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In the study of Lie groups of dimension n acting on a space and having a
1-dimensional orbitmand in particular in the study of the boundary of certain
topological semigroups on manifolds with boundarymthe following problem
arises" If G is an n-dimensional connected Lie group and H a closed (n 1)-
dimensional subgroup, is there a one-parameter group E such that G /-/E
and no conjugate of E is contained in H? If so, "how many" such one-
parameter groups exist? We shall give a complete answer to ths question.
In order to do so we classify the n-dimensional real Lie algebras possessing a
subalgebra of dimension n 1 (Theorem I). Thus we establish the fact
that the Lie algebra of G contains at least n 1 linearly independent vectors
such that no conjugate of a one-parameter group generated by one of these
is ever contained in H; in many cases there are even n linearly independent
vectors with this property.

In order to make the proof fairly self contained we first deal with simple
Lie algebras; the results so obtained may also be produced by a close inspec-
tion of the classification of simple Lie algebras.

LEMMA 1. Le$ @ be a compac simple Lie algebra over an ordered field.
Suppose ha dim @ n and that is a subalgebra of dimension n d. Then
2n <_d(dq- 1).

Proof. Since usually the term of a compact Lie algebra is applied to real
Lie algebras we first remark, that under a compact Lie algebra over an ordered
field we understand a Lie algebra whose Killing form is negative definite.
Now we let be an orthogonal complement of in @ with respect to the
Killing form. Then dim 3 d. Preserving the Killing form on @ under
the adjoint action, g is represented in the Lie algebra of the orthogonal group
0(3) on 3. Let be the kernel of this representation. Then

[, 1 [, 1 + [, 1
which is in , because the first summand vanishes and is an ideal in .
This shows that is an ideal of @. Since @ is simple we have 0; so
n- d dim g _< dim 0() d(d- 1)/2. Consequently 2n _< d(d- 1).

It may be remarked that equality holds if @ is the Lie algebra of SO(m)
and g is the Lie algebra of the subgroup SO(m 1).

LEMMA 2. Let @ be a real simple n-dimensional Lie algebra and a sub-
algebra of dimension n 1. Then dim @ 3 and @ ’ sl(2 ), the Lie algebra
of Sl(2).
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Proof. Let @ (R) C be the complexification of @. Then (R) C is a sub-
algebra of @ (R) C which is (2n 2)-dimensional as a real Lie algebra. Let
@c @ (R) C be a compact real form of @ (R) Candlet ( @ C) n@.
Then o is a real subalgebra of @ and direr o >_ dimR @ 2. If o @,
then the complex linear combinations of o @ span all of @ (R) C which is
not even the case if we take the complex linear combinations of (C) (R) C.
Hence

dimR @- 2 _< dim o _< dim @- 1.

But then, after Lemma 1, dima@ 3 which implies dimc@ (R) C
dimR @ 3. Then @ is isomorphic to the Lie algebra of S0(3) or of Sl(2)
but only the latter contains 2-dimensional subalgebras.
The following lemmas deal with the nonsimple case.

LEMMA 3. Let @ be an n-dimensional real Lie algebra, its nil radical and
an (n 1)-dimensional subalgebra of @. Then n is an ideal in @.

Proof. If n , then the claim is trivially true. If n ,
then dim n 9 dim 1. Consequently, n is certainly a maximal
subalgebra of the nilpotent algebra ; it is therefore an ideal in . Trivially,

n is an ideal in . Since Y9 is a maximal subalgebra of @, and since
=wehave@ . Nownisanidealin-b= @.

LEMMA 4. With the notation of Lemma 3 let n 9 and put

@/n9, /,ng and (C)/,n.

Then @ is a split extension of the 1-dimensional ideal with the subalgebra .
Moreover, is a direct sum I @ , where and are abelian ideals in, and is a semisimple subalgebra, where is in the centralizer of

and where dim <_ 1. Furthermore, if dim 1, then I is the
2-dimensional solvable nonabelian Lie algebra. Altogether

and @ is an ideal in .
Proof. Since @ n and @ is (n 1)-dimensional in @, clearly
is a 1-dimensional ideal in . From dim dim -4- 1 and n

we conclude . The radical of ) is isomorphic to the radical
of ( modulo which is isomorphic to the radical of @ modulo 9t. This
factor algebra is abelian because the nil radical contains the derived algebra
of the radical. Therefore the radical of is abelian. The restriction of the
adioint representation of . to defines a homomorphism of into the algebra
of derivations of which here is simply the real field. The kernel of this
homomorphism is the intersection of the centralizer of with $, and its
dimension is > dim 1 since the range has dimension 1. According to the
theorem of Levi splits into a direct sum of the radical t (which, as



KARL HEINRICH HOFMANN

we know, is abelian) and a semisimple sublgebra . Likewise is a
direct vector space sum of its radical (which is abelian) and a semisimple
subalgebra which according to the theorem of Malcev and Harish Chandra
can be picked to be . Since the semisimple algebra is completely reducible
when acting under the adjoint representation on , we deduce that splits
into a direct sum of and an at most 1-dimensional subspace invariant under

under the adjoint representation. This means that is an ideal in .
Since @ is an ideal in and is the radical of , clearly is an
ideal in . If is 1-dimensional then the algebra @ is not abelian, but
it is solvable and has dimension 2. Since @ is in the centralizer of- the sum ( @ ) @ ( @ ) is a direct sum of ideals.

LEMMA 5. With the notation of Lemmas 3 and 4 let . Let be the
radical of @. Then 9 is an ideal in @.

Proof. If n then the claim is trivially true. If $$a ,
then ’ a , where ’ is the derived algebra of . Hence @ a
is an ideal in . Clearly @ a 9 is an ideal in @. Thus @ is an ideal in
9 - @ which is equal to @, since @.
LEMMA 6. With the previous notation, assume that

_ . Let

@* @/(C) , * /(C) 9, * /(C) .
Then * is the 1-dimensional radical of @* and * is a semisimple ideal.

Proof. Obviously dim * 1. The adjoint representation of the semi-
simple algebra 3* on * is trivial since the algebra of derivations on * is
abelian. Hence @* centralizes * and is therefore an ideal.

LEMMA 7. With the previous notation, let 9 . Denote @/9 with (
and /9 with . Then @ is a direct sum of a semisimple ideal and a
simple ideal isomorphic to s/(2), and , dim : 2.

Proof. Let be any homomorphism of @ onto a simple Lie algebra. Then
() v(() or dim v() dim v(() 1; in the latter case (() s/(2)
according to Lemma 2. Since all these homomorphisms separate points of

there is at least one r with dim r() 2 Let ker . Then
because otherwise -t- contradicting () ((). In view of the
structure of semisimple Lie algebras there is a simple ideal such that
( @ :andthat:-----sl(2),dim 2.

It is now easy to prove the following"

TEOREM I. Let @ be an n-dimensional real Lie algebra and an (n 1)-
dimensional subalgebra. Then one and only one of the following cases occurs:

is an ideal.
(ii) contains an ideal of @ such that @/ is isomorphic to the 2-dimen-

sional solvable non-commutative Lie algebra and / is a 1-dimensional sub-
algebra which is not an ideal.
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(iii) contains an ideal of @ such that @/ is isomorphic to s/(2) and
/ is a 2-dimensional solvable subalgebra.

Proof. If 9 c @ then Lemm 7 yields (iii) with the counterimage of
in @ as . If : 5, c ,thenLemm6gives (i),sincethefull

counterimage of @* is @ and 5* is an ideal. If @, then, by Lemma 4
we hve either (ii) with the full counterimage of -- (R) as provided that
dim 1, or else we hve case (i) again if all of is in the centralizer of .
As the referee points out Theorem I holds for more general ground fields

than the rels. Indeed, from Lemma 3 on we have only used that the ground
field has characteristic 0, and in Lemma 1 we used the orderability of the
ground field. In Lemma 2, however, we used the fact that every complex
semisimple Lie lgebra has a compact real form. A closer inspection of
Weyl’s proof of this fact as given e.g. in [4, p. 147 ff.] shows that this result
remains valid for split simple Lie algebras over a field K(i), where K is an
ordered field in which every positive element has a square root and where
i -1; more specifically, if @* is a split simple Lie algebra over K(i) then
there exists a compact simple Lie algebra @ over K such that @* --- @ @ K(i).
Thus Lemma 2 remains valid for Lie lgebras over an ordered field K in
which every positive element has a square root--provided that K(i) is split
simple (which means that the characteristic values of all elements of some
Cartan sublgebra acting and adioint operation are in K(i)). This is cer-
tainly so if K(i) is algebraically closed which is the same as saying that K
is formally real (i.e. every polynomial in K[x] of odd order has a root in K)
or is itself algebraically closed. Thus Theorem I remains valid if "real Lie
algebra" is replaced by "Lie algebra over a formally real or algebraically closed
field of characteristic zero". It remains an open question whether or not
Theorem I is true for Lie algebras over a field of characteristic 0.

In the sequel let @ be the Lie algebra of an n-dimensional real connected
Lie group G and 3 the Lie algebra of a (not necessarily closed) (n 1)-
dimensional Lie subgroup H. Let I be the Lie subgroup of the ideal
mentioned in Theorem I. We denote with (X, g) ---, X.g the adioint repre-
sentation of G on gO defined by g-l(exp X)g exp (X.g). We define to
be the set of all X e @ such that X.g (C) for all g e G and let * be its closure
in @ with respect to the natural vector space topology on @. In other words,

is the complement of (.J I@’g’g G}. We want to exploit Theorem I
in order to describe the set .
LEMMA 8. If is any ideal of @ contained in , then -- . Con-

versely, if @/ is the set of all X + such that (X + ) .g / for
all g G, then is the full counterimage of in @.

Proof. Let Xe@, Ye and geG. Then (X - Y).ge is equivalent
toX.g(C)since Y.g . ThusXiffx +.
LEMMA 9. If H is normal, i.e. if is an ideal, then @\, * @.
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Proof. X @ and X.g implies X .g- .
LEMMA 10. If G is the nonabelian 2-dimensional solvable connected Lie group

then * u {0} is the derived algebra of @.

Proof. The group G is the split extension of R by R, the multiplicative
group of positive reals under the natural action. Since H(R, R) 0 with
the natural action, all complementary subgroups to the normal subgroup are
conjugate. One of these is H. Thus the elements different from 1 on the
commutator subgroup (which is the unique nontrivial closed normal sub-
group) are the only ones which have no conjugate in H. This proves the
assertion.

LEMMA 11. If @/ is the 2-dimensional solvable nonabelian algebra, then

* u is an (n 1)-dimensional ideal and is equal to @’ , where
@’ denotes the derived algebra of @.

Proof. Since the adjoint representations of the universal covering group
of G and of G have the same effect on @ we may as well assume that G is
simply connected. Then I is closed as a normal connected Lie subgroup of a
simply connected Lie group and G/I is the 2-dimensional solvable nonabelian
connected Lie group. The assertion then follows from Lemmas 8 and 10.

LEMMA 12. If G Sl(2 then * u * where * is a
1-dimensional linear subspace of , and * is a 2-dimensional solid double
cone bounded by a quadratic surface whose singular point is the origin of @.
Moreover X is in iff exp RX is a circle group.

Proof. (a) We show first that H, a 2-dimensional solvable subgroup of G
is conjugate to the subgroup of all matrices

1/r
r > 0, r,s

For this purpose it is sufficient to exhibit at least one irreducible 1-dimensional
inwriant subspace of 1 under the action of H; then we can pick a coordinate
system such that all elements of H have triangular matrices with respect to
this coordinate system; since the determinant of every element heH is 1,
the product of the diagonal elements must be 1; thus H is conjugate to the
the group described within Gl(2), but then also in Sl(2) since some scalar
multiple of any element of G/(2) is in S/(2). Now let us assume that 1
is irreducible under H. Let ! be an irreducible invariant subspace under
H, the abelian commutator group of H, which is isomorphic to R. If 1
then H acts as u rotation group on 1, but this is impossible because then an
infinite cyclic subgroup of H’ would act trivially on 1 contradicting the fact
that H acts faithfully on I. Hence is 1-dimensional. Since is invariant
under H’ and H’ is normal in H, the subspace .h is invariant under H’
for all h e H. Since ! is not invariant under H and H is connected there
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are at least three different subspaces , .h, 8. h’ invariant under H’, which
implies that H’ consists of scalar multiplications; but since all elements of H’
have determinant 1 and H’ is connected and therefore can only contain mul-
tiplications with positive scalars, H’ must act trivially, again contradicting
the fact that H acts faithfully on R2.

(b) @ s/(2) is isomorphic to the Lie algebra of all endomorphisms of
the vector space R with trace 0. It has a basis of the form

U= V= 0 1 0
-1 W

0 -1

with [U, W] 2U, [W, V] 2V, [V, U] W, and @ is spanned by U and
W. By straightforward computation we find

X. exp tY XetadY Y U

X =U U
X V Vq-tW- tU
X W W- 2tU

Y=V Y=W

U- tW- tV etU
V e-V

W + 2tV W

Every element of G S/(2) is representable in the form

exp vV exp wW exp uU e (exp RV)H, exp vV= I cosy sin v1-sinv cosy

The following are congruences modulo the vector space "(V aU -t- bW).exp vV exp wW exp uU

1 2bu -+- au V exp wW exp uU

(1 2bu au2)e-’V.exp uU
(1 - 2bu au2)e-2’V.

Thus the element V aU "-F W has a coniugate in iff the equation

au + 2bu-+- 1 0

is solvable inR. This is the caseiffb a >__ 0andnota b 0. The
set therefore contains exactly the points c(V aU + bW) with c e R,
b a < 0 and all coniugates of cV. Now

V.expvV expwWexp bU V.expwWexp bU

e-WV.exp bU e-W(V- bU -F bW).

Thus is the collection of all points c(V aU + bW) with a, b, c e R,
b q- a _< 0. Now * o RU is a solid double cone mapped into itself by
all scalar multiplications and bounded by a nondegenerate quadratic surface.
Moreover, if X is in i.e. if X is a scalar multiple of V aU + bW, a + b

_
O,

then Y 1/sXewiths (-detX)1/ (1 a- b)/. Direct cal-
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culation shows y2 _E, E unit matrix, and exp Y E cos Y sin t,
i.e. exp RX is a circle group. Conversely, X e implies that a coniugate of
exp RX is in H which does not contain any circle group.

LEMMA 13. If @/ S/(2) then * is an n-dimensional solid double cone
bounded by a quadratic hypersurface and such that r* * for all r e R,

* 8),r O, and such that X e implies X q- c *. Moreover *\(*
and *n is an (n 2)-dimensional linear space.

Proof. This follows from Lemma 8 and Lemma 11 along the same lines
given in the proof of Lemma 11.
We have now proved

THEOREM II. Let G be a connected real n-dimensional Lie group and @ its
Lie algebra, let be an n 1)-dimensional subalgebra and denote with @
the set of all X e@ such that X.g for all g e G (where g-l(exp X)g
exp (X.g)). Let * be the closure of in @. Then *\(* )
and one of the following cases occurs (in accordance with Theorem I)"

(i) *= @.
(ii) * is an (n 1)-dimensional ideal and is equal to @’ , where

@P is the derived algebra of .
(iii) * is a solid n-dimensional double cone bounded by a quadratic hyper-

surface. * is invariant under all scalar multiplications and contains X q-
with X *.
COROLLARY 1 TO THEOREM II. There are n 1 linearly independent

vectors X Xn_l Of@ such that Xi’g e , i 1, n- l, g e G. In case

(i) and case (iii) there is even an n-th vector X, linear independent of Xi,
i 1, n 1 such that X,.g , for all g G. In case (ii) for any vector
Y linearly independent of XI, ..., Xn_ there is an element c e C, C Lie
subgroup with Lie algebra *, such that Y.c e .
The corollary follows directly from the fact that in case (i) and (iii)

the set contains a basis of @, and from the fact that in the 2-dimensional
solvable nonabelian connected Lie group two nonnormal one-parameter groups
are coniugate under an element of the commutator group (see Lemma 10).
Remart. For any given dimension >_3 there are Lie groups and Lie M-

gebras of type (i), (ii) and (iii) case (i) is realized by abelian algebras, case
(ii) (resp. (iii)) by an appropriate direct product of the 2-dimensional solvable
nonabelian algebra (resp. by s/(2)) with some abelian algebra.

COROLLARY 2 TO THEOREM II. If everything is as in Theorem II, then
X implies G H exp RX.

Proof. We may again assume that G is simply connected so that I is
closed. If the assertion is true for the homomorphic image G/I, then it is
true for G itself. We may therefore assume that I 1. If G is the 2-dimen-
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sional solvable group, then exp RX is the commutator group G’ and G HGp.
In order to prove the assertion for the covering group of Sl(2) it is sufficient to
prove it for Sl(2). But in this case exp RX C is a circle group by Lemma
12 and it is known that G HC.
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