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1. Introduction

In the introduction we shall describe our results for Legendre and cosine
series. Analogous results hold for ultraspherical series but in the interest of
simplicity we state them here only in the most important special case.
P(x) is the Legendre polynomial of degree n. The functions

(n + )lPn(cos 0)(sin 0)/

re orthonormM functions on (0, ). They lso hve the known symptotic
formul [16, Th. 8.21.5]

(n + )2p (cos 0) (sin 0)2 A cos [(n + )0 /4] + O(1/(nsin 0)),

0 < < . Classically this has been used to set up equiconvergence theo-
reins between Legendre series nd cosine series, but only for

O<eO--e<.

While i isn’ possible o ge uniform equiconvergence heorems for 0 0 ,
i is possible o ge a heorem ha uses all O, 0 0 .
Le f(O) be a function in LV’(O, ) where Lv’ is he class of measurable

functions for which

is finite. In all that follows we will have

1 < p < and -lip < a < 1 lip.

These are the familiar conditions that are necessary to have the Hilbert trans-
Ll,form a bounded operator. Also, if f e Lv’ then f e so we may talk

about its Fourier series. Let

(1) f(O) cos 0 dO.

Then
f(0) + cos

Since ( + ) P (cos 0) (sin 0) behaves aboug like cos 0 we seg

ff(0) or( + )V,p (cos 0) (sin 0) v’

eeeived ebruary 10, 196g.
Bogh aughors were supporged in parg by Nagional Science oundagion Grans.
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with a defined by (1).
a.e. and in L’ norm.

Then our main theorem is that lim, Tf(O) exists
If we call this function Tf(O), then

Tf ]l,, <-- A f ]l,.,

where A depends on p and a but not on f e L’".
In order to obtain any results for Legendre series we need the transplanta-

tion theorem in the opposite direction also. Let f(0) be as above and define

Then if we set

we have

and

Pn (cos O) (sin O)/ dO.

Srf(O) bo/2 -+- _,:= b,r" cos nO

limrl S,.f(O) Sf(O) a.e. and in Lv’" norm,

Sf II,,, <- A[I f
The first theorem of this type is due to D. Guy [5] and is a transplantation

theorem for IIankel transforms.
Before we mention some of the applications of these results, let us give an

indication as to how these theorems are proven. We have not been able to
give a proof which uses just the asymptotic formula. However, there is
another connection between P,(cos 0) and cos nO given by Mehler’s formula
[4, p. 182 (43)]

P (cos 0) 21/27r-1 f. (- 0)-1/2 COS -" @ d@,

Using this in the series

a,,(n + 1/2)l/2P,(cos 0)(sin 0)/

we obtain

a, n + cos A- (cos cos 0) 1/. (sin 0) 1/ d.

Now the series an(n + ) cos(n + ) is closely related to the fractional
derivative of order one-half 0f a cos n. The integral (2) is also closely
related to the fractional integral of order one-half. Our proof consists in
unscrambling these two operators.

Since cos nO is essentially the ultraspherical polynomial of order 0, we have
described a transformation between ultraspherical series. In Section 3 we
state and prove a transplantation theorem between ultraspherical series for
the parameters X, 0 < X < 1. In the next section we state a closely related
result of B. Muckenhoupt and E. Stein [10] which shows how to transplant
between X and X + 1. Their work allows us to extend our theorem for all
X>O.
A special ease of Muekenhoupt and Stein’s work is the usual conjugate
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function theorem of M. Riesz. Thus it is natural to expect that a Hilbert
transform will arise in our work. When thought about in the context of
spherical harmonics what we have done is to set up a mapping between zonal
functions on spheres of different dimensions. This raises the interesting
question of whether such mappings can be set, up for more general functions
than zonal functions. This seems to be a problem of a completely different
order of magnitude than the one we solve.
Some of our applications follow.

COROLLARY 1. Let {tn} be a sequence of real numbers such that

-2r+]t.l-< A and z:.,.+ It, -t,_x] =< A, N 1, 2, ....
Theniff eL’",1 < p < , -1/p < a < 1 lip, and

f(O) a,(n -k- 1/2)Pn(cos 0)(sin 0),
then

an _/1/2 P, (cos 0) (sin 0)1 dO,

t, a,(n + 1/2)11P,(cos 0) (sin 0)

is the Legendre expansion of a function Tf(O) L’" and

Tf i]., <= A ]] f
This is the analogue of a well known result of Marcinldewicz for Fourier

series, [8], [19]. For weighted L spaces it was proven by Hirschman [9] and
the first proof for L spaces is due to Muckenhoupt and Stein [10].

Specializing t, to be one for n -< N and zero for n > N, we ge a new proof
of Pollard’s result on mean convergence [11].
A different type of example is the analogue of the Hardy-Littlewood theo-

rem for series with monotone coefficients.

COROLLARY 2. /ff(0) a(n -+- 1/2)P(cos 0), a is monotone decreasing
and na, 0 then

f0 If( (sin 0)" sin 0 dO o

if and only if
:..oa(n + 1/2)(-,)-3 < oo, 1 < p < oo, (p 4)/2 < ap < (3p 4)/2.

These and other applications will be treated in detail in Section 4.
In conclusion we would like to thank Professor Bochner for suggesting to

one of us that a theorem of this type might be true and Professor Stein for
allowing us to see a manuscript of [10] before publication.
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2. Preliminary material
We use a number of facts about ultraspherical polynomials, trigonometric

series, and trigonometric functions. For the sake of easy reference, we com-
pile these facts. They are either known or easy to prove.
The ultraspherical polynomial, pX, (x), of index X, degree n, is defined by

(1 2xt + t2)-x :=0P(x)t’.

For fixed ), they satisfy

(2x) r(1/2)r(x + 1/2)(1) P(x)P(x)(1 dx
n! (X + n)r(x)

where (a) r(a + n)/F (a) and n.m is one if n m; otherwise, it is zero.
We will usually consier PX,(cos 0). These functions are orthogonal with
respect to (sin 0)2x dO. In fact, we will usually consider the orthonormal
functions

tX,(sin x x0) P (cos 0)
where

Observe that

[ +x)r(x) I
tx, A (k)n-x -b O(n:x)

and if necessary the 0 term may be replaced by

Bn-x + Cn-x- + O(n-x-).
This follows from known estimates for r(n -b a)/r (n -b b).
We need the following asymptotic formula for pX, (cos

:LEMMA 1.

(cos 0)

For <- O <= r , > 0,0 < k < 1, we have

cF(n + 2k) cos{(n + k)0--

r(n + x + 1) (sin 0)x

See [16, p. 195, Th. 8.21.11].
We also need two estimates for pX, (cos 0).

+ 0 \(si 

LEMMA 2. For X > O,

P,(eos 0) 1-< P,(1) r(n + 2x)/r(n + 1)r(2x),
and

(sin 0)x pX, (cos 0) -<_ Anx-l,

[16, Th. 7.33.1 and formula (7.33.6)].
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We also use one form of Mehler’s formula:

PXn (COS 0) 2r (x + 1/2) (2k) (sin 0) 1-. f0 cos (n -t- k) d
n! r(X) [cos cos 0]-for X > 0, [4, p. 177].

From the theory of Fourier series we need the following lemma.

LEMMA 3. Let 0 < a < 1. Then if
[:= n cos nO

f( O)
2= n sin nO,

the series converge uniformly in <- O <= 2r , > O. The sum is

I t }"- + g(O)C. 101
[sg0

where 0(0) i infinitely differentiable in O <- 2- . Alo for any > O,
the Abel mean of the erie for f(O) and the erie for f’(O) converge boundedly
to f O and the derivative of f O respectively in <- 101 -<_ 2 ,

This follows from the results in 1 of [17].
We also need two elementary lemmas which can easily be established by

the reader.

LEMMA 4. ForO < a < 1,- f101 I --o
0 [[101 +1

LEMMA 5. Let 0 <- u <- 0 <-- r/2, 0 < a < 1. Then

(1) [cos (0 u) cos 0] [u sin 0]-" 0(u-"/0+),
0 O(u-./O+.(2) - {[cos (0 u) cos 0] [u sin 0] ),

0(3) - [cos (0 u) cos 0] [u sin 0l 0(u-/0+).

In addition to the asymptotic formula of pX. (cos 0) in terms of cos nO, we
need a formula of Hilb type which gives us pX. (cos 0) in terms of

Jx-/((n + X)0),

where J(x) is the Bessel function of order

LEMMA 6. For 0 <- 0 <- r/2,
x O(nt.(sin O) Pn(cOs O) A + X)Jx_/((n + X)O)

+ A[O cos 0 sin O]O-(sin O)-O(n
Jx-m((n -t- X)0) -t- R.,
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where
R O(On-) if nO >= c

O(n-) if no <- c.
See [15].
About Bessel functions, we need the Mehler-Sonine formula

J-l/(x) 2 f sin xt dt

0 < X < 1 [18, p. 170].
We also need the estimate

j.()[ Ax",
0 x 1, a real [18, p. 43]
and the asymotic formula

=(2/J,(x) / [cos (x- a/2 -v/4) + O(1/x)]

[18, p. 199].
In addition to the classical theorems of Hardy and M. Riesz on the integrals

f() d, f()- d and f()/( ) d

we need ghese gheorems in gheir’ form [6], [7]. We also need ghe weighted
norm form of he Nardy-Liglewood heorem on fractional integration [lg].
or eonvenienee we sgae i here.

LEMMA 7. If
fx(x) fo f(t)x-"lx dr,

a +’ 1, a < 1/p,’ < 1 1/p,a- > O, then

AL(O, ) if feL(O, ), 1 < p < .
In our applications we have an integral of the form

A(x) f(t)x-"l x dt.
/2

Since in this range of integration x Ix , Ix t, and a and
for us will be positive, we may dominate fx(x) by

/2

for some sma e. Thus we may ignore the conditions a < l/p, < 1 lip.
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THEOREM 1. Let
3. The main theorems

f(0) (sin 0)"e L(0,
1 < p < o,-1/p < a < 1 1/p, and

f(0) :--0 a cos nO,

We set

for X > O. Then

exists for almost all O.

a f(0) cos nO dO.

f(O) :=0 a, r"tX(sin 0)XPX(cos 0)

Also

lim_ II [f)(o) fX(o)l(sin O)" II, O,

fX(O)(sin O)e L’, and

Y(o)(sin o) II, A(a, p) f( o) (sin o) II,
where A , p) is independent of f
Our next theorem is the dual of this and the two theorems together allow

us to go back and forth between ultraspherical series and Fourier series.

THEOREM 2. Let
gX(O) (sin O)e L’(O, -),

1 <p < ,--1/p < < 1-- I/p,X> O.

we set

Then

Then if
gX(0) Y’:--o b. tX,(sin 0)XPX(cos 0),

b t gX(O) (sin O)xPX (cos O) dO,

gr(0) ’:--0 b. r cos nO.

lim_,t_ gr(O) g(O)

exists for almost all O. Also g(0)(sin 0)"e L,
and

lim,_ 11 [g,(0) g(0)l(sin 0) o,

g(o)(sin o)" I!, A(a, p) il gX(O)(sin 0)" IJ ,
where A a, p) is independent of f
We first prove Theorem 1 for the case 0 < X < 1. Without loss of gen-

erality we may assume that f(O) dO O. We also assume for the moment
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Cthat f(O)e We will remove this restriction later on. We also assume
for the moment that 0 _< 0 <- 7/2. That fX(O) exists almost everywhere
follows from the asymptotic formula for P(cos 0). We have

](0) -2 ,,-o
t r" (sin O)xP (cos 0) f0 f(q) cos nq d

f() x x (sin O)x dr tP (cos O) cos n
dO nl

+ 2 f(e) x x (sin O)x dr tP (cos O) cos ne
/6 nl

+
The points with near 0 cause most of the difficulty so we handle I first.
Different methods are used to take care of
By Lemma 2 we have that ’:ffil "xr t.(sln 0)XP(cos 0)cos n converges

uniformly for each r < 1 as do all of its formal derivatives with respect to. Thus we may differentiate the series term by’ term. Integrating by parts
twice we see that

I (sin 0)x Of(q) _, " -.,x xrn rP(cos0) cos
/ 0 n=_, ( 1 )rn- pX,, (cos O)

cos O) cos nO

(sin 0)xf(0/6) -x xr n ,P (cos 0) sin nO
n’l

Let J(0) hm,.x I. Using do.hated convergence and Lemmas 1 d 3,
we see that

n t. P, (cos O) cos
/ 0

+ (in O)x ( 1)N-’P (eo O)
nl

n t P= (cos O) cos

n t, P, (cos O) sin nO/6

for 0 O, 7.
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We write the first term on the right as

f
>
f()

_
--(sin0) lim0 Jo/<,,l-o_. 0

P. (cos 0) cosn d.

From Lemm l and 3, andfor0< 0N /2,0/6NN,andl-Ol N e,
we have that = - xn t.P.(cos 0)cos n is an infinitely differentiable func-
tion of . Integrating by parts twice we see that

t.P.(cos 0) cos n dJ(O) (sin0)Xlim -et f() -2 x
eo e/6 O

+ (sin 0) x lim - x xP (cos0)
0 e0 1

[eos (0 + e) cos (0

+ (sin 0))(0) lim..0 -x xUP (cos0)

[sin (0 + e) sin (0

M(0) + (0) + (0).

We have used Leas 1 and a which show

P(cos 0) cos e
my be derengiaged germ by germ wigh respeeg go and also hag f() and
Of(e)/0 are continuous.
hag A (0) 0 follows immediately from Lemma 2. o find B(0), we use

emma 1 go obgain

B(O) f(O) lim., eos[( + X)0 X/2]eos 0 sin

for 0 0, . hen a simple ealeulagion shows

B(0) f(0)/2 lim - cos X sin e
eO nl

+ (0)/ ]im0 7= n-
[cos (0 /2)h cos 2nO sin (0 /2)h sin 2nO] sin he.

The second sum approaches zero at e 0 because the convergence is uniform
for e < 0/2. But

limo =1 sin ne /2

so we have

Now to the major difficulty of this paper, M(0).

B(O) (rl4)f(O) cos [(0- r/2)X].

Using Mehler’s formula,
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we obtain

09M(O) A(sin 0) 1-x lim I-01>=_ f()
-. x r(n + 2x)

n t cos n

cos (n + X)ff dff de
[cos cosa

A(sin O)-x lim f() [x- + AX- +B cos
e+0 n=l

[o cos (n + )ff dff de
[cos ff cos 0]-x

A will denote an arbitrary constant which may vary from one occurrence to
the next. B, is a bounded sequence. The second and third terms contain
series which converge more rapidly than the first term and so are easier to
handle. We confine ourselves to the first term. When the limits on an
integral are not stated it will be assumed to be over 0/6 <= =< r, 10 [
=> e. Calling the first term AN(O) we have

02 foN(O) (sin 0) 1-x lim ()
_{} 2

o2
sin 0) 1-- lim ()

f, +/ + f + f4.

[COS COS O]X--

:---1 nx- cos n cos (n q- ),)k dk d

O]1-x[cos cos

n q(n, , k)[cos k cos 0]-1 dk d

where
Q(n, q, ) cos n( + k)cos hk for/= 1

cos n( if) cos x for/ 2

-sinn(Wk)sin)qk fori 3

sin n( k)sin ,k for i 4.

fl and f3 cause little trouble since the functions that the series represent are
twice differentiable in the range of integration, f2 and f4 are treated by simi-
lar methods, We treat f.

Using Lemma 3, we get

f2 (O) (sin O)-x lim () [cos ff cos cos X d
e0 O

+ (sin O)-x lira f() [cos cos cos l( ) d
eO
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where l(t) for tl
_
2 , 5 > 0. Again the second integral causes

no trouble so we only treat the first. Calling it MI(0) we see that

MI(0) (1 k) (sin 0)1-x lim ff(q)
-*0

0 ]-0 [cos cos cos k[ [-x sgn ( ) d

by dominated convergence, using Lemma 4. We write ts as

M’(0) (1 k) lim ff()g(0, ) d
where

K(0, ) (sin )-x 0 [cos cos ]x- cos kl -xsgn ( ) d.

Let O-u. Weseethat

0 0-K(0,) cosk(0-u) [-0+u[-Xsgn(-0Tu) du

+ (sin 0)-x 0 {[cos (0 u) cos O]x- (u sin 0)x-

cosk(0-u) [-0+u[-Xsgn(-0Wu) du

K is the dominate rm and we estimate it st. We consider two cases,
0/6 < 0 and 0< . Considering the second firs, we set
u ( 0)t and get

0 o/(-o)tK, cos X[O t( 0)]( + t.-x) dt

x 1 + X sin X[O t( 0)] dt
0-- o

1 1
0- --0 -0

WL"

If 20,]L C. If0 < < 20 wehave
0/(-0)

But L C and it easily seen that La A log 0/( 0). Thus
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[ 1 0cos h0 + 0
,)l_xox A- log -4- 1o-,, (o+

by Lemma 4.
Now we consider 0/6 -< , < 0.

0 foK 0" ux-1 cos h O u) ’ 0 "4" u -x du

+ -u cosX(0-u) l,-0+ul-du

_.0 fo tx-(1 t)-x cos h[0 (0 g,)] dt

f/(-’)#-1( )-x+ t- cosX[e-t(e-,)ldt

L4-f- L.

1
sin X[O t(O o)] dt

For 0/2 -<_ ,p < 0 we have

sin X[O t(O o)] dt -+- 0(1)

sin X[O t(O o) dt

Thus

1 cos X[2p O]
0--o 0--

0-+- 0 Ilog 0 ] "4- 0(1).

0x _xL ,px[0 o] "4- + 0 [log 0
o(1)

cos X[2o -0] + 0 [ 1
o e x[9, + o]1--X

0+ log
0--,

0--o ox[o + O]t-x + lgo
since cos X (2o 0) cos
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Now we go back and consider the error term El.
0/6 =<< 8. Set

We have

First consider the case

sgn(,p--O+ t) [,p--O+ -xdts(u)

( x)- u (o )I-.
[cos (o u) cos o]x- [u sin o]x-

cos x(o u) I, o + u -’

lim cos X(O ) d()

(1 cos O)x- (0 sin O)x-] (1 X)-q,-x

sgn(,p--O + u) du

(1 X)-I lim0[(cos (0 e) cos 0) X--1 (8 sin 0)

I (o ,)I -’ cos x(o

lim (1 X)-I I (0 )I-x

__0 [([eos (0 ) cos O]x-1 ( sin O)X-1)eos X(O )1
O

(1 cos O)k-1 (0 sin 0
0

jo (1 x)- [u (o

0__ [([cos (0 u) cos 01x-1 (u sin 0) x-l) cos X(0 u)] du
Ou

by Lemma 5.
Thus

E1 (sin O)l-x-x[(1 cos O)x-1 (0 sin O)x-]

(sin 0) 1-x f0 sgn [u (0

__o [[(cos (o u) os o)- (u si o)-1 cos x (o u)] du
Ou

O((O/)XO-1) + O[(sin O) l-x

[uX-aOx- + uXOx- sin O] du
0(o-) + o(o-(o )x-),

where we have used Lemma 5 three times.
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The case 0 < < is easier. We consider two cases" 0 -< 20 and 20
<__ q . For the first we have

E1 A (sin 0) -x .[ ([cos (0 u) cos 0]x- (u sin 0)x-)
cos k (0 u)[ 0 + u]-x- du

O(o-uO-[-o + u]--du)= O(O-u-0 +u]-idu)
0(O-( o)- + o-o-) o(o-( o)-x + o-).

For2 < wehve

E 0 Oi-x uxOx-[ O + u]-x- du

We now treat I. Recall that

r t (sin 0) P (cos 0) cos n .
Using Lemma 6, we get for the sum under the integral

xll2j

+ A :=1 rs(n, O)

=U+V+W.
In the above equation

/l(e) [e cos o sin e]o-(sin 0)-,
and

s(n, O)] 0()
unifory in 0. W is therefore clearly bounded. By the estimates for Bes-
sel functions (Lemma 6)

V 0 - r# (n + x)-l(n + X)x-Ox-
+0{{ :=+rO(n + X)-[(n + X)O]

cos[(n + X)O (X 3/2)(/2) /4]cos i}

It is easy to see that the first and third of the three su above are 0(0).
In the second sum one sums by parts, summing

r cos [(n + X)o- (X 3/2)/2- /4]cos
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and taking differences of the powers of n. An easy estimate then shows that
this sum is

0{0 log (1/0)} 0(1).

In U we use the Mehler-Sonine formula (Lemma 6) to get

U A (t 1)-x --1 r"O-X(n -f" X) -x sin [(n -t- X)0t] cos no dr.

We divide the range of integration into two parts, 1

_
-< 2 and => 2.

For the first we get

A ( 1)-x

_
rn01-)i (Tb " k) 1--)I sin n(Or o) cos )Ot dt

plus similar terms. Treating just the first term we obtain the estimate

0 0-x+ (t’ 1)-x(0t e)x-’ dt 0(0-)

by Lemma 3, and the fact that o =< 0/6 and 0 < ) < 1. Calling the second
integral AJ, we have

J h(t) Y]:-. rnOl-X(n -t- ))-x sin (n -+- X)Ot cos no dt

where h(t) (t 1)-x. Observe that

h’(t) O(Ux-x) and h"(t) O(t-x-)
as oo. Integrating by parts we get

J -h(2) Y’.:= r"O-X(n -i- X)-x cos 20(n "-I- h)cos no

+ h’(t) .-x r"O-X(n + X)-x cos (n + X)Ot cos n dr.

The first term is 0(0-1) by an argument similar to that given above. In the
second term we split the sum into two parts, 1 -< n =< 1/0 and n > 1/0. For

.= we obtain

0 h’(t) xl/ -x 0-1L_.,,=lr’O-X(n + h) d O( ).

The other term is handled by an integration by parts which gives

O[h’(2) Y’a/, O-X-l(n + X)-x-l]

]-#-0 h"(t) _,11o O-X-a(n -f- ),)-x-1 dt 0(0-1).

Thus J 0(0-1) which is the estimate we need to show

)If() d
,,#o
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Thus we have shown that

:() log
0

The first term is clearly a bounded operator in L’". The second, fourth,
eighth and ninth are bounded in L’", by Hardy’s inequality. Since h < 1
and 0 < 0 -<_ r/2, (cos h0)-1 is bounded and so the third term gives a bounded
operator in L’" by the Hardy-Littlewood generalization of M. Riesz’s
theorem. The fifth term is bounded in L’" by a simple application of HSld-
er’s inequality. The sixth and seventh terms are weighted fractional in-
tegrals and they are bounded by Lemma 7.
Next we must remove the restriction that 0 -< 0 -<_ /2. This follows from

the fact that

and
tX.(sin (r O))xP(cos (- 0)) (-1)"t(sin O)xPX.(cos O)

cos n(- O) ( 1 )" cos nO.

We also need to remove the restriction that

I! I1.,. -< A II f II.,.
We have shown that

Since the f e C are dense in L’" we may extend the operator to a bounded
linear operator Tx For f e L’a we define

f lim_.x Y] ,, x xa.r t.P cos O) (sin O)x.
The fact that Tf exists for almost every 0 and is integrable on compact proper
subintervals of (0, ) follows from the asymptotic formulas (Lemma 1).
To complete the proof of Theorem 1 for 0 1 we must show that
TXf ’f almost everywhere. For this it suffices to show

’[’f(O)g(O) dO Txf(O)9(O) dO

for g e and vanishing in a neighborhood of 0 and of v. We know that

T’:.(o)
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for fn e C2. Let fn e C and f --. / in L’. Since T is continuous in L’
it follows that

lim T,(O)O(O)

From the asymptotic formulas for P, Lemma 1, we see that

f(0)1" (sin 0)

Since g vanishes outside a neighborhood of 0 and this implies

lim.= f.(O)g(O) dO f(O)g(O) dO.

Thus

f(O)g(O) dO Tf(O)g(O) do.

Before we complete the proof of Theorem 1, i.e., extend the theorem to
all X > 0 instead of just 0 < X < 1, we give a proof of Theorem 2 for 0 < X < 1.

This we prove by a standard duality argument. Let

g(0) ]b t P(cos 0) (sin 0) x.
We need only consider a dense subset of L’, e.g., the bounded C functions.
Then nb 0(1) for all a > 0. So the series

gx(O) bcosnO
converges to a C function. We wish to show that

We choose a function f e L’’- where lip + lip’ 1. This space is the
dual space to L’. We choose f a cos nO so that

IIfl.,,-.lgxii.,. f(oDgx(O) do A 2 ab, A fX(O)g(O) dO

where fx(0) is the function defined in Theorem 1. Then by Theorem 1 and
HSlder’s inequality we get

or the operator taNng g into gx is bounded in L’".
To extend our theore to X > 1 we use an idea of Muckenhoupt and Stein

[10]. To the series
f O a,P (cos 0)

they associate the series

](r, 0) 2X a(n + 2X)-r sin 0 P,-(cos 0).
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They show that

If(r, O)Iv (sin O)x dO <- A, If(O) v (sin O)x dO,

1 < p < whereAv does not depend onforr. They use the function
X+l (cos 0) instead of Px+l(cos 0) because it is the function which arisesn--1

naturally when trying to obtain an Hv theory for ultraspherical expansions.
In our work we do not have this option, since pX+_. (cos 0) is not a polynomial
for 0 < a < 1, so we use PX+"(cos 0). Also their theorem is a transplanta-
tion theorem for a different series, and a different measure. Recall that we
essentially transplant between

aP cos O) (sin O) x

and
--1 -nX+la, n r. (cos O) (sin O)

with the measure dO and they transplant between

’ a, PX(cos 0)
and

-1..x+1 (cos 0) sin 0Z an n ’n-1

with the measure (sin 0) 2x dO. For p in the critical range,

(2X -+- 1)/(X -t-- 1) < p < (2), -t- 1)/X,

it is possible to go from one of these results to the other; but for other p it is
not possible to get one result from the statement of the other theorem. Since
our result between X and X + 1 is still unproven we would like to be able to
get it from their work. This is possible using the following inequalities
which are derived in [10].

LEMMA 8. /f

Q(r, O, ) 2X
,=1 n + 2X

,,DX+ O)P (cos o)r (t)2 sin ,,-x (cos

then forO -< 0-<_ r,O <= -<_ r/2, X > O, wehave

Q(r, 0, o) 0 ((sin o) -2x-1)
Q(r, 0, ) 0 ((sin 0) -2x-1)

rx (sin 0)-x (sin o)-x sin (0Q(r, O, ,,) cx ,,
1 2r cos (0 ,t,) -k- r

I ( sin 0 sin ,,
-t- 0 (sin O) -x-1 1 -t- log+

1 cos (0

if 20 < o,

if , < 0/2,

if 0/2 _<_ o <= 20.

As a preliminary step to completing the proofs of Theorem 1 and 2, we prove

THEOREM 3. Let.f(O)eL’", 1 < p < o, --1/p < a < 1 1/p. We
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define

and set

Then

(1)

(2)

a, t f(O)P (cos 0) (sin 0) dO,

a,r t-P-l(cos 0)(sin 0)

lim Tf() Tf(O)

a.e. and in L’’ norm, and

Conversely if

and if we set

we have

b, v,ix+ f(O)px+ (cos 0) (sin 0)TM dO

r f(0) a= t.+ P+(cos 0) (sin

lim,_, ,f O f O a.e. and in L’" norm, and

Proof. We would like to show that

T f(O) f()(r, O, ,) (sin O)x (sin , d,.

This is not quite true since we only have

(4) ,_ t, 1 + 0
n+2X

instead of equality without the factor 1 + 0(l/n). However the term in-
volving 0(l/n) is enough better than the main term that we may disregard
i. A sketch of a proof is tha I + O(1/n) (4) can be replaced by

1 + a/n + a/n + + a/n + 0(-)
where is suciently large. There are estimates for

1
r x ) DX+ X( sin ._ (cos o)P (cos ,)

which are similar to those for Q(r, , ) but better by a power of O or . For
this reason we ignore these terms and assume that (3) holds. Then the
estimates given by Muckenhoupt and Stein for Q(r, , ) suffice to prove the
first part of Theorem 3. The second half is done by duality.
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To complete the proof of Theorems 1 and 2 we choose ), > 0 and let []
denote the greatest integer less than or equal to ),. Applying Theorem 3
[,] times to an tx. P(cos 0) (sin 0) x leads us to the series

x- .-Exj (cos 0)(sinZn=0 an n+[X] -n+[X]

This is the ultraspherical expansion of a function fEx(0) e L’", and by Theo-
rem 2 there is a g(0) e L’" such that

But the mapping between

h(0) ]:--0 an cos nO
and

k(0) 7:--0 an cos(n + 1)0 :=0 bn+t cos(n -k- 1)0

is bounded in L’"

to

so we obtain a bounded operator from

an tx. PX.(cos 0) (sin 0) x

Z an COS nO.

This completes Theorem 2 and a duality argument takes care of Theorem 1.

z[. Applications
Our first application is to obtain an analogue of the. Marcinkiewicz multiplier

theorem for ultraspherical expansions. One form of it follows immediately
from Theorems 1 and 2, but for many applications it is important to have the
theorem for expansions in terms of P(cos 0) instead of
We will give the argument that is needed to take care of this point in detail
in this application and then just, state results for further applications.

Let f f(0) (sin 0)d0 be finite and define

Cn f(O)PX (cos O) (sin O)x dO.

We write
f(O) :=o cn t P(cos O).

.C. will be the functions f such that

N[f] If(O) 1" (sin O)" (sin O)

is finite. We say that a sequence , is an multiplier if given f there
i a function Tf e such that

and

Tf(O)P (cos O) (sin O)’ dO

N[Tf] <- ANVIl].
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The analogue of the theorem of Marcinkiewicz is as follows.

THEOREM 4. Let Sn} be a sequence of real numbers satisfying

!+ C n--O, 1 ....
(b) E2+t sk+t-- ski <- C n 0, 1, ....

Then {sn} is an 2, multiplier sequence for
1 <p< oo, (1 2/p)h- lip < a < 1 lip + (1 2/p)X.

In particular {Sn} i8 an 2 multiplier for
(1 + 2,)/(1 + },) < p < (1 + 2},)/.

For the sequence sn 1, n _<_ N; sn 0, n > N this gives new proof of
Pollard’s mean convergence theorem and gives some insight into why the
numbers 2 + 1/, and (1 + 2)/ (1 + ) occur in his work.
We consider the series

(sin O)-x ,:=o Sn Cn t P(cos O) (sin O) x.
By Theorem 1 this is (sin O)-Xh(O) with h(0) e L’a if sn cn tn cos nO L’.
By the Marcinkiewicz theorem this is so if cn tn COS nO L’. But this
is in L’ if

f(O) (sin 0)- cn t P(cos 0)(sin 0) x

is in oC, for ap + (2 p) p.
But we have -1 < p p 1 so we must have

(p- 2)X- 1 < ap < p- 1 + (p- 2)},,

which is the condition given above.
We say that a series an is lacunary if an 0 for n n, n2, with

nk+l/nk >= > 1. The following information is known about lacunary cosine
series. If a lacunary cosine series, an COS nO, iS summable on a set of posi-
tive measure, then an cos nO converges to a function in L for every p < oo.
Using the asymptotic formula for P(cos 0) it is then easy to show that a
lacunary ultraspherical expansion of an 20 function is in . Using Theo-
rems 1 and 2 it is then possible to prove that an 20 function is in o for any
p < (1 + 2)/(1 + ) and is in , for p larger than (1 + 2,)/(1 + )if
a is chosen appropriately. However, it is not necessarily in oC for

p (1 + 2x)/(1 + x).

This follows since the oC0 norm of tn P (cos 0) is bounded and the oct0+xn+x
norm goes to infinity like a power of log n. Use Lemma 6 and the asymptotic
formula in J,(x) which follows Lemma 6. This observation is due to E.
Stein. In his thesis, D. Rider [12] has observed that for expansions on the
sphere, the usual type of lacunary theorem fails. If f is integrable on the
sphere and its expansion is lacunary, then it does not necessarily belong to
any L space on the sphere for p > 1. This shows that the expansions of
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zonal functions are not as typical of spherical harmonic expansions as one
might hope.

Finally let us state the analogue of a theorem of Hardy and Littlewood.
For Fourier series they have proven the following theorem.

THEOREM A. Let f(O) L1(0, r) and define an by

l foan f(0) cos nO dO

Then if an+l <= a,, ,f(O) e L’(O, rr) if and only if a n-2 is finite, 1 < p <
We have generalized this theorem to quasi-monotone coefficients [1], so

that we can get a stronger theorem for ultraspherical expansions than follows
from Theorem A. Also we state our theorem for weighted norms but this
could easily have been done in Theorem A.

THEOREM B. If an is defined as in Theorem A and if
(n q- 1 )-kan+1 <= n-an

for some k and a,, --+ 0 then

f. If(o) (sin

if and only if
=0 [a(n)]’(n q- 1)-"-- < oo, %--1 <ap<p--1.

The numbers (n q- 1) could be replaced by any similar sequence. More
importantly sin 0 could be replaced by . We state the theorem in this form
because of the form of our transplantation theorem. Actually, as we state,
the theorem we only need to assume (n q- 2)-an+= <- n-an. From Theorem
B and Theorems 1 and 2, we obtain Theorem 5 by the same argument as in
Theorem 4.

an

THEOREM 5.

so that

Let f(O) 2(0, r) and define an by

(t)(n q- X) -1 f(O)Px (cos 0)(sin 0)x dO

f(0) Y’:=0 an(n q- X)PX(cos 0).

Then if an+ <- an and nXa, -+ 0 we have f 2,(0, r) if and only if
’=0 a{(n q- ),)(1 -k 2X a)p 2(1 q- ),)} isfinite,

<p< ,Xp-(2x+) <p<(+X)p-(2x+).
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