NOETHERSCHE GRUPPEN MIT NILPOTENTEN NORMALTEILERN VON ENDLICHEM INDEX

VON HERMANN SIMON

Die Frage der Bestimmung der Beschaffenheit einer abstrakten, gruppentheoretischen Eigenschaft E, so dass endlich erzeugte E-Gruppen endlich sind, ist in Simon [1] für die Klasse der endlich erzeugten Gruppen mit endlicher Hyperzentrumsfaktorgruppe behandelt worden. In der vorliegenden Arbeit soll nun das Problem für die Klasse der endlich erzeugten Gruppen G mit nilpotenten Normalteilern N endlicher Klasse von endlichem Index [G:N] analog zu [1] gelöst werden.

Terminologie und Bezeichnungen sind wie in Simon [1].

DEFINITION 1. Eine Gruppe G heisst fastpseudohomogen, wenn es eine natürliche Zahl n und eine unendliche Primzahlmenge $\mathfrak P$ gibt, so dass für alle endlichen Faktorgruppen E von G gilt: Ist P ein p-Normalteiler von E (mit p aus $\mathfrak P$), so ist die Ordnung ϕ_p der von E in P induzierten Automorphismengruppe:

$$\phi_p = (n, \phi_p) p^{\beta}, \qquad \beta \ge 0.$$

Anmerkung. Mann kann annehmen $p \not\mid n$ für alle p aus \mathfrak{P} , da es ja nur endlich viele Primzahlen p mit $p \mid n$ gibt.

HILFSSATZ 1. Die fastpseudohomogene Gruppe H ist noethersch, wenn sie einen torsionsfreien abelschen Normalteiler B mit unendlicher zyklischer Faktorgruppe $H/B = \{gB\}$ und $B = \{b^H\}$ für geeignetes b aus B besitzt.

Beweis. (1) Da für B=1 die Aussage trivial ist, sei von nun an $B\neq 1$. Aus $B=\{b^H\}$ und $H/B=\{gB\}$ folgt $H=\{b,g\}$ und $B=\{\cdots,b^{g^i},\cdots\}$ mit $i=0,\pm 1,\pm 2,\cdots$. Die Fastpseudohomogenität von H ergibt nach Simon [1; Lemma 1.1] die Unmöglichkeit der Unabhängigkeit der b^{g^i} , also hat B endlichen Rang.

(2) Sei $\mathfrak P$ die in der Fastpseudohomogenität von H geforderte, unendliche Primzahlmenge und $p \not\mid n$ für alle p aus $\mathfrak P$ (s. Anmerkung zu Definition 1). Man bilde für p aus $\mathfrak P$: $B^p \leq B \vartriangleleft \not= H$. Als charakteristische Untergruppe von B is B^p Normalteiler von H. Die Endlichkeit des Ranges von B zieht die Endlichkeit von B/B^p nach sich. Aus $H/B^p \triangleright B/B^p$ und der Zyklizität von $(H/B^p)/(B/B^p) \cong H/B$ folgt das Noetherschsein von H/B^p .

Die Kommutativität von B und H/B implizieren die Auflösbarkeit von H. In der auflösbaren, noetherschen Gruppe H/B^p existiert nach Hirsch [1] ein torsionsfreier Normalteiler T/B^p mit endlichem Index [H:T]. In unendlichen homomorphen Bildern von H/B^p existieren also von 1 verschiedene, torsions-

Received September 2, 1962.

freie Normalteiler. Die Anwendung von Simon [1; Hilfssatz 1.1] zusammen mit der Fastpseudohomogenität von H ergibt, dass H/B^p in B/B^p eine Automorphismengruppe der Ordnung $\phi_p = (n, \phi_p)p^\beta$ induziert. Sei C_p/B^p der Zentralisator von B/B^p in H/B^p . Dann gilt:

$$B/B^p \triangleleft \neq C_p/B^p \triangleleft H/B^p \text{ und } o(H/C_p) = \phi_p$$
.

Nun existiert eine Untergruppe Q_p von H mit $B^p \triangleleft B \triangleleft C_p \triangleleft Q_p \leqq H$ derart, dass $[Q_p:C_p]=p^\beta$ und $[H:Q_p]=(n,\phi_p)$. Da $(n,\phi_p)\mid n$, so ist $[H:Q_p]\leqq n$ für alle (unendlich vielen) p aus \mathfrak{P} . Da H endlich erzeugbar ist, so gibt es nach Baer [1; S. 331] nur endlich viele Untergruppen mit n nicht überschreitendem Index. Also gibt es eine Untergruppe Q von H, der unendlich viele p aus \mathfrak{P} , diese Menge heisse \mathfrak{P}' , zugeordnet sind, so dass gilt $[H:Q]=(n,\phi_p)$ und $[Q:C_p]=p^\beta$ für alle (unendlich vielen) p aus \mathfrak{P}' . Da H endlich erzeugt und [H:Q] endlich ist, so ist auch Q endlich erzeugt.

Aus $B/B^p \leq C_p/B^p \leq Q/B^p$ folgt, dass der Zentralisator von B/B^p in Q/B^p ebenfalls C_p/B^p ist, so dass also Q/B^p in B/B^p eine p-Automorphismengruppe für alle p aus \mathfrak{P}' induziert.

(3) Q/B^p ist als Untergruppe der auflösbaren, noetherschen Gruppe H/B^p ebenfalls noethersch und auflösbar. Sei nun T_0/B^p ein nach Hirsch [1] in Q/B^p existierender, torsionsfreier Normalteiler mit endlichem Index $[Q:T_0]$. Wegen der Torsionsfreiheit von T_0/B^p und der Endlichkeit von B/B^p folgt $T_0/B^p \cap B/B^p = 1$, was mit $T_0 \cap B = B^p$ äquivalent ist. Man betrachte nun für festes p aus $\mathfrak P$ die Menge $\mathfrak M$ der Normalteiler T von Q für welche gilt: $T \cap B = B^p$ und [Q:T] ist endlich. $\mathfrak M$ ist wegen $T_0 \in \mathfrak M$ nicht leer. Sei nun T ein maximaler Normalteiler in $\mathfrak M$. Für die endliche Gruppe Q/T gilt:

$$Q/T \triangleright BT/T \cong B/B \cap T = B/B^p$$
.

Sei S/T der Zentralisator von BT/T in Q/T. Aus $C_p \circ B \leq B^p \leq T$ folgt $C_p \circ BT \leq T$, also $C_p \leq S \leq Q$. Daher induziert Q/T in BT/T wegen $o(Q/C_p) = p^{\beta}$ eine p-Gruppe von Automorphismen, also $o(Q/S) = p^{\beta'}$. Aus

$$Q/T \triangleright S/T \triangleright BT/T$$

und der Zyklizität von H/B folgt wegen $B \leq BT \leq S \leq Q \leq H$ die Zyklizität von S/BT. Da BT/T im Zentrum von S/T liegt, ist die Zentrumsfaktorgruppe von S/T zyklisch und daher ist S/T abelsch. Die abelsche Gruppe S/T ist eine p-Gruppe, denn andernfalls gäbe es ein Element $xT \in S/T$ mit $o(xT) = q \neq p$, q eine Primzahl. Der kleinste xT enthaltende Normalteiler von Q/T ist $X/T = \{xT^{Q/T}\} \leq S/T$. Wegen $1 \neq xT \in X/T$ ist X/T ein von 1 verschiedener q-Normalteiler, also $T < X \leq P$. Aus $q \neq p$ folgt $(X/T) \cap (BT/T) = 1$, also $X \cap BT = T$ und daher

$$X \cap B = X \cap BT \cap B = T \cap B = B^p$$
.

Da $X \leq \neq Q$, Q/X endlich, $X \cap B = B^p$ und T < X ist, so widerspricht dies

der Maximalität von T und daher gibt es keine von p verschiedene Primzahl, die die Ordnung von S/T teilt, d.h. $o(S/T) = p^{\beta''}$.

(4) Aus $o(Q/S) = p^{\beta'}$ und $o(S/T) = p^{\beta''}$ folgt, dass Q/T eine (endliche) p-Gruppe und somit nilpotent ist. Nun folgt wie in Simon [1; Hilfssatz 1.2], die Existenz einer Teilmenge \mathfrak{P}'' von \mathfrak{P}' , die fast alle p aus \mathfrak{P}' enthält, so dass $\bigcap_{p \in \mathfrak{P}''} B^p = 1$ gilt; und Q ist nilpotent von endlicher Klasse.

Die endliche Erzeugbarkeit und die Endlichkeit der Klasse von Q ergeben, dass Q noethersch ist, und aus der Endlichkeit von [H:Q] folgt das Noetherschsein von H, Q.E.D.

Anmerkung. Hilfssatz 1 ist trivialerweise richtig, wenn H/B eine endliche zyklische Gruppe ist.

Hilfssatz 1 hat als Konsequenzen die beiden folgenden Korollare, deren Beweise wörtlich wie in Simon [1; Korollar 1.1, Korollar 1.2] geführt werden. Diese Korollare dienen dann zum Beweis von Satz B (s. Simon [1; Satz A]), welcher den wichtigsten Beitrag zum Beweis des Hauptsatzes (s. S. 245) liefert.

Korollar 1. Besitzt G einen torsionsfreien abelschen Normalteiler A mit zyklischer Faktorgruppe $G/A = \{gA\}$ und ist $\{a, g\}$ fastpseudohomogen für alle a aus A, dann ist G lokal-noethersch.

KOROLLAR 2. Besitzt G einen torsionsfreien, abelschen Normalteiler A mit lokal-noetherscher, fastauflösbarer Faktorgruppe G/A und ist $\{a, g\}$ fastpseudohomogen für alle a aus A und alle g aus G, dann ist G selbst lokal-noethersch.

DEFINITION 2. Die Gruppe G heisst t-halbauflösbar, wenn jedes unendliche, homomorphe Bild H von G einen von 1 verschiedenen, torsionsfreien, abelschen Normalteiler besitzt.

Satz B. Die Gruppe G ist noethersch (und fastauflösbar), wenn gilt:

- (a) G ist endlich erzeugt.
- (b) G ist t-halbauflösbar.
- (c) Für jedes Elementepaar x, y aus G ist $\{x, y\}/\{x, y\}''$ fastpseudohomogen.

Sei e eine abstrakte, gruppentheoretische Eigenschaft, die folgenden Erbregeln genügt:

- (e1) 1 ist eine e-Gruppe.
- (e2) Untergruppen von e-Gruppen sind e-Gruppen.
- (e3) Sind X und Y e-Gruppen, dann ist auch $X \otimes Y$ eine e-Gruppe.

Hilfssatz 2. G erfülle folgende Bedingungen:

- (a) G ist keine e-Gruppe.
- (b) Jede Faktorgruppe F von G, nach einem Normalteiler $\neq 1$, ist eine e-Gruppe.

Dann gilt: Sind A und B Normalteiler von G mit $A \cap B = 1$, dann ist A = 1 oder B = 1.

Beweis. Angenommen, es gibt Normalteiler A, B von G mit $A \neq 1$, $B \neq 1$ und $A \cap B = 1$, dann sind nach (b) die Gruppen G/A und G/B e-Gruppen, und daher ist auch $G/A \otimes G/B$ eine e-Gruppe. Da aber stets $G/A \cap B$ isomorph zu einer Untergruppe von $G/A \otimes G/B$ ist, so ist wegen $A \cap B = 1$ auch G eine e-Gruppe, im Widerspruch zu (a).

Nun sei g eine Gruppeneigenschaft, die folgende Bedingungen erfüllt:

- (g1) Erweiterungen von g-Gruppen durch endliche Gruppen sind g-Gruppen.
- (g2) Ist G modulo einer Zentrumsuntergruppe eine g-Gruppe, dann ist auch G eine g-Gruppe.
- (g3) 1 ist eine g-Gruppe.
- (g4) Untergruppen von g-Gruppen sind g-Gruppen.
- (g5) Sind X und Y g-Gruppen, dann ist auch $X \otimes Y$ eine g-Gruppe.

Bemerkung. Endliche Gruppen sind g-Gruppen.

Hilfssatz 3. G erfülle folgende Bedingungen:

- (a) G ist keine g-Gruppe.
- (b) Jede Faktorgruppe F von G, nach einem Normalteiler $\neq 1$, ist eine g-Gruppe.

Dann gilt: Endliche Normalteiler von G sind 1.

Beweis. Aus (a) folgt die Unendlichkeit von G. Angenommen, es existiere ein von 1 verschiedener, endlicher Normalteiler in G, dann gibt es auch einen endlichen, minimalen Normalteiler $1 \neq M \leq G$. Aus der Endlichkeit von M folgt die von $G/\mathbb{C}(M)$, wobei $\mathbb{C}(M)$ der Zentralisator von M in G ist, und aus der Unendlichkeit von G folgt die von $\mathbb{C}(M)$. Da also M und $\mathbb{C}(M)$ von 1 verschiedene Normalteiler in G sind, so folgt nach Hilfssatz 2: $1 \neq M$ n $\mathbb{C}(M) \leq G$. Die Minimalität von M impliziert M n $\mathbb{C}(M) = M$, also $M \leq \mathbb{C}(M)$, also ist M abelsch und im Zentrum $Z(\mathbb{C}(M))$ von $\mathbb{C}(M)$ enthalten. Wegen $M \neq 1$ ist G/M und daher $\mathbb{C}(M)/M$ eine g-Gruppe, und daher ist wegen (g2) auch $\mathbb{C}(M)$ und wegen der Endlichkeit von $G/\mathbb{C}(M)$ und (g1) auch G eine g-Gruppe, ein Widerspruch zu (a).

Hilfssatz 4. Das Zentrum Z(G) der Gruppe G ist von 1 verschieden, wenn gilt:

- (a) Es gibt eine unendliche Primzahlmenge \mathfrak{P} mit der Eigenschaft: Ist H eine Faktorgruppe von G und P ein p-Normalteiler von H mit p aus \mathfrak{P} , dann induziert H in P eine p-Automorphismengruppe.
- (b) G enthält einen freien, abelschen Normalteiler $A \neq 1$ von endlichem Rang.

Beweis. Sei $M \neq 1$ ein—wegen (b) existierender—freier, abelscher Normalteiler von G mit minimalem Rang. Sei p aus \mathfrak{P} ; dann ist M^p natürlich Normalteiler von G. Wegen (a) induziert dann G/M^p in $M/M^p \neq 1$ eine p-Gruppe von Automorphismen. Sei C/M^p der Zentralisator von M/M^p

in G/M^p . Dann ist $[G:C] = p^{\alpha}$ und daher $Z(G/M^p) \neq 1$; weiter folgt dann: $G/M^p \circ M/M^p < M/M^p$.

Also ist $M/G \circ M \neq 1$ entweder endlich mit durch p teilbarer Ordnung oder $M/G \circ M$ ist unendlich. Da die Endlichkeit von $M/G \circ M$ die Teilbarkeit $p \mid o(M/G \circ M)$ für alle (unendlich vielen) p aus $\mathfrak P$ nach sich ziehen würde, so ist $M/G \circ M$ unendlich, was Rang $G \circ M < \text{Rang } M$ impliziert. Die Minimalität des Ranges von M hat $G \circ M = 1$ zur Folge, also $1 \neq M \leq Z(G)$; Q.E.D.

DEFINITION 3. Die Gruppe G heisst fastquasihomogen, wenn jede Untergruppe U von G fastpseudohomogen ist.

Hauptsatz. Folgende Eigenschaften einer Gruppe G sind äquivalent:

- (a1) G ist noethersch.
- (I) (b1) G besitzt einen nilpotenten Normalteiler N von endlicher Klasse und endlichem Index [G:N].
- (a2) G ist endlich erzeugt.
- (II) (b2) Jedes homomorphe Bild $H \neq 1$ von G enthält ein Element $e \neq 1$, so dass e^H endlich ist.
 - (a3) G ist endlich erzeugt.
- (III) (b3) G ist fastquasihomogen.
 - (c3) G besitzt eine t-halbauflösbare Untergruppe U mit endlichem [G:U].
- Beweis. (I) \Rightarrow (II). Aus (a1) folgt stets (a2). Ist $H \neq 1$ ein endliches homomorphes Bild von G, dann ist (b2) trivialerweise richtig. Ist H ein unendliches homomorphes Bild von G dann besitzt auch H einen nilpotenten Normalteiler N von endlicher Klasse und endlichem Index [H:N]. Die Endlichkeit von [H:N] und die Unendlichkeit von H haben $Z(N) \neq 1$ zur Folge und jedes Element $1 \neq 0$ aus Z(N) erfüllt (b2).
- (II) \Rightarrow (I). Nach Baer [2; S. 288] ist G fastauflösbar und noethersch, also gilt (a1). Da G noethersch und fastauflösbar ist, so enthält G einen auflösbaren Normalteiler von endlichem Index.

Angenommen, Aussage (b1) wäre falsch. Dann gibt es einen Normalteiler K von G so, dass (b1) in H = G/K falsch, in jeder Faktorgruppe von H, nach einem Normalteiler $\neq 1$, jedoch richtig ist. Ausserdem ist dann H unendlich. Die Eigenschaft g von G, dass G einen nilpotenten Normalteiler von endlichem Index und endlicher Klasse enthält, genügt den Bedingungen (g1) bis (g5).

Für H gilt dann: H ist keine g-Gruppe, jede echte Faktorgruppe von H ist jedoch eine g-Gruppe. Somit besitzt H nach Hilfssatz 3 keine nichttrivialen endlichen Normalteiler.

Da $H \neq 1$ ist, so gibt es nach (b2) ein Element $e \neq 1$, so dass e^H endlich ist. Sei $A = \{e^H\} = \{e_1, \dots, e_r\}$, wobei r die Anzahl der paarweise ver-

schiedenen Konjugierten zu e in H ist. Dann ist $A \neq 1$ ein endlich erzeugter Normalteiler von H. Aus der Endlichkeit von e^H folgt die Endlichkeit von $[H: \mathfrak{C}(e_i)]$ für $i=1, \dots, r$, wobei natürlich $\mathfrak{C}(e_i)$ der Zentralisator von e_i in H ist. Wegen $\mathfrak{C}(A) = \bigcap_{i=1}^r \mathfrak{C}(e_i)$ folgt dann nach einem Satz von Poincaré die Endlichkeit von $H/\mathfrak{C}(A)$, was die Endlichkeit von A/A n $\mathfrak{C}(A) = A/Z(A)$ impliziert. Aus der Endlichkeit der Zentrumsfaktorgruppe einer Gruppe A folgt nach Baer [3; S. 153] die Endlichkeit von A'. Da A' als charakteristische Untergruppe des Normalteilers A von H ebenfalls normal in H ist, so folgt sogar A' = 1. A ist also ein endlich erzeugter, abelscher, torsionsfreier und daher frei abelscher Normalteiler (endlichen Ranges) von H.

Wegen $A \neq 1$ gilt (b1) in H/A, daher also in $\mathfrak{C}(A)/A$ und wegen $A \leq Z(\mathfrak{C}(A))$ gilt (b1) auch in $\mathfrak{C}(A)$ und wegen der Endlichkeit von $H/\mathfrak{C}(A)$ in H selbst. Dieser Widerspruch beweist (II) \Rightarrow (I).

 $(I) \Rightarrow (III)$. Sei N der nach (b1) in G existierende, nilpotente Normalteiler von endlichem Index [G:N]. Wegen (a1) gilt (a3) und N ist noethersch. Daher folgt aus Simon [1; Lemma 2.1], dass N t-halbauflösbar ist; also gilt (c3).

Sei $U \neq 1$ eine Untergruppe von G. Aus der Endlichkeit von [G:N] folgt die von $[U:U \cap N] = n$ und $V = U \cap N$ ist nilpotent (von endlicher Klasse) und daher quasihomogen. Sei weiter K ein Normalteiler von U so, dass E = U/K endlich ist und es sei $\mathfrak P$ die Menge aller Primzahlen p mit $p \not\mid n$. Wegen $V \leq VK \leq U$ ist t = [U:VK] ein Teiler von n. Sei P/K ein p-Normalteiler von E = U/K mit $p \not\mid n$.

Angenommen, es gäbe ein Element x aus P/K mit $x \notin VK/K$. Dies impliziert $x \neq 1$ und $x^{p^r} = 1$ mit r > 0. Daher ist x(VK/K) ein von 1 verschiedenes p-Potenz Element der Faktorgruppe $(U/K)/(VK/K) \cong U/VK$, wobei

$$o((U/K)/(VK/K)) = o(U/VK) = t$$

und $t \mid n, p \mid t = [U:VK]$ und $p \nmid n$; dies ist aber ein Widerspruch.

Daher gilt: Jeder p-Normalteiler ($p \nmid n$) $P/K \triangleleft E = U/K$ ist in VK/K enthalten. $VK/K \cong V/V \cap K$ ist nilpotent weil $V = U \cap N$ nilpotent ist. Also zentralisiert jedes Element x aus VK/K mit $p \nmid o(x)$ den Normalteiler P/K, d.h. ein Element y, das nicht im Zentralisator C/K von P/K liegt hat entweder p-Potenz Ordnung oder $o(y) \mid n$; hieraus folgt aber

$$[E:C/K] = [U:C] = (t, [U:C])p^{\alpha}.$$

Da diese Überlegungen für jede Untergruppe U aus G gelten, so folgt, dass G fastquasihomogen ist, also gilt (b3).

 $(III) \Rightarrow (I)$. Da G endlich erzeugt und [G:U] endlich ist, so ist auch U endlich erzeugt und für U sind daher die Voraussetzungen von Satz B erfüllt, also ist U noethersch, und die Endlichkeit von [G:U] impliziert dann sogar das Noetherschsein von G.

Sei n die in der Fastquasihomogenität von G geforderte, natürliche Zahl.

Da G noethersch ist, so gibt es nach Baer [1; S. 331] nur endlich viele Untergruppen $W \leq G$ mit $[G:W] \leq n$. Man bilde $D = \bigcap_{[g:W] \leq n} W \cap U$. Normalteiler von G und G/D ist endlich. Da G noethersch ist, so folgt die Existenz einer natürlichen Zahl k, so dass $Z_k(D)$ das Hyperzentrum von D ist. $Z_k(D)$ ist natürlich Normalteiler von G. Angenommen, $G/Z_k(D)$ wäre unendlich, dann wäre wegen der Endlichkeit von G/D die Hyperzentrumsfaktorgruppe $D/Z_k(D)$ ebenfalls unendlich. Da U t-halbauflösbar ist und $D \triangleleft U$ mit endlichem [U:D], so folgt die t-Halbauflösbarkeit von D, welche zusammen mit Baer [3; S. 148] und dem Noetherschsein von G die Existenz eines freien, abelschen Normalteilers $A \neq 1$ von endlichem Rang in jedem unendlichen, homomorphen Bild H von G impliziert, wobei sogar A in dem epimorphen Bild von D (unter dem Epimorphismus $G \to H$) enthalten ist. Sei \mathfrak{P} die in der Fastquasihomogenität von G geforderte, unendliche Primzahlmenge. Aus der t-Halbauflösbarkeit von D und Simon [1; Hilfssatz 1.1] folgt, dass für $D/Z_k(D)$ die Bedingungen von Hilfssatz 4 erfüllt sind, also ist $Z(D/Z_k(D)) \neq 1$, ein Widerspruch, also ist $D/Z_k(D)$ endlich und daher gilt (I).

LITERATUR

REINHOLD BAER

- 1. Das Hyperzentrum einer Gruppe. III, Math. Zeitschrift, Bd. 59 (1953), S. 299-338.
- 2. Noethersche Gruppen, Math. Zeitschrift, Bd. 66 (1956), S. 269-288.
- 3. Auflösbare Gruppen mit Maximalbedingung, Math. Ann., Bd. 129 (1955), S. 139-173. K. A. Hirsch
 - On infinite soluble groups (II), Proc. London Math. Soc. (2), vol. 44 (1948), pp. 336-344.

HERMANN SIMON

 Noethersche Gruppen mit endlicher Hyperzentrumsfaktorgruppe, Illinois J. Math., vol. 8 (1964), pp. 231-240.

Universität

FRANKFURT AM MAIN, DEUTSCHLAND