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Introduction and Summary
In this paper a compactification for bounded semigroups of linear operators

in a Banach space is studied and some applications to abstract ergodic theory
and invariant means are given. In Sec. 1 the compactification in question is
described and in Sec. 2 its ideal theory is developed. Sec. 3 contains a discus-
sion of ergodic elements for arbitrary bounded, not necessarily "ergodic,"
operator semigroups and is very close in spirit to Eberlein [6]. The connection
between the compactification and the convolution semigroup of means in-
troduced by Day in [4] is established (in (4.3)) and the following theorem is
proved: the space m(2) of all bounded real functions on an abstract semi-
group 2 with unit contains a largest right amenable right introverted subspace
Z which, moreover, lies in every maximal right amenable subspace of m(2).
The following notations will be used throughout" If B1, B are Banach

spaces then B is the conjugate space of B1 and L(BI, B) is the Banach
space of all bounded linear operators of B1 into B; if S c L (B ,B.) and
x e B1 then Os(x) is the orbit of x under S and defined by 0s(x) Ax A S}.
The closure of a set S is denoted by S-, and composition is indicated by
juxtaposition or brackets.

1. Compactification of a bounded operator semigroup

We need the following two devices.

I. Suppose X is a linear topological space and S is a semigroup (under
composition) of continuous linear operators in X. Let S- be the closure of S
in the product space Xx. We have

(i) S- is a semigroup (under composition) of linear operators in X, and
(ii) for fixed A S and B e S- the maps F -- AF and F -- FB (F e S-)

are continuous in the product topology of Xx.
II. Suppose B is a Banach space. B can be regarded as a subspace of

B** and hence L(B, B) can be regarded as a subspace of L(B, B**). Let y
be the mapping which takes each U eL(B, B**) into the function
F 7(U) L(B*, B*) defined by
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B(1) (F)x Ux) (x B, ).

We have
(i) v is a linear isometry of L(B, B**) onto L(B*, B*) and its restriction

to L(B, B) is simply the adjoint operation which takes each U L(B, B)
into its adjoint U* *),L(B*, B and

(ii) 7 is a weak,-weak* operator homeomorphism.

Both I and II are essentially known; the proofs are straightforward.
Now suppose B is a Banach space, 7 is the mapping defined in II, and S is a

(uniformly) bounded semigroup lying in L(B, B). Let A be the adjoint
semigroup of S, A 7(S), and let A- be the closure of A in the product space
Xx, where X B* with the weak* topology. Then A- is a weak* operator
compact subset of L(B*, B*) and, by I, a semigroup under composition.
Define So 7-I(A-). Then S c So and since 7 is already an anti-isomorphism
of S onto A we can extend the multiplication from S to So in such a way that 7
becomes an anti-isomorphism of So onto A-"

(2) uv ,-((v)[(u)]) (u, v0).

The semigroup So with multiplication as defined in (2) and the weak, topology
is the desired compactification of S and has the following properties:

(1.!) (i) So is a closed (weak,) compact subset of L(B, B**);
(ii) So is a semigroup and S is a (weak,) dense subsemigroup of So, and
(iii) if U S and V So then the mappings W --> VW and W --, WU (W So)

are (weak,) continuous.

Observe"

(1.2) If U, V e So and x B such that Vx B then

(UV)x u(v).

Proof. If U, V and x are as described then for each t e B*,
((vv)x) ((vy)) ((v)(v))

(Vx)((u))= ((u))(vx)= u(vx).

A semigroup S of bounded linear operators in a Banach space B is weakly
almost periodic (w.a.p.) iff for each x e B, 0s(x)- is weakly compact. S is
w.a.p, iff So c L(B, B) and in this case So coincides with the compactification
of S introduced by DeLeeuw and Glicksberg [5]. Our construction is seen
to be a simple extension of their procedure to the case of an arbitrary bounded,
not necessarily w.a.p, operator semigroup.

A net U. in L(B, B**) converges to a point U L(B, B**) in the weak, topology
iff (U. x) -- (Ux) (x B, B*). A net F. in (L(B*, B*) converges to point
F L(B*, B*) in the weak* operator topology iff (F. )x - (F)x (8 B*, x X).
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2. Ideal theory
We now develop the ideal theory for the compactification semigroup S0

constructed in the preceding section. In contrast to the situation in [5],
Sec. 2, multiplication by V on the right, i.e., the mapping U ---. UV (U e So),
is not, in general, continuous if V e So and V e S (cf. 1.1 ), (ii)). However,
in many cases of interest So is convex and its essential structure is much
simpler.
Let B, S, and So be as in the preceding section. A right [left] ideal of So is

a subset I of So such that ISo c I [So I c I].

(2.1) There is a smallest closed two-sided ideal of So.
This ideal will be called the kernel of So and denoted by K(S0).

(2.2) Each closed right [left] ideal of So contains a minimal closed right [left]
ideal of So. The minimal closed right [left] ideals are pairwise disjoint and lie
in the kernel.

In both (2.1) and (2.2) the existence of the ideals in question follows from
the compactness of So by the Hausdorff Maxinml Principle.

(2.3) If R is a minimal (closed) right ideal of So and U So then UR is
again a minimal (closed) right ideal of So, and if L is a minimal closed left ideal

of So and U S then LU is again a minimal closed left ideal of So.
This is essentially Lemma 2.1 of Clifford [3].

(2.4) A right ideal of So is minimal closed iff it is minimal. The union of
all minimal right ideals is a two-sided ideal Kc, the smallest two-sided ideal of So.

The, first statement is proved in [5, p. 65], the second is Theorem 2.1 of
Clifford [3].

(2.5) LEMMA. The closure of a right [left] ideal of So is again a right [left]
ideal of So.

Proof. Suppose R is a minimal right ideal of So and U e R-. Let U, be
a net in R such that U,-- U. If VeS then U,V- U0V so UVeR-;
thus US R- and hence USo R-. For left ideals the proof is even simpler.

In view of (2.5), K K(S0), i.e., the minimal right ideals are dense in
the kernel. For left ideals this can be somewhat improved.

(2.6) IEMMA. If L is a minimal closed left ideal of So then LS is dense in
K(So).

Proof. Le L be s indicated nd put M LS. By (2.2), M K(S0)
so M- K(S0). To prove the reverse inclusion we show that M- is two-
sided ideM. By (2.5), M- is left ideM. Given U M- there re nets
U} in_ L nd {V} in S (both over the sme index set) such that U V -, U.
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For each W e S we have U, V,)W -- UW and U,( V, W) M and therefore
UW M-. Thus US c M-, hence USo M-, and since U e M-was arbi-
trary, we are finished.

Let T be the convex hull of S. Then T is also a bounded semigroup and
its compactification, To, is convex.

(2.7) LEMMA. Every minimal closed right [left] ideal of To is convex.

Proof. Suppose L is a minimal closed left ideal of To and choose V e L.
Then To V is a convex left ideal of To which lies in L and hence (T0 V)- L.
Thus L is the closure of a convex set and therefore convex. For right ideals
the proof is even simpler.
The following theorem characterizes those right ideals of To which are

minimal.

(2.8) THEOREM. A right ideal R of To is minimal iff AV V(A, V R).

Proof. Suppose R is a minimal right ideal of To, take A e R and put
Fa {V: VeT0 and AV V}. Fa is the set of all fixed points of the
continuous linear map U -- A U (U e To) and hence, by any one of the
standard fixed point theorems, Fa is nonempty. If V F we see from
AV VandAeRthat VeRsoF R. SinceFaisarightidealof To
and R is minimal, F R. Conversely, if R is a right ideal of To so that
AV V (A, V e R) and if R is a right ideal of To lying in R, let A e R’ and
get R’ R’To AR R.
The next result states that all minimal right ideals are essentially "con-

gruent."

(2.9) THEOREM. Suppose R and R are distinct minimal right ideals of
To and Vo e R The mapping U ---+ Vo U is a convex-linear homeomorphism
of R and R. which does not depend on the choice of Vo e R

Proof. Suppose R, R, V, and $ are as described. The mapping $ is
convex-linear and continuous and by (2.3), $(R) R.. Let Uo e R and
let be the mapping V -- U0 V (V e R). We have

(V) Vo(Vo V) (Vo Vo)Y V (V R)

(by (2.8) i.e., [b] is the identity map on R2, and similarly b[O] is the identity
map on R1. Therefore 0

-1 If Vt0eR. and Or" U--+ VU (UeR1)
then the same argument gives ()-1 so that ’ .
A more precise picture of the multiplication operation in K(T0) is furnished

by the next result.

(2.10) THEOREM. If R is a minimal right and L a minimal closed left ideal

of To then L n R is a singleton set. For fixed R the map L --> L R defines a
1-1 correspondence between all minimal closed left ideals of To and all points of R.

Proof. With R and L as in the first half of the theorem choose U and
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VeL n R. SinceLUis aleft ideal c Lwehave (LU)- Landhence
there is a net {V,} in LU such that V, -- V. Write V, W, U with W, e L.
Now VV, -- VV V (by (2.8)), but also for each a, VV, V(W, U)
(VW,)U U (by (2.8) again). Thus V Uand this proves the first
half of the theorem. The essential assertion of the second half is that the
union of all minimal right ideals (i.e., the set Kc of (2.4)) is a subset of the
union of all minimal closed left ideals. Suppose R is a minimal closed right
ideal of To and U e R. Let M be any minimal closed left ideal of To and put
L (MU)-. L is a closed left ideal of To and since R(MU) (RM)U
U}, a singleton set, we have RL U}. Letting L0 be any minimal closed

left ideal of To which lies in L we see that O # RLo c RL {U}, so

RLo {U} C L0.

A left zero of To is a degenerate right ideal, i.e., an element E of To such
that EU E (U To).

(2.11 The following statements are equivalent :
To has a left zero;

(ii) K(To) is the set of all left zeros of To
(iii) K(To) is the only minimal (closed) left ideal of To.

Proof. (i) (ii). The set of all left zeros of To is a two-sided ideal which
lies in K(T0); since it is also closed it coincides with K(T0).

(ii) (iii). Let L be a minimal closed left ideal of To and observe that
K( To) K( To)L L.

(iii) (ii). The argument is similar to that for (2.8). Let A e T and
put F {U: UeT0and UA U}. Again by fixed point theoryF is
nonempty, in fact it is a (closed) left ideal of To and hence includes K(T0).
Since A e T was arbitrary, (ii) is proved.

If E is a left zero of To and {A,} is a net in T such that A,--E
then (A. A A.) --+ 0 weak, (A T) and conversely if {A.} is a net in T
such that (A. A A.) -- 0 weak, (A e T) then each cluster poiut of
is a left zero of To. Thus left zeros of To replace in our setting the nets of
almost right invariant averages first introduced abstractly by Eberlein [6]
(i.e., nets A.} in T satisfying (A. A A.) - 0 weak, (A e T) ). A partial
right zero of To is an element E of To such that AE E (A T). Partial
right zeros of To are related to nets of almost left invariant averages (i.e.,
nets {A.} in T satisfying (AA. A.) --> 0 weak, (A e T)) in the same
manner as left zeros of To are related to nets of almost right invariant averages.
If partial right zeros of To exist they form a (closed) right ideal of To which
must intersect K(T0); hence if, in addition, left zeros of To exist then some

Cf. Theorem 1 of [3].
Eberlein considered more general averages A. which satisfy both (A. A A.) - 0

and (AA.- A.)-- 0 (A T).
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E e K(To) is both a left and partial right zero of To and any net {A,} in T
such that A, -, E is a net of two sided almost invariant averages. Under
these circumstances S is said to be restrictedly weak, ergodic (Day [3]).

3. Ergodic elements
As a first application of the preceding ideas we indicate in this section how

abstract ergodic theory is to some extent possible in an arbitrary bounded
semigroup of linear operators in a Banach space (without any ergodicity
assumptions on the semigroup). Essentially this consists in a consideration
of the notion of an ergodic element. S, B, T, and To have the same meaning
as in Section 2.

(3.1) THEOriES. If X e B and y e B then the following statements are
equivalent:

(i) y e 0r(x)- and Fy y (F e S);
(ii) there is a closed left ideal L of T0 such that

Vx y (V e L).

If S is restrictedly weak* ergodic (so that by (2.11) K(T0) consists of all
left zeros of To and is the unique minimal closed left ideal of T0), then condition
(ii) of (3.1) simply means that each left zero of To has the value y at x. If
in this case {A,} is a net of almost two sided invariant averages then (i) and
(ii) of (3.1) are easily seen to be equivalent to

(iii) A,x clusters weakly at y,

and this is Eberlein’s ergodic theorem for a restrictedly weak* ergodic semi-
group [6, Theorem 3.1]. We will not prove (3.1) but state and prove instead
a small generalization.

(3.2) THEOREM. If X B and y e B** then the following statements are
equivalent:

(i) (a) there is a net {A,} in T such that (A. x) -- y() ( e B*) and (b)
y((U)) y() (U e To, e B*), where v is the map defined in I, Sec. 1;

(ii) there is a closed left ideal L of To such that

Vx y (V L).

If y eB then condition (i) of (3.2) reduces to condition (i) of (3.1). For
in this case (i)(a) says that there is a net {A,} in T such that A, x -- y weakly
and by the Mazur-Bourgin theorem this is equivalent to y e 0,(x)-; (i)(b)
certainly implies (y) (F*)y (Fy) ( B*, F S), i.e., y is a fixed
point of S, and conversely a fixed point of S is also a fixed point of To. Thus
(3.1) is a special case of (3.2).

Cf. [6, part I], and the summary in [3, p. 279].
Cf. [6, Definitions 3.1 and 8.1].
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Proof. (i) (ii) Given {A,} as in (i)(a) let {A,,} be a subnet of {A,}
and let A e To such that A,, --* A. We still have (A,, x) - y(/) (f eB*)

B*and also (A,, x) ----> (Ax) ( e and so y Ax. Let
L {V" VeT0andVx y};

we will show that L is a (closed) left ideal of To. A e L so L is nonempty
and if U e To and V e L then by the computation in (1.2)

(UVx)-- (Vx)((U)) y((U))

y() (e S*)
i.e., UVx y or UV eL.

(ii) (i) Given L as in (ii) choose V e L" any net {A,} in T such that
A, -o V will do for (i) (a) and a computation like that in (i) (ii) can be
used to prove (i) (b).
We note (and will use tacitly below) that L in (ii) can be assumed minimal

(i.e., a minimal closed left ideal of To).
If x, y, and L satisfy (i) and (ii) of (3.2) we will say that (x, y) is an

ergodic pair, x being an ergodic element and y a generalized fixed point, and that
L is constant (- y) at x, y being the value which L assumes at x. If S is re-
strictedly weak* ergodic then the set of all ergodic pairs is (the graph of) a
function (because there is only one minimal closed left ideal), say p; the set
{x’x e B, p(x)eB} is the "ergodic subspace" E of Eberlein, [6], and the
restriction of p to E is a projection of E onto the space of all fixed points of
S; thus p is a "B** valued projection" of the space of all ergodic elements
onto the space of all generalized fixed points. If S is not assumed to be
restrictedly weak* ergodic, (3.2) suggests that the minimal closed left ideals
of To can be used to regard the set of all ergodic pairs as the union of (the
graphs of) B** valued projections from spaces of ergodic elements onto spaces
of generalized fixed points, in the following manner. Given a minimal closed
left ideal L of To let Dc {x x e B and L is constant atx} and let p,. be
the map which takes each x e Dc into the value which L assumes at x. Dc is
a closed linear subspace of B consisting only of ergodic elements and con-
taining the fixed points of S. pL is simply the restriction of any member of
L to De, its range consists only of generalized fixed points, and its restriction
to the space D {x x Dc and pc(x) B} is a projection of D’c onto the
space of all fixed points of S. In general there may be many minimal closed
left ideals L and an element x of B may have many fixed points pc(x) e 0r(x )-.
Two subspaces of B are of interest which can be regarded as defining more

restricted notions of an ergodic element.

(3.3) THEOREM. If X e B and Lo is a fixed minimal closed left ideal of To
then the following statements are equivalent:

(i) for each A e T, AxeDco
(ii) for each minimal closed left ideal L of T0, x e DL
(iii) for each A T and each minimal closed left ideal L of To, Ax De.
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Proof. Let x and L0 be as in the statement of the theorem.
(i) (ii) Ax D iff x e Do (A e T) and so (i) amounts to x e D for

each minimal closed left ideal of To of the form Lo A (A e T); that such ideals
are dense in K(To), see (2.6), is what essentially gives us (ii).
Suppose L is a minimal closed left ideal of To and fix V e L. By (2.6)

there are nets {A} in T and V} in L0, both over the same index set, such
that V A-- V. Writing y p(A x) we have

(,) y,() (V,(A,x)) (V,A,x)--(Yx) (eB*).
Now take U e To. From (.), with v( U) in place of , we get

y,((U)) --> (Vx)((U)) (UVx) (f e B*),
by the computation in the proof of (3.2). But since each y, is a generalized
fixed point (y, pLo.,(x)) we have

y,(( U)) y,() --> (Yx) ( B*).
Hence UVx Vx. We have proved that the left ideal To V is constant Vx
at x. Hence (ToV)- is constant Vx at x. Since T0V c L we have
(T0 V)- L and the proof is finished.

(ii) (iii) Given A e T repeat the argument of (i) (ii), with Ax in
place of x.

Let E be the intersection of all spaces DL (L a minimal closed left ideal of
To). E is an invariant closed linear subspace of B. Theorem 3.3 states that
for each DL the set /x x e B and for each F S, Fx DL} coincides with E;
in other words, all the spaces D have one and the same largest invariant
subspace, namely E. An interesting question is how the various spaces DL

are related to each other or how they might be generated from E.

(3.4)
()

at x;
(ii)
(iii)

If x B and y B** then the following statements are equivalent:
x E and all p, (L a minimal closed left ideal of To) have the value y

x E and (x, y) is the only ergodic pair whose first term is x;
K To is constant y at x.

(iii) (i) and (iii) = (ii) are trivial and the converses follow from (2.6).
Let E0 Ix x e E and K(T0) is constant at x}. E0 is an invariant closed

linear subspace of E. If S is restrictedly weak* ergodic then E E0 D(r0)
4. Means on spaces of bounded functions on a semigroup

n this section it is shown (in (4.3)) that in a certain special case the
compactification semigroup of Sec. 1 can be identified with the convolution
semigroup of means on a space of bounded real-valued functions on an abstract
semigroup (discussed first by Day in [4]). With this identification the

linear subspace M of B is invariant under S iff x M and F S imply Fx M.
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ergodic theorem (3.1) provides a partial extension (in (4.4)) of the Lorentz-
Day theorem on almost convergent functions ([7, Sec. 1], and [4, Sec. 9]).

Notations and Terminology. Throughout the remainder of this paper 2 is a
fixed semigroup with unit e, m(2;) is the Banach space of all bounded real
valued functions on 2: with the sup norm, and r ( e 2;) is the right shift
operator induced on m(2;) by multiplication by on the right: r x(r) x(r)
(x e m(2), r e 2). A linear subspace X of m(2) is right invariant iff x e X
implies r x e X ( e 2;), X is admissible iff X is right invariant, uniformly
closed, and contains the constant functions, and X is right introverted iff x e X
and t e m(2;)* imply that the function #(r. x) --/(r x) ( e 2:) is again
in X. A finite mean is a convex combination of evaluation functionals. A
mean on an admissible subspace X is a functional t e X* such that t
(1) 1 (equivalently, 1 and >_ 0); is right invariant on X iff
x e X implies (x) t(r x) ( e 2;). The convolution of two means t and
on a right introverted admissible subspace X is the mean defined by

(x) t ((r. x)) (x e X).

(4.1) LEMMA. If X is an admissible subspace of m(Z) then the smallest
right introverted admissible subspace of re(Z) which contains X, denoted by Xr,
coincides with the closed linear span of Z {(r. X) e m(Z )*, x e X}.

Proof. Writing e for the evaluation functional at e, the identity fie(r, x) x
(x e X) shows that X c Z. Since Z is also right introverted, its closed linear
span contains Xr. The reverse inclusion is clear.

(4.2) LEMMA. If X is an admissible subspace of m() then the set Xr
defined by Xr Ix x X and for each m()*, (r. x) X} is the largest
right introverted admissible subspace of re(Z) contained in X.

Proof. Given X and X as in the statement of the lemma it is not hard to
see that X is an admissible subspace of m(2) which lies in X. By (4.1)
and construction, (Xr) X. But also by construction X contains every
right introverted subspace of m(2) which lies in X and hence it must contain
(Xr)’.

(4.3) THEOREM. Suppose X is an admissible subspace of m(2;); let S be
the semigroup of right shift operators r (( e ) restricted to X; put T the
convex hull of S and To To(X) the compactification of T; and let
M M(X) be the set of means on X. Then there is a mapping of M onto
To such that

a 4) is a convex-linear wealc*-weak, homeomorphism and anti-isomorphism,
and

(b) corresponding elements # M and U () e To satisfy

(1) t((r, x)) Ux) (x e X, e Z*).
Proof. Given eM and using (4.1) and

(x e X, e X*), formula (1) defines an element U () of L(X, X**).
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The mapping is clearly convex-linear and weak*-weak. continuous and
since it takes the evaluation functionals into right shift operators, it takes
their weak* closed convex hull, nmely M, onto To. By (4.1) again, is
1-1 and hence, by compactness, is homeomorphism. It remains to show
that is an anti-isomorphism. Suppose , M; write U () and
V (), and choose e X* and x e X. We must show that (VUx)
t* * ((r. x) ). By definition of multiplication in To (of. Sec. 1) and formula
(1),

(VUx)B-- (?(U)?(V))x (Ux)’-- tt(f(r.x))

where , v(V)B e X. Thus we must show that /(r. x) u(r. z) where
z B(r.x). Fixae2. SinceB(r.(rx)) rzwehave

(r x) (v(V))(r x) V(r x)fl u((r.(r x))) (r x).

This completes the proof.
Theorems (3.1) and (4.3) together imply the following:

(4.4) THEOnEM. If X re(Z) and c is a real number then the following
statements are equivalent"

(i) Some sequence of convex combinations of right translates of x converges
uniformly to cl (= the constant c function on

(ii) there is a closed left ideal L of To(re(Z)) such that

t(x) c (te-l(L));
(iii) there is a closed left ideal L of To(m(Z such that

Ux cl (UL).

Proof. By (3.1), (i) and (iii) are equivalent and by formula 1 of (4.3),
with e (as in the proof of (4.1)) in place of , (iii) implies (ii). It only
remains to show that (ii) implies (iii). Let L be as in (ii) and let U e L,
with t -I(U). If is a mean on m(2;) then

(2) (Ux)B tt(B(r, x)) B(x) (WUx) c

where V (). If em()* is arbitrary write xB where
), >_ 0 and f is a mean on m(2) (i 1, 2); by (2),

Ux) 1( UX)l 2( Ux)2 1 c 2 c B(cl).

Therefore Ux cl.
A mean t on m(2) is right invariant iff (t) is a left zero of To(re(Z)).

Thus if right invariant means on m(2) exist they correspond to elements of
the kernel of To(re(Z)) (cf. (2.8)) and (ii) states that all right invariant
means have the alue c at x, i.e., x is an almost convergent function.

5. Right amenable subspaces
An admissible subspace X of m(2:) is right amenable iff there is a right

invariant mean on X. In general re(Z) can have many different maximal
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right menble subspces.
ing theorem"

The purpose of this section is to prove the follow-

THEOREM. There is a right introverted linear subspace Z of m(E) such that
Z is right amenable;

(b) Z contains every right introverted right amenable subspace of re(E);
(c) Z lies in every maximal right amenable subspace of m(1:).
The proof will be given in several parts; the notations used are the same as

those in Theorem (4,3).
Suppose X and Y are admissible subspaces of m(2) and X c Y. Let p

be the mapping which assigns to each t M(Y) its restriction to X’,
P() X" M(X’) Then p is a weak* continuous convex-linear map of
M(Y) onto M(X) which preserves convolution and can be transferred, via
(4.3), to a mapping g of T0(Y) onto To(X).

(5.1) If U e To(Y), x e X, and e Y*, then

(3) Ux) (g(V)x)’
where

Proof. By (4.3), with Y in place of X, equation (3) states that #((r. x)=
(t’(r. x)) where t -1(U) and IX, and this is obvious.
The mapping g is the canonical mapping of To(Y) onto T0(X); it is weak,

continuous, convex-linear and a homomorphism and hence it maps (closed)
ideals into (closed) ideals and minimal (closed) ideals onto minimal (closed)
ideals.
Now let Z0 be the set {x’x e m(2) and every minimal right ideal of

To(m(1:)) is constant at x}. It is not hard to see that Z0 is an admissible
subspace of m(2;). Define Z (Z0).

Proof of (a). Suppose R is a minimal right ideal of To(Z). Writing g
for the canonical map of To(re(N)) onto To(Z), let R’ be a minimal right
ideal of To(re(N)) such that g(R’) R. If z e Z then R’ is constant at z
and hence, by (5.1), R is constant at z. Since z e Z was arbitrary, R is a
singleton set. Thus To(Z) contains a left zero and Z is right amenable.

Proof of (b). Suppose X is a right introverted right amenable subspace of
m(2) and let g be the canonical map of T0(m(l:)) onto To(X). Suppose R
is a minimal right ideal of To(m(1:)) and choose U1, U. e R. We know that

X*g(R) is a singleton subset of To(X) so (g( U1)x)’y (g( U2)x)’r (x e X, [ e

and by (5.1) again this implies U1 x) U2 x) (x e X, t e m(2)*). Thus
U1 x U2 x (x e X). Since U, U2 e R and R itself were arbitrary we have
proved that X c Z0 and by (4.2) this means X c Z.
For the proof of (c) we need the following basic fact-

(5.2) LEMMA. Suppose X is an admissible subspace of re(E) and t is a
mean on X. Define R(t) {U" Ue To(X) and -(U) X t}. Then
tt is right invariant (on X) iff R(t) is a right ideal of To(X).
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Proof. Given X and as in the statement of the lemma, we have by

(1) of (4.3) that UeR() iff (Ux)e (x) (xeX). If is right invariant
choose U e R() and e 2 and get

Ur)x)e U(r x) (r x) (x) (x X),

i.e., Ur R(p); since R() is closed and convex, this implies that R() is a
right ideal. The other implication can be proved by simply reversing the
argument.

Proof of (c). Suppose X is a maximal right amenable subspace of m(2)
and is a mean on X. Let g be the canonical map of To(re(Z) onto To(X).
Since R() is a right ideal of To(X) (by (5.2)), there is a minimal right ideal
Rof To(m()) suchthatg(R) c R(). Let, eM(m(Z)) suchthat() eR.
Then IZ is right invariant and IX (= ) is likewise and hence isright
invariant on (X + Z)- the closure of the vector sum of X and Z). Since
X is a maximal right amenable subspace, this implies Z c X.
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