8) ||x∗∗ν ||22 =
∑

|h|>N3(1+γ)

|ch|2 < N−3(1+γ)

by (3.5). Thus by Minkowski’s inequality

E

∣∣∣∣∣
H+N∑
ν=H+1

x∗∗ν

∣∣∣∣∣
4

≤ (15N logN)2 · E

(
H+N∑
ν=H+1

|xν |∗∗
)2

(3.9)

≤ 225N2 log2N · (N ·N−3/2)2 � N log2N.

Using the multinomial theorem we expand

E

∣∣∣∣∣
H+N∑
ν=H+1

x∗ν

∣∣∣∣∣
4

=
H+N∑
νi=H+1
i=1,2,3,4

Ex∗ν1
x̄∗ν2

x∗ν3
x̄∗ν4

(3.10)

=
∑

0<|hi|≤N3(1+γ)

ch1 c̄h2ch3 c̄h4

H+N∑
νi=H+1
i=1,2,3,4

1{h1nν1 − h2nν2 + h3nν3 − h4nν4 = 0}.

By condition (C∗) and the assumption H ≤ N1+γ the inner sum in the second
line of (3.10) does not exceed C0(2N)1+β , provided that no proper subsum
vanishes. Hence by (3.5) the total contribution of these terms in the sum in
the second line of (3.10) is � N1+β(logN)4. If a 3-term subsum vanishes,
e.g.,

h1nν1 − h2nν2 + h3nν3 = 0,
then for the indicator in the inner sum in the second line of (3.10) not to
vanish the term h4nν4 would have to be zero, which is impossible. If on the
other hand

h1nν1 − h2nν2 = 0 and h3nν3 − h4nν4 = 0,
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then we can rewrite the indicator as the product of the two indicators

1{h1nν1 − h2nν2 = 0} · 1{h3nν3 − h4nν4 = 0}
and then the corresponding terms add up toE ∣∣∣∣∣

H+N∑
ν=H+1

x∗ν

∣∣∣∣∣
2
2

.

This last expression can be handled by an application of Lemma 3.2. Since
|a−b|2 < 2|a|2 +2|b|2 for any complex numbers a, b, we have by xν = x∗ν+x∗∗ν ,
(3.8) and Minkowski’s inequality

E

∣∣∣∣∣
H+N∑
ν=H+1

x∗ν

∣∣∣∣∣
2

� E

∣∣∣∣∣
H+N∑
ν=H+1

xν

∣∣∣∣∣
2

+ E

∣∣∣∣∣
H+N∑
ν=H+1

x∗∗ν

∣∣∣∣∣
2

� (t− s)εN +

(
H+N∑
ν=H+1

||x∗∗ν ||2

)2

� (t− s)εN + (N ·N−3/2)2 � (t− s)εN +N−1.

The square of this last term (which is clearly ≤ (t−s)2εN2 +3) is a bound for
the total contribution of those terms for which the considered proper subsums
vanish. A similar bound is obtained for the contribution of terms with other
two-term subsums (e.g., h1nν1 + h3nν3) vanishing. Collecting our estimates,
we get Lemma 3.3. �

Lemma 3.4. Assume (nk) satisfies condition (C∗) with hi = ±1 only and
assume, without loss of generality, that (3.3) holds. Then for all N ≥ 1,
H ≤ N1+γ we have

(3.11) E sup
M≤N

sup
0≤s<t≤1

∣∣∣∣∣
H+M∑
ν=H+1

xν(s, t)

∣∣∣∣∣
4

� N2 log8N,

where the constant implied by � depends only on C0.

Proof. We follow the proof of [21, Lemma 2.1]. By the Erdős-Turán in-
equality [18, p. 112] we have for each R ≥ 1 and each ω ∈ [0, 1)

sup
0≤s≤t≤1

∣∣∣∣∣
H+M∑
ν=H+1

xν(s, t)

∣∣∣∣∣ ≤ 6M
R

+ 2
R∑
r=1

1
r

∣∣∣∣∣
H+M∑
ν=H+1

e(rnνω)

∣∣∣∣∣ ,
where e(x) = e2πix. Choosing R = M and using |a + b|4 ≤ 8(|a|4 + |b|4) we
obtain that the left hand side of (3.11) is bounded by

(3.12) 8 · 64 + 8 · 24E


(

N∑
r=1

1
r

max
M≤N

∣∣∣∣∣
H+M∑
ν=H+1

e(rnν ·)

∣∣∣∣∣
)4
 .
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We observe that for any H + 1 ≤ k < l ≤ H +M∫ 1

0

∣∣∣∣∣
l∑

ν=k

e(rnνω)

∣∣∣∣∣
4

dω ≤ u(k, l),

where u(k, l) denotes the number of solutions of the Diophantine equation

(3.13) nν1 − nν2 + nν3 − nν4 = 0, k ≤ ν1, ν2, ν3, ν4 ≤ l.

Clearly u(k, l) satisfies

u(k, l) ≤ u(k, l + 1), u(k, l) + u(l + 1,m) ≤ u(k,m),

and thus using Lemma A1 and condition (C∗) with hi = ±1 we get

(3.14)
∫ 1

0

max
M≤N

∣∣∣∣∣
H+M∑
ν=H+1

e(rnνω)

∣∣∣∣∣
4

dω � u(H + 1,H +N) log4N,

where the constant implied by � is absolute. The number of solutions of
(3.13) for which no proper subsum vanishes is at most C0l

1+β by condition
(C∗) with hi = ±1. Clearly, no 3-term subsum in (3.13) can vanish. If a
two-term subsum vanishes, then either ν1 = ν4, ν2 = ν3 or ν1 = ν2, ν3 = ν4;
the number of such solutions is clearly ≤ 2(l − k)2. Thus

u(k, l) ≤ C0l
1+β + 2(l − k)2,

and consequently the right hand side of (3.14) is at most

C0(H +N)1+β log4N + 2N2 log4N.

Hence by Minkowski’s inequality the right hand side of (3.12) is

� 1 + C0(H +N)1+β log8N + 2N2 log8N

� N (1+β)(1+γ) log8N +N2 log8N � N2 log8N

since (1 + β)(1 + γ) < 3/2 by (3.3). �

A byproduct of the proof of Lemma 3.4 is the following corollary.

Corollary 3.1. Assume (nk) satisfies condition (C∗) with hi = ±1 only.
Then for all k < l we have∫ 1

0

∣∣∣∣∣
l∑

ν=k

e2πinνω

∣∣∣∣∣
4

dω � (l − k)2 + l1+β ,

where the constant implied by � depends only on C0.
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4. Martingale approximation

Fix an integer τ with

(4.1) τ ≥ max(1 + 2/γ, 1/η, 8/(1− 2β), 90),

where β, γ and η are from conditions (C∗) and (G). We define blocks H1, I1,
H2, I2, . . . of consecutive integers as follows: First, for each j = 1, 2 . . .,

(4.2) cardHj = card Ij := Nj = τjτ−1.

Second, the members of Hj are smaller than the members of Ij which, in turn,
are smaller than the members of Hj+1. There are no gaps between consecutive
blocks. It is enough to prove the theorem for the sequence (nνω) with ν ∈⋃
j≥1Hj , since the proof of the corresponding statement for ν ∈

⋃
j≥1 Ij is

identical and since at the end the triangle inequality implies the desired result.
Denote by hj the largest member of Hj . Then

(4.3) hj = 2
∑
l≤j−1

τ lτ−1 + τjτ−1 ≈ jτ ,

where ≈ means same order of magnitude. Moreover, the indices of nν , ν ∈⋃
l≤j−1Hl, are separated from the indices of nµ, µ ∈ Hj , by τ(j − 1)τ−1 at

least.
Let rk be the largest integer r with

(4.4) 2r ≤ nkk12, k ≥ 1,

and Hk the σ-field generated by the dyadic intervals

(4.5) Ulk = [l · 2−rk , (l + 1)2−rk), 0 ≤ l < 2rk .

We set

(4.6) Fj = Hhj , ξν = E(xν |Fj), ν ∈ Hj ,

and

(4.7) wj =
∑
ν∈Hj

xν , yj = E(wj |Fj) =
∑
ν∈Hj

ξν .

Here s and t are fixed, 0 ≤ s < t ≤ 1. Let % satisfy

(4.8) 0 < % ≤ min
(

1/(40τ),
1
16

(
1
2
− β

))
.

Note that this % is different from the % introduced solely for the proof of
Lemma 3.2. For fixed n we truncate yj , j ≤ n, by setting

(4.9) zj = zj,n = yj1{|yj | ≤ h
1
2−%
n }, j ≤ n.

From now on, and until the end of Section 6, we assume the standing
hypothesis

(4.10) t− s > h−1/2
n .
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Lemma 4.1. We have

P

∑
j≤n

|zj − wj | ≥ h
1
2−%
n

� (t− s)2εn−3/4 + h
− 1

2−
3
4 ( 1

2−β)
n ,

where ε is defined by (3.4).

Proof. Recall that by [20, Lemma 4.2.3]

||xν − ξν ||2 � ν−6.

Thus by Minkowski’s inequality

(4.11) E|wj − yj |2 ≤

∑
ν∈Hj

||xν − ξν ||2

2

� h−10
j � j−10τ .

Thus

P

 ∑
n1/4<j≤n

|wj − yj | ≥
1
3
h

1
2−%
n

(4.12)

� h
− 1

2 +%
n

∑
n1/4<j≤n

E|wj − yj |

� h
− 1

2 +%
n

∑
n1/4<j≤n

j−5τ � h−1
n .

Since trivially

|wj | ≤ 2 cardHj = 2Nj , |yj | ≤ 2Nj

we have

(4.13)
∑

j≤n1/4

|wj − yj | ≤ 4
∑

j≤n1/4

Nj �
∑

j≤n1/4

jτ−1 � h1/4
n .

Next, we note that

(4.14) E|yj − zj | = E
∣∣∣yj · 1{|yj | ≥ h 1

2−%
n

}∣∣∣ ≤ h− 3
2 +3%

n E|yj |4

and also, by the conditional version of Jensen’s inequality,

Ey4
j = E

(
E(wj |Fj)4

)
≤ E

(
E(w4

j |Fj)
)

= Ew4
j .
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Thus by Lemma 3.3, (4.1), (4.2), (4.3) and (4.8)

P

∑
j≤n

|yj − zj | ≥
1
2
h

1
2−%
n

� h
− 1

2 +%
n h

− 3
2 +3%

n

∑
j≤n

E|yj |4(4.15)

� h−2+4%
n

(t− s)2ε
∑
j≤n

N2
j +

∑
j≤n

N1+β
j log4 j


� (t− s)2ε · n−3/4 + h−2+4%

n · h1+β
n

� (t− s)2εn−3/4 + h
− 1

2−
3
4 ( 1

2−β)
n .

The lemma now follows from (4.12), (4.13) and (4.15). �

A part of estimate (4.15) above yields:

Corollary 4.1. We have∑
j≤n

E|yj |4 � (t− s)2ε · h2
nn
−1 + h1+β

n · n−β log4 n.

Lemma 4.2. Write

(4.16) Yj = zj − E(zj |Fj−1), 1 ≤ j ≤ n.

Then {Yj ,Fj , 1 ≤ j ≤ n} is a martingale difference sequence that is bounded

by 2h
1
2−%
n . Moreover,

P

∑
j≤n

|E(zj |Fj−1)| ≥ h
1
2−%
n

� (t− s)2εn−3/4 + h
− 1

2−
1
2 ( 1

2−β)
n .

Proof. We first show that we have with probability 1

(4.17)
∑
j≤n

|E(yj |Fj−1)| ≤ C1

for some non-random constant C1. For this purpose we note that by the proof
of [21, Lemma 3.3] we have

|E(xν |Fj−1)| � 2rhj−1 (t− s)n−1
ν , ν ∈ Hj ,

and thus by (4.6), (4.7), (4.2), (4.4) we get

vj : = |E(yj |Fj−1)| =

∣∣∣∣∣∣
∑
ν∈Hj

E(ξν |Fj−1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ν∈Hj

E(xν |Fj−1)

∣∣∣∣∣∣(4.18)

� (t− s)2rhj−1Nj/nhj−1+Nj−1

� (t− s)nhj−1h
12
j−1Nj/nhj−1+Nj−1 .
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For simplicity we set (cf. (4.3))

k := hj−1 ∼ 2(j − 1)τ .

To estimate the quotient n(k+τ(j−1)τ−1)/n(k) (where, again, we wrote n(j)
instead of nj to avoid subscripts) we note that for j ≥ j0 we have k < 3(j−1)τ ,
i.e., j − 1 > (k/3)1/τ . Thus by relation (4.1)

τ(j − 1)τ−1 > τ(k/3)1−1/τ >
τ

3
k1−η.

Hence using Lemma 3.1 with A ∼ τ/6 we get

(4.19) n(k + τ(j − 1)τ−1)/n(k) ≥ kA.

Since by (4.1) we have τ ≥ 90, we can continue the estimating procedure in
(4.18) and obtain in view of (4.19)

vj � (t− s)h12
j−1Nj · h−Aj−1 � (t− s)h−2

j−1 � (t− s)j−180 a.s.

This implies (4.17).
To finish the proof of the lemma we note that by (4.14) and part of the

estimate (4.15) we have

P

∑
j≤n

|E(zj |Fj−1)− E(yj |Fj−1)| ≥ 1
2
h

1
2−%
n


� h

− 1
2 +%

n

∑
j≤n

E|zj − yj | � h−2+4%
n

∑
j≤n

E|yj |4

� (t− s)2εn−3/4 + h
− 1

2−
3
4 ( 1

2−β)
n .

This together with (4.17) yields the result. �

5. Estimates of the conditional variances

Eventually we will apply the exponential bound provided in Lemma A2
to the martingale difference sequence {Yj ,Fj}. For this purpose we need an
upper bound on the sum of the conditional variances E(Y 2

j |Fj−1). By the
conditional version of Jensen’s inequality and since |zj | ≤ |yj | we have in view
of (4.16)

(5.1) E(Y 2
j |Fj−1) ≤ E(z2

j |Fj−1) ≤ E(y2
j |Fj−1).

The next three lemmas will provide an estimate for the sums of E(y2
j |Fj−1)

by the sums of Ew2
j . The latter ones can be dealt with using Lemma 4.2.

From now on let δ be a number with

(5.2) 0 < δ ≤ 1
4

min
(
ε− 1

2
,

1
2
− β

)
.
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Lemma 5.1. We have

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

(y2
j − E(y2

j |Fj−1)

∣∣∣∣∣∣ ≥ 1
100

(t− s)δhn


� (t− s)ε+ 1

2n−1 + h
− 1

2−
1
2 ( 1

2−β)
n .

Proof. By Doob’s maximal inequality [10, p. 314] for martingales, the prob-
ability in question does not exceed by (4.10), (5.2) and Corollary 4.1

h−2
n (t− s)−2δE

∣∣∣∣∣∣
∑
j≤n

(y2
j − E(y2

j |Fj−1))

∣∣∣∣∣∣
2

� h−2
n (t− s)−2δ

∑
j≤n

E|yj |4

� (t− s)2ε−2δn−1 + h
− 1

2−
1
2 ( 1

2−β)
n . �

Lemma 5.2. We have

P

∑
j≤n

|y2
j − w2

j | ≥
1

100
(t− s)δhn


� h−1

n (t− s)1/4.

Proof. By (4.11) and Lemma 3.2 and since Ey2
j ≤ Ew2

j by the conditional
version of Jensen’s inequality, we have

E|y2
j − w2

j | ≤ (E|yj − wj |2E|yj + wj |2)1/2

≤ (E|yj − wj |2 · 4Ew2
j )

1/2

� j−5τ (t− s) 1
2 εN

1/2
j ,

and thus by (4.1), (4.2), (5.2) the probability in question does not exceed

� h−1
n (t− s) 1

2 ε−δ
∑
j≤n

j−4τ � h−1
n (t− s)1/4. �

Lemma 5.3. We have

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

(w2
j − Ew2

j )

∣∣∣∣∣∣ ≥ 1
100

(t− s)δhn


� (t− s)ε+ 1

2 · n−1 log2 n+ h
− 1

2−
1
2 ( 1

2−β)
n .
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Proof. Using the notation introduced in the proof of Lemma 3.3 we write

wj =
∑
ν∈Hj

x∗ν +
∑
ν∈Hj

x∗∗ν = uj + w∗∗j say,

where the truncation of the corresponding Fourier series is, for each j ≤ n,

adapted to the index set Hj = (H,H + N ]; i.e., the cutoff index is N3(1+γ)
j .

First we estimate the terms |w∗∗j |2, |uj ||w∗∗j | and their expectations. Their
contributions to the probability bound in the statement of the lemma will
turn out to be well below the bound claimed. At the end we shall apply
Lemma A1 to the sequence {u2

j − Eu2
j , j ≤ n}.

By (3.8) and Minkowski’s inequality we have

(5.3) E|w∗∗j |2 ≤ N
−(1+3γ)
j � j−(1+3γ)(τ−1),

and thus, as τ ≥ 90,

(5.4)
∑
j≥1

E|w∗∗j |2 <∞.

Since by (3.7)
|w∗∗j | � Nj log j,

we have

(5.5)
∑

j≤n1/4

|w∗∗j |2 �
∑

j≤n1/4

N2
j log2 j � h1/2

n .

Moreover, by (5.3)

P

 ∑
n1/4<j≤n

|w∗∗j |2 ≥
1

200
(t− s)δhn

(5.6)

≤
∑

n1/4<j≤n

P

(
|w∗∗j |2 ≥

1
200n

(t− s)δhn
)

� h−1
n (t− s)−δn

∑
j>n1/4

j−(τ−1)(1+3γ) � h−5/4
n (t− s)−δ

� h−1
n

in view of (4.10), (5.2) and (4.1) as δ < 1/8. Since ‖uj‖2 ≤ ‖wj‖2 + ‖w∗∗j ‖2,
applying (5.3) and Lemma 3.2 we obtain

E|uj ||w∗∗j | ≤ (E|w∗∗j |2)1/2(E|uj |2)1/2 � j−(1+3γ)(τ−1)/2 (Nj(t− s)ε)1/2

� (t− s) 1
2 εj−3/2.

Hence we obtain
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(5.7)
∑
j≥1

E|uj ||w∗∗j | <∞,

and similar to (5.6)

P

∑
j≤n

|uj ||w∗∗j | ≥
1

200
(t− s)δhn

(5.8)

≤
∑
j≤n

P

(
|uj ||w∗∗j | ≥

1
200n

(t− s)δhn
)

� (t− s) 1
2 ε−δh−1

n n
∑
j≥1

j−3/2 � h−1+1/τ
n .

The relations wj = uj + w∗∗j , (5.4), (5.5), (5.6), (5.7) and (5.8) show that
the contributions of |w∗∗j |2, |uj ||w∗∗j | and their expectations of the claimed
probability bound are negligible, i.e., are within the bound on the right hand
side of the Lemma.

We can now prepare for the application of Lemma A1. For fixed 1 ≤ j <
k ≤ n we shall estimate

E

∣∣∣∣∣∣
∑
j<p≤k

(u2
p − Eu2

p)

∣∣∣∣∣∣
2

=
∑

j<p,q≤k

E(u2
p − Eu2

p)(ū
2
q − Eū2

q).

By Lemma 3.3, wp = up + w∗∗p , (4.1), (3.9) and Minkowski’s inequality

E|u2
p − Eu2

p|2 ≤ E|up|4 � E|wp|4 + E|w∗∗p |4(5.9)

� (t− s)2εN2
p +N1+β

p log4Np +Np log2Np

� (t− s)2εp2τ−2 + p(τ−1)(1+β) log4 p.

Next we obtain for p < q

E(u2
p − Eu2

p)(ū
2
q − Eū2

q) = Eu2
pū

2
q − Eu2

pEū
2
q

=
∑

0<|h1|,|h2|≤N3(1+γ)
p

0<|h3|,|h4|≤N3(1+γ)
q

ch1ch2 c̄h3 c̄h4×

×
∑

ν1,ν2∈Hp
ν3,ν4∈Hq

1{h1nν1 + h2nν2 − h3nν3 − h4nν4 = 0}

−
∑

0<|h1|,|h2|≤N3(1+γ)
p

0<|h3|,|h4|≤N3(1+γ)
q

ch1ch2 c̄h3 c̄h4×

×
∑

ν1,ν2∈Hp
ν3,ν4∈Hq

1{h1nν1 + h2nν2 = 0} · 1{h3nν3 + h4nν4 = 0}

= J1 − J2, say.
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Note that the greatest element of the set Hq is at most 2τqτ ≤ 2Nτ/(τ−1)
q ≤

(2Nq)1+γ by (4.1), and thus by condition (C∗) the inner sum in J1 contains
at most C0(2Nq)1+β nonzero terms for fixed hi, i = 1, 2, 3, 4, provided that
no proper subsum vanishes. Thus in view of (3.5) the contribution of these
terms in the double sums J1 and J2 is � N1+β

q log4Nq. Suppose now that
the fourfold Diophantine equation holds. Then a threefold subsum of h1nν1 +
h2nν2 − h3nν3 − h4nν4 clearly cannot vanish, since if, e.g., h1nν1 + h2nν2 −
h3nν3 = 0, then we would have h4nν4 = 0, which is impossible. It remains to
consider the terms for which a twofold subsum vanishes. If h1nν1 + h2nν2 =
0, then automatically h3nν3 + h4nν4 = 0, and thus the inner sums in J1

and J2 are equal, hence their contribution in J1 − J2 is 0. On the other
hand, if h1nν1 − h3nν3 = 0, then the fourfold Diophantine equation can hold
only if h2nν2 − h4nν4 = 0. The contribution of these terms in J1 equals
(Eupūq)2, while their contribution in J2 is at most Nq, since if ν1 is chosen,
then the equations h1nν1 − h3nν3 = 0, h2nν2 − h4nν4 = 0, h1nν1 + h2nν2 = 0,
h3nν3 + h4nν4 = 0 determine ν2, ν3, ν4 uniquely. To estimate (Eupūq)2, we
note that by (5.3), uj = wj − w∗∗j and Lemma 3.2

|Eupūq − Ewpwq| ≤ ‖w∗∗p ‖2(‖wq‖2 + ‖w∗∗q ‖2) + ‖wp‖2‖w∗∗q ‖2 � N1/2
q .

Similarly, by Lemma 3.2, (4.7), (4.11) and the conditional Jensen inequality

|Ewpwq − Eypyq| ≤ ‖wp − yp‖2‖yq‖2 + ‖wp‖2‖wq − yq‖2 � N1/2
q .

Since p < q, we have by the proof of Lemma 4.2

|E(ypyq)| = |E(E(ypyq|Fq−1))| = |E(ypvq)| ≤ ‖yp‖2‖vq‖2 � p1/2q−1800 � 1.

Adding these estimates we see that the contribution of the considered terms
to J1 and J2 is � Nq.

Collecting the above estimates we obtain in view of (5.9)

E

∣∣∣∣∣∣
∑
j<p≤k

(u2
p − Eu2

p)

∣∣∣∣∣∣
2

�
∑

j<p≤q≤k

N1+β
q log4Nq(5.10)

+ (t− s)2ε
∑
j<p≤k

p2τ−2 +
∑
j<p≤k

p(τ−1)(β+1) log4 p

� (t− s)2ε
∑
j<p≤k

p2τ−2 +
∑
j<q≤k

q · q(τ−1)(β+1) log4 q.
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Thus by Lemma A1 with γ = 2

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

(u2
j − Eu2

j )

∣∣∣∣∣∣ ≥ 1
100

(t− s)δhn


� h−2

n log2 n (t− s)−2δ
[
(t− s)2εn2τ−1 + log4 n · nτ(1+β)+1−β

]
� (t− s)2(ε−δ)n−1 log2 n+ (t− s)−2δh−1+β

n n1−β log6 n

� (t− s)ε+ 1
2n−1 log2 n+ h

− 1
2−

1
2 ( 1

2−β)
n

by (4.1), (5.2) and (4.10). �

In conclusion we note that if we replace the definition of uj by uj =∑
ν∈Hj e

2πinνω or its real part uj =
∑
ν∈Hj cos(2πnνω) (i.e., from the Fourier

series
∑
h6=0 che

2πihnνω of 1(s,t](nνω) − (t − s) we keep only the term corre-
sponding to h = 1), then the estimate (5.10) remains valid under the assump-
tion of condition (C) for hi = ±1 only. This observation will be needed for
the proof of Theorem 2 in Section 8.

6. The exponential bound

Let ∆ be the constant implied by � in Lemma 3.2. Then∑
j≤n

Ew2
j ≤ ∆(t− s)ε

∑
j≤n

Nj ≤ ∆(t− s)δhn .

Hence by (4.10), (5.1) and Lemmas 5.1, 5.2 and 5.3 we obtain, noting that
ε < 1 by (3.4) and τ ≥ 90 by (4.1),

P

∑
j≤n

E
(
Y 2
j |Fj−1

)
≥ (∆ + 1)(t− s)δhn

(6.1)

� (t− s)ε+ 1
2n−1 log2 n+ h

− 1
2−

1
2 ( 1

2−β)
n .

Recall that δ and % were arbitrary, but subject to (5.2) and (4.8). From now
on we choose, in addition, that

(6.2) δ =
3
2
%.

Lemma 6.1. We have for any constant A ≥ ∆ + 1

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

wj

∣∣∣∣∣∣ ≥ 2A · (t− s)%/2(hn log log hn)
1
2


� exp

(
−1

4
A(t− s)−%/2 log log hn

)
+ (t− s)ε+ 1

2n−
3
4 + h

− 1
2−

1
2 ( 1

2−β)
n .



EMPIRICAL PROCESSES IN PROBABILISTIC NUMBER THEORY 133

Proof. We apply the exponential bound of Lemma A2 to the martingale
difference sequences {Yj , Fj , j ≤ n} and {−Yj , Fj , j ≤ n} and add the prob-
ability bounds of Lemmas 4.1 and 4.2 at the end. We set

Uk =
∑
j≤k

Yj for k ≤ n,

= Un for k > n,

s2
k =

∑
j≤k

E(Y 2
j |Fj−1) for k ≤ n,

= s2
n for k > n,

and

c = 2h
1
2−%
n , λ =

(
log log hn

hn

)1/2

(t− s)−%, K = A · (t− s) 3
2%hn.

Then Yj ≤ c, j ≤ n, and by (4.10) we have λc < 1 for n ≥ n0. Then
{Uk, k ≥ 1} is a martingale and by Lemma A2 we have for n ≥ n0, defining
Tn as in Lemma A2,

P

max
k≤n

∑
j≤k

Yj > A · (t− s)%/2(hn log log hn)1/2


= P

(
sup
m≥0

Um > λK

)
= P

(
sup
m≥0

exp(λUm) > exp(λ2K)
)

≤ P
(

sup
m≥0

Tm > exp
(
λ2K − 1

2
λ2

(
1 +

1
2
λc

)
s2
n

))
≤ P

(
sup
m≥0

Tm > exp
(
λ2K − 3

4
λ2s2

n

)
, s2

n ≤ (∆ + 1)(t− s)δhn
)

+ P (s2
n > (∆ + 1)(t− s)δhn) := I + II, say.

The first term does not exceed

I ≤ P
(

sup
m≥0

Tm > exp(λ2K − 3
4
λ2(∆ + 1)(t− s)δhn

)
.

Now

λ2

(
K − 3

4
(∆ + 1)(t− s)δhn

)
≥ log log hn

hn
(t− s)−2%Ahn

1
4
· (t− s)3%/2

=
1
4
A(t− s)−ρ/2 log log hn.
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Thus by Lemma A2

I � exp
(
−1

4
A(t− s)−%/2 log log hn

)
.

By (6.1)

II � (t− s)ε+ 1
2n−1 log2 n+ h

− 1
2−

1
2 ( 1

2−β)
n .

Since {−Yj , j ≤ n} is also a martingale difference sequence, we obtain a
similar bound and as a consequence

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

Yj

∣∣∣∣∣∣ ≥ A(t− s)%/2(hn log log hn)1/2


� exp

(
−1

4
A(t− s)−%/2 log log hn

)
+ (t− s)ε+ 1

2n−1 log2 n+ h
− 1

2−
1
2 ( 1

2−β)
n .

We add the probability bounds of Lemmas 4.1 and 4.2 and obtain the result
in view of (3.4). �

7. Conclusion of the proof of Theorem 3

Let us recall that all the lemmas in Sections 4–6 were proved under the
standing hypothesis (4.10). For the rest of the paper we lift this hypothesis
and subsequent results and arguments will involve all values 0 ≤ s < t ≤ 1.

Let

(7.1) A = max(80, ∆ + 1).

Lemma 7.1. With probability 1 there exists an n0 = n0(ω) such that for
all n ≥ n0, and all s, t with 0 ≤ s < t ≤ 1

max
k≤n

∣∣∣∣∣∣
∑
j≤k

wj

∣∣∣∣∣∣ ≤ 2τA(t− s)%/2(hn log log hn)1/2 +
1
2
h1/2
n .

Proof. We follow the proof of [21, Lemma 3.10]. We set

Z(s, t) = Z(k; s, t) =

∣∣∣∣∣∣
∑
j≤k

wj(s, t)

∣∣∣∣∣∣
and

φ(x) = 2A(x log log x)1/2,

m = m(n) =
[

1
16
A log log hn

]
, M = M(n) =

[
1

2 log 2
log hn

]
+ 4.
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Then, as in [21, (3.37)], we have the chaining relation

Z(s, t) ≤ Z(a2−m, b2−m) +
M∑

i=m+1

Z(ai2−i, (ai + 1)2−i)(7.2)

+
M∑

i=m+1

Z(bi2−i, (bi + 1)2−i) + Z(aM+12−M , (aM+1 + 1)2−M )

+ Z(bM+12−M , (bM+1 + 1)2−M ) + 2hn2−M ,

where a, b, ai, bi (m < i ≤M+1) are integers with 0 ≤ a, b ≤ 2m, 0 ≤ ai, bi <
2i (m < i ≤M + 1). Define

En(a, b) =
{

max
k≤n

Z(k; a2−m, b2−m) ≥ ((b− a)2−m)%/2φ(hn)
}
,

En =
⋃

0≤a,b≤2m

En(a, b),

Fn(i, a) =
{

max
k≤n

Z(k; a2−i, (a+ 1)2−i) ≥ 2−%i/2φ(hn)
}
,

Fn =
⋃

m<i≤M

⋃
0≤a<2i

En(a, b).

Then by Lemma 6.1

P (En(a, b))� exp
(
−1

4
A log log hn

)
+ n−3/4

and so

P (En)� 22m exp
(
−1

4
A log log hn

)
+ 22mn−3/4(7.3)

� exp
(
−1

8
A log log hn

)
+ n−1/2

� (log n)−A/8 � (log n)−10
.

Similarly,

P (Fn(i, a))� exp
(
−1

4
A · 2i%/2 log log hn

)
+ 2−i(ε+

1
2 )n−3/4 + h

− 1
2−

1
2 ( 1

2−β)
n
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and so

P (Fn)�
∑

m<i≤M

exp
(
−1

4
A · 2i%/2 log log hn + i

)
(7.4)

+ n−3/4
∑

m<i≤M

2−i(ε−
1
2 ) + 2Mh−

1
2−

1
2 ( 1

2−β)
n

� exp
(
−1

8
A · 2m%/2 log log hn

)
+ n−3/4 · 2−m(ε− 1

2 ) + h
− 1

2 ( 1
2−β)

n

� (log n)−10.

Note that Lemma 6.1, used above for the estimation of P (En(a, b)) and
P (Fn), was established under the standing hypothesis (4.10) which is not
assumed in the present section. However, the special intervals (a2−m, b2−m)
and (a2−i, (a+1)2−i) in the definition of En(a, b) and Fn(i, a) satisfy, as triv-
ial calculations show, the hypothesis (4.10) and so our estimates are correct.
Now by (7.3), (7.4)

∞∑
p=1

P (E2p ∪ F2p) <∞ .

The Borel–Cantelli Lemma implies that only finitely many of the events E2p

or F2p occur with probability 1. Let n be sufficiently large and define p by
2p−1 ≤ n < 2p. Then by (7.2) we have with probability 1 for all 0 ≤ s < t ≤ 1
and n ≥ n0,

max
k≤n

Z(k; s, t)

≤

((b− a)2−m(2p)
)%/2

+ 2
∑

m(2p)≤i≤M(2p)

2−i%/2

φ(h2p) +
1
4
h1/2
n

≤ (t− s)%/2φ(h2p) + o
(
h

1/2
2p

)
+

1
4
h1/2
n

≤ 2τ4A · (t− s)%/2(hn log log hn)1/2 +
1
2
h1/2
n . �

Lemma 7.2. With probability 1

max
q≤hn−hn−1

sup
0≤s<t≤1

∣∣∣∣∣∣
hn−1+q∑

ν=hn−1+1

xν

∣∣∣∣∣∣� h(1/2)−1/(8τ)
n .
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Proof. Note that hn � nτ , hn − hn−1 ≥ nτ−1, and thus by (4.1) we have
hn−1 � (hn − hn−1)1+γ for n ≥ n0. Hence applying Lemma 3.4 we obtain

P

 max
q≤hn−hn−1

sup
0≤s<t≤1

∣∣∣∣∣∣
hn−1+q∑

ν=hn−1+1

xν

∣∣∣∣∣∣ ≥ h(1/2)−1/(8τ)
n


� h−2+1/(2τ)

n (hn − hn−1)2 log8 n� n−3/2 log8 n.

The lemma follows now from the convergence part of the Borel–Cantelli
lemma. �

We now can finish the proof of Theorem 3 by using Lemma 7.2 to break
into the blocks. Let N be given and choose n so that hn−1 ≤ N < hn. By
Lemma 7.1 and the analogous statement for the blocks Ij , there exists with
probability 1 an index N0 = N0(ω) such that for all N ≥ N0 and all s, t with
0 ≤ s < t ≤ 1

max
j≤N

j |Fj(t)− Fj(s)− (t− s)| = max
j≤N

∣∣∣∣∣∣
∑
ν≤j

xν(s, t)

∣∣∣∣∣∣
≤ max
k≤n−1

∣∣∣∣∣∣
∑
ν≤hk

xν(s, t)

∣∣∣∣∣∣+ max
q≤hn−hn−1

sup
0≤s<t≤1

∣∣∣∣∣∣
hn−1+q∑

ν=hn−1+1

xν

∣∣∣∣∣∣
≤ 2τ+1A(t− s)%/2(hn log log hn)1/2 + h1/2

n + h(1/2)−1/(8τ)
n

≤ 2τ+2A(t− s)%/2(N log logN)1/2 + 2N1/2 .

This concludes the proof of Theorem 3. �

8. Proof of Theorem 2

We follow [21, Section 4], using basically the same notation. Define the
blocks Hj , Ij as in Section 4 above, with the only difference that instead of
(4.2) we now choose

(8.1) card Hj := Nj = τjτ−1, card Ij = τjτ−10,

where

(8.2) τ > max(10/η, 120).

Thus Hj are “long” blocks and Ij are “short” blocks. As we will see, the
short blocks provide enough separation between the long blocks so that the
martingale property of the long blocks used in the proof of Theorem 3 remains
valid. Let hj denote again the largest member of Hj and define hj , rk, Hk, Fj ,
wj as in Section 4 above. As in [21, Section 4], we extend all r.v.’s and σ-fields
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to the product space [0, 1)2. Specifically, let F ′j be the set of all rectangles
A× [0, 1), where A ∈ Fj , and define

ξν = ξν(ω1, ω2) =
√

2E(cos 2πnν · |F ′j), ν ∈ Hj .

Then, as in [21, (4.1)], we have

(8.3) |ξν(ω1, ω2)−
√

2 cos 2πnνω1| � h−12
j , ν ∈ Hj .

Set

(8.4) yj =
∑
ν∈Hj

ξν , Xj = yj − E(yj |F ′j−1).

Instead of [21, Lemma 4.1] we now have:

Lemma 8.1. For almost all (ω1, ω2) ∈ [0, 1)2∑
ν≤hn

√
2 cos 2πnνω1 −

∑
j≤n

Xj � h
1
2−

1
τ

n .

Proof. We follow the proof of [21, Lemma 4.1], replacing the estimate [21,
(4.5)] by (8.5) below. To prepare for it, we note that hj satisfies now

hj =
∑
l≤j

τ lτ−1 +O
(
jτ−9

)
= jτ (1 + o(1))

and so

hj−1 + τ(j − 1)τ−10 ≥ hj−1

(
1 +

τ

2
(j − 1)−10

)
≥ hj−1

(
1 +

τ

4
h
−10/τ
j−1

)
≥ hj−1

(
1 +

τ

4
h−ηj−1

)
.

Thus we get, using the second statement of Lemma 3.1 with A = τ/8,

n
(
hj−1 + τ(j − 1)τ−10

)
/n (hj−1) ≥ hτ/8j−1.

Hence, by part of [21, (4.5)] and (4.4), (8.2), we obtain for ν ∈ Hj

|E(ξν | F ′j−1)| ≤ 4 · 2rhj−1n−1
ν(8.5)

� n(hj−1)h12
j−1n

(
hj−1 + τ(j − 1)τ−10

)−1

� h
−τ/8+12
j−1 ≤ h−2

j−1.

Thus

(8.6)
∑
j≥1

|Xj − yj | �
∑
j≥1

hj · h−2
j−1 <∞.

Next, by Corollary 3.1, (8.1) and (8.2) we have

E

∣∣∣∣∣∣
∑
ν∈Ij

cos 2πnν ·

∣∣∣∣∣∣
4

� (card Ij)2 + h1+β
j+1 � j2τ−20.



EMPIRICAL PROCESSES IN PROBABILISTIC NUMBER THEORY 139

Thus

P

∑
j≤n

∣∣∣∣∣∣
∑
ν∈Ij

cos 2πnν ·

∣∣∣∣∣∣ ≥ h 1
2−

1
τ

n


≤
∑
j≤n

P

∣∣∣∣∣∣
∑
ν∈Ij

cos 2πnν ·

∣∣∣∣∣∣ ≥ 1
n
h

1
2−

1
τ

n


� n4h−2+4/τ

n

∑
j≤n

j2τ−20 � n4n−2τ+4n2τ−19 � n−11 .

The conclusion of the lemma follows now from the last estimate, the conver-
gence part of the Borel–Cantelli lemma and by (8.3), (8.6). �

Set

(8.7) Vn :=
∑
j≤n

E(X2
j |F ′j−1).

Lemma 8.2. We have

P

(
max
k≤n
|Vk − hk| ≥ hnn−1/8

)
� n−3/4 log2 n.

Proof. Set

(8.8) uj =
∑
ν∈Hj

√
2 cos 2πnν · .

By (8.1) and (8.7) we have

max
k≤n
|Vk − hk| ≤

∑
j≤n

∣∣E(X2
j |F ′j−1)− E(y2

j |F ′j−1)
∣∣(8.9)

+ max
k≤n

∣∣∣∣∣∣
∑
j≤k

(
y2
j − E(y2

j |F ′j−1)
)∣∣∣∣∣∣

+
∑
j≤n

|y2
j − u2

j |+ max
k≤n

∣∣∣∣∣∣
∑
j≤k

(u2
j −Nj)

∣∣∣∣∣∣
+O(nτ−9).

We estimate the terms separately. Using (8.4) and (8.5) we have with proba-
bility 1

(8.10)
∣∣E(X2

j |F ′j−1)− E(y2
j |F ′j−1)

∣∣ = (E(yj |F ′j−1))2 � (h−2
j−1hj)

2 � j−2 .

Thus the first sum on the right hand side of (8.9) is bounded with probability
1. Similarly, we obtain by (8.3), (8.4) and (8.8)

|u2
j − y2

j | ≤ 2
√

2Nj |yj − uj | � N2
j h
−12
j � j−2.
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Thus the third sum on the right hand side of (8.9) is also bounded. By Doob’s
maximal inequality [10, p. 314] for martingales we obtain for the second term
on the right hand side of (8.9)

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

(y2
j − E(y2

j |F ′j−1))

∣∣∣∣∣∣ ≥ 1
4
hnn

−1/8

(8.11)

� h−2
n n1/4

∑
j≤n

E|yj |4 � h−2
n n1/4

∑
j≤n

E|uj |4

� h−2
n n1/4

∑
j≤n

(N2
j + h1+β

j )� n−3/4

by (8.2), (8.4), (8.8), the conditional Jensen inequality and Corollary 3.1. To
estimate the fourth sum on the right hand side of (8.9) we observed at the end
of Section 5 that the estimate (5.10) remains valid (assuming condition (C)
with hi = ±1), with the present definition of up in (8.8). Thus using Lemma
A1 with γ = 2 we get

Emax
k≤n

∣∣∣∣∣∣
∑
p≤k

(u2
p − Eu2

p)

∣∣∣∣∣∣
2

�

∑
p≤n

p2τ−2 +
∑
q≤n

q(τ−1)(β+1)+1 log4 q

 log2 n

� n2τ−1 log2 n� h2
nn
−1 log2 n.

Since Eu2
p = Np we obtain by Chebyshev’s inequality

P

max
k≤n

∣∣∣∣∣∣
∑
j≤k

(u2
j −Nj)

∣∣∣∣∣∣ ≥ 1
4
hnn

−1/8

� n−3/4 log2 n.

The result follows now from (8.9) and the above estimates. �

Lemma 8.3. With probability 1

Vk = hk +O(hkk−1/8).

Proof. Lemma 8.2 and the Borel-Cantelli lemma imply

max
n2<k≤(n+1)2

|Vk − hk| � n−1/4h(n+1)2 � n−1/4hn2 a.s. �

We now apply Lemma A3 to the martingale difference sequence {Xn, Fn,
n ≥ 1} with f(x) = x1−% where, as before, % ≤ 1/(40τ) (cf. (4.8).) We have
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to check the almost sure convergence of

(8.12)
∑
k≥1

V −1+%
k E

(
X2
k1
{
X2
k > V 1−%

k

}
|F ′k−1

)
.

In view of Lemma 8.3 and the inequality

E
(
X2
k1
{
X2
k > V 1−%

k

}
|F ′k−1

)
≤ V −1+%

k E
(
X4
k |F ′k−1

)
it suffices to show the almost sure convergence of∑

k≥1

h−2+2%
k E(X4

k |F ′k−1).

Since by Corollary 3.1 and (8.2) we have

E
(
E
(
X4
k |F ′k−1

))
= E|Xk|4 � E|yk|4 ≤ E|uk|4 � N2

k + h1+β
k � N2

k

(cf. (8.11)) and since by % ≤ 1/(40τ) we have∑
k≥1

h−2+2%
k N2

k �
∑
k≥1

k−2τ+2%τk2τ−2 �
∑
k≥1

k−7/4 <∞,

the Beppo Levi theorem implies that the series in (8.12) converges with prob-
ability one.

Observe now that

U(ω) = U(ω1, ω2) = ω2, ω ∈ [0, 1)2,

is a random variable having uniform distribution over the unit square and in-
dependent of the sequence {Xk}, which depends only on the variable ω1. Thus
by Lemma A3 there exists a sequence {Yn, n ≥ 1} of independent standard
normal random variables defined on [0, 1)2 such that with probability 1

(8.13)
∑
k≥1

Xk1{Vk ≤ t} −
∑
m≤t

Ym � (tf(t))1/4 log t.

Let now n ≥ 1 and

(8.14) Vn ≤ t < Vn+1.

By (8.13) we have almost surely

(8.15)
∑
k≤n

Xk −
∑
m≤t

Ym � t
1
2−%/5.

By Lemma 8.3, relation (4.8), Markov’s inequality and the Borel–Cantelli
lemma there exists with probability 1 an n0(ω) such that

|Vn − hn| ≤
1
2
hnn

−1/9 ≤ 1
2
h1−%
n for n ≥ n0.
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Thus we have for all t and n subject to (8.14) that

hn −
1
2
h1−%
n ≤ Vn ≤ t < Vn+1 ≤ hn+1 +

1
2
h1−%
n+1

≤ hn +O(nτ−1) +O(h1−%
n ) ≤ hn + h1−%/40

n

for n ≥ n0(ω). Thus

pn := hn − h1−%/40
n ≤ t ≤ qn := hn + h1−%/40

n

for n ≥ n0(ω). For a < b let

R(a, b) = max
a≤h<j≤b

∣∣∣∣∣
j∑

m=h+1

Ym

∣∣∣∣∣ .
Then by (8.15) we have for all n ≥ n0

(8.16)

∣∣∣∣∣∣
∑
k≤n

Xk −
∑
m≤hn

Ym

∣∣∣∣∣∣ ≤ R(pn, qn) +O
(
h

1
2−%/5
n

)
.

But for sufficiently large n we have by Lévy’s maximal inequality

P
(
R(pn, qn) ≥ h

1
2−%/160
n

)
≤ 2P

(
N(0, 1) ≥ h

1
2−%/160
n (qn − pn)−

1
2

)
≤ 2P

(
N(0, 1) ≥ 1

2
nτ%/160

)
� exp

(
−cnτ%/80

)
for some c > 0. Hence we obtain from the Borel–Cantelli Lemma and (8.16)
that with probability 1 for all n ≥ n0

(8.17)

∣∣∣∣∣∣
∑
k≤n

Xk −
∑
m≤hn

Ym

∣∣∣∣∣∣� h
1
2−%/160
n .

By Corollary 3.1, Lemma A1 and (4.8), (8.2) we have

P

(
max

q≤hn+1−hn

∣∣∣∣∣
hn+q∑

ν=hn+1

cos 2πnνω1

∣∣∣∣∣ ≥ h 1
2−%
n

)
� h−2+4%

n

[
(hn+1 − hn)2 + h1+β

n+1

]
log4 n� n2τ−2−τ(2−4%) � n−3/2,

and thus by the Borel-Cantelli lemma

(8.18) max
q≤hn+1−hn

∣∣∣∣∣
hn+q∑

ν=hn+1

cos 2πnνω1

∣∣∣∣∣� h
1
2−%
n .

An analogous inequality holds for the Y ′ms. The result follows now from
Lemma 8.1, (8.17) and (8.18).
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Appendix

Lemma A.1 ([19, Corollary 3.1]). Let γ ≥ 1 be a given real. Suppose that
there exists a nonnegative function g(i, j), 1 ≤ i ≤ j ≤ n, satisfying

g(i, j) ≤ g(i, j + 1) for 1 ≤ i ≤ j ≤ n

and
g(i, j) + g(j + 1, k) ≤ g(i, k) for 1 ≤ i ≤ j < k ≤ n.

Let X1, X2, . . . , Xn be a sequence of random variables with finite γth moments
and assume that

E

∣∣∣∣∣
j∑
k=i

Xk

∣∣∣∣∣
γ

≤ g(i, j) for 1 ≤ i ≤ j ≤ n.

Then

Emax
k≤n

∣∣∣∣∣∣
∑
p≤k

Xp

∣∣∣∣∣∣
γ

≤ g(1, n)(1 + log n)γ .

Lemma A.2 ([23, p. 299]). Let (Un, Fn, n ≥ 1) be a supermartingale with
EU1 = 0. Put

U0 = 0 and Yj = Uj − Uj−1, j ≥ 1.

Suppose that
Yj ≤ c a.s.

for some constant c > 0 and for all j ≥ 1. For λ > 0 define

Tn = exp

λUn − 1
2
λ2

(
1 +

1
2
λc

)∑
j≤n

E
(
Y 2
j |Fj−1

) , n ≥ 1,

and T0 = 1 a.s.. Then for each λ with λc ≤ 1 the sequence (Tn, Fn ≥ 0) is a
non-negative supermartingale satisfying

P

(
sup
n≥0

Tn > α

)
≤ 1/α

for each α > 0.

Lemma A.3 ([24, p. 334]). Let {Xn, Fn, n ≥ 1} be a real-valued square
integrable martingale difference sequence defined on some probability space
(Ω,F , P ). Let f be a positive non-decreasing function on R+ such that f(x)/x
is non-increasing. Suppose that

Vn :=
∑
j≤n

E(X2
j |Fj−1) −→∞ a.s.
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and that ∑
k≥1

f(Vk)−1E(X2
k1{X2

k > f(Vk)}|Fk−1) <∞ a.s.

Suppose that there exists a random variable U , uniformly distributed over
(0, 1) and independent of the sequence {Xn}. Then there exists a sequence
{Yn, n ≥ 1} of independent standard normal random variables defined on
(Ω,F , P ) such that with probability 1∑

n≥1

Xn1{Vn ≤ t} −
∑
n≤t

Yn � (tf(t))1/4 log t.

Note added in proof: With great sadness, we inform the reader that
Walter Philipp passed away on July 19, 2006, at the age of 69, near Graz,
Austria. — I. Berkes and R.F. Tichy.
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