A TRANSPLANTATION THEOREM BETWEEN ULTRASPHERICAL
SERIES'

BY
RicHARD ASkEY AND STEPHEN WAINGER

1. Introduction

In the introduction we shall describe our results for Legendre and cosine
series. Analogous results hold for ultraspherical series but in the interest of
simplicity we state them here only in the most important special case.

P,(z) is the Legendre polynomial of degree n. The functions

(n + %)"*Py(cos 6) (sin 6)"*

are orthonormal functions on (0, 7). They also have the known asymptotic
formula [16, Th. 8.21.5]

(n + 3)Y™P, (cos §) (sin 0)"* = A cos [(n + )0 — x/4] + O(1/(nsin 6)),

0 < 6 < 7. Classically this has been used to set up equiconvergence theo-

rems between Legendre series and cosine series, but only for
O0<e=sbl=r—c<m

While it isn’t possible to get uniform equiconvergence theorems for 0 < 6 < =,
it is possible to get a theorem that uses all , 0 = 6 = .

Let f(8) be a function in L”“(0, ) where L™ is the class of measurable
functions for which

T . 1/p
17a = [ [ 150017 (6in 0)> a0
0
is finite. In all that follows we will have

1<p< o and -1/p<a<l-—1/p.

These are the familiar conditions that are necessary to have the Hilbert trans-
form a bounded operator. Also, if feL”* then feL", so we may talk
about its Fourier series. Let

(1) an = lf £(8) cos 16 df.
™ Jo
Then
£(8) ~ ao/2 + D m=1 an cos 1.
Since (n + %) P, (cos 6) (sin 6)"* behaves about like cos n6 we set

T.f(8) = Dnmotar™(n + 3)*P, (cos 6) (sin §)"*
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with a, defined by (1). Then our main theorem is that lim,,; T'f(6) exists
a.e. and in L”“ norm. If we call this function T'f(6), then

I Tf loe = ANl S llpa

where A depends on p and « but not on f e L™“
In order to obtain any results for Legendre series we need the transplanta-
tion theorem in the opposite direction also. Let f(8) be as above and define

T 1 1/2
b, = f £(6) <n + -2-> P, (cos 9) (sin 8)** de.
0

Then if we set
S, f(6) = bo/2 + D m=1 bur™ cos 1
we have
lim,; S,f(8) = Sf(6) a.e. and in L norm,
and

I 8f lpe = AN llpsa-

The first theorem of this type is due to D. Guy [5] and is a transplantation
theorem for Hankel transforms.

Before we mention some of the applications of these results, let us give an
indication as to how these theorems are proven. We have not been able to
give a proof which uses just the asymptotic formula. However, there is
another connection between P,(cos 6) and cos n6 given by Mehler’s formula
[4, p. 182 (43)]

[}
P, (cos §) = 22! f (cos ¢ — cos 0) ™% cos <n + %) e deo.
0
Using this in the series

> an(n + 3)?P,(cos 6) (sin )"
we obtain

(2) .[’ [Z n <n + %)1/2 cos <n + %) <p:| (cos ¢ — cos 6)'? (sin 6)** de.

Now the series D an(n + 3)"* cos(n + 1)e is closely related to the fractional
derivative of order one-half of > a, cos ne. The integral (2) is also closely
related to the fractional integral of order one-half. Our proof consists in
unscrambling these two operators.

Since cos 76 is essentially the ultraspherical polynomial of order 0, we have
described a transformation between ultraspherical series. In Section 3 we
state and prove a transplantation theorem between ultraspherical series for
the parameters A, 0 < A < 1. In the next section we state a closely related
result of B. Muckenhoupt and E. Stein [10] which shows how to transplant
between A and A + 1. Their work allows us to extend our theorem for all
A> 0.

A special case of Muckenhoupt and Stein’s work is the usual conjugate
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function theorem of M. Riesz. Thus it is natural to expect that a Hilbert
transform will arise in our work. When thought about in the context of
spherical harmonics what we have done is to set up a mapping between zonal
functions on spheres of different dimensions. This raises the interesting
question of whether such mappings can be set. up for more general functions
than zonal functions. This seems to be a problem of a completely different
order of magnitude than the one we solve.
Some of our applications follow.

CoroLLARY 1. Let {1.} be a sequence of real numbers such that

oN+1

ltv| < A and 2341t — taa| S A4, N =1,2,--
Thenif fe "1 < p < o, —1/p < a <1 —1/p, and
7(8) ~ > an(n + )" P,(cos 6)(sin 6)*?,

ie., . N
a, = f 1(8) (n + _> P, (cos 6) (sin 8)"* ds,
A 2

then
> b aa(n + 3)*Pa(cos 6) (sin 6)*

is the Legendre expansion of a function Tf(8) ¢ L™* and
| Tf llpa < A [ f llpse -

This is the analogue of a well known result of Marcinkiewicz for Fourier
series, [8], [19]. For weighted L’ spaces it was proven by Hirschman [9] and
the first proof for L” spaces is due to Muckenhoupt and Stein [10].

Specializing ¢, to be one for n = N and zero for n > N, we get a new proof
of Pollard’s result on mean convergence {11].

A different type of example is the analogue of the Hardy-Littlewood theo-
rem for series with monotone coefficients.

COROLLARY 2. Iff(8) ~ 2 an(n + %) P,(cos 6), a, is monotone decreasing
and n'%a, — 0 then

[ 176)17 (sin 6)*" sin 6 do < =

o

if and only if

Et—o aﬁ(n + %)(z—a)p—s < o 1<p< oo, (p —_ 4)/2 <ap < (3p _ 4)/2.

These and other applications will be treated in detail in Section 4.

In conclusion we would like to thank Professor Bochner for suggesting to
one of us that a theorem of this type might be true and Professor Stein for
allowing us to see a manuscript of [10] before publication.
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2. Preliminary material

We use a number of facts about ultraspherical polynomials, trigonometric
series, and trigonometric functions. For the sake of easy reference, we com-
pile these facts. They are either known or easy to prove.

The ultraspherical polynomial, P} (z), of index A, degree n, is defined by

(1 = 2xt + &)™ = D o Ph(a)t™
For fixed \ they satisfy

' et gy _ (VLA A+ 3)
® [ P@P@0 - = BRTE D,

where (@), = T'(a + n)/T () and 8,,. is one if n = m; otherwise, it is zero.
We will usually consiuer P)(cos 6). These functions are orthogonal with
respect to (sin 6)™ d6. In fact, we will usually consider the orthonormal
functions

{5 (sin 6)*P’ (cos 6)

A [ nl(n + NI'Q\) ]"2
" LENTGIN+ )]

where

Observe that
=A™ + 0™

and if necessary the O term may be replaced by
Bn™ 4+ en M 4+ O(n ).

This follows from known estimates for I'(n + a)/T'(n + b).
We need the following asymptotic formula for P’ (cos ).

LemMal. Foré =07 —25,6>0,0<\< 1, we have

A

Tt 2) cos{(n + N6 — ""’2“} 2
P);, (COS 0) = I‘(n N 1) (sin 0))\ + ((sm 0)>\+1> .

See [16, p. 195, Th. 8.21.11].
We also need two estimates for P} (cos 6).

Lemma 2. For A > 0,

| Ph(cos 0) | < Ph(1) = T'(n + 21\)/T(n + 1)T(2)),
and
(sin 6)* | Ph(cos 0) | < An’™,

[16, Th. 7.33.1 and formula (7.33.6)].
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We also use one form of Mehler’s formula:

\ 2T DN e [7cos (n 4 Ne do
P (cos 6) = 720! T(N) (sin 6) b [cos ¢ — cos 0]

for A > 0, [4, p. 177].
From the theory of Fourier series we need the following lemma.

Lemma 3. Let0 < o < 1. Then if

D i m % cos nf

f(6) = { ® .

n=1 M  SIn né,

the series converge uniformly in 6 < || < 2r — 8,8 > 0. The sum s
1
Co|0]* { } + g(6)
sgn 0

where g(8) s infinttely differentiable in | 6| £ 2r — 8. Also for any 6 > 0,
the Abel means of the series for f(0) and the series for f'(6) converge boundedly
to f(0) and the derivative of f(0) respectively in 6 < |6| < 2r — 4.

This follows from the results in §1 of [17].
We also need two elementary lemmas which can easily be established by
the reader.

Lemma 4. For0 < a < 1,

I01“—I¢I“={ 1 }
= O\Tol+ el

LemMA 5. Let0 = u =0 = 7/2,0 < a <1 Then

(1) |[cos (6 — u) — cos 6] — [usin 6]7%| = O(u'™/6""),
(2) l'a% {[cos (6 — u) — cos 6] — [u sin 6]} | = O(u'™/6""*),
(3) I% {[cos (6 — u) — cos 6] — [u sin 6]7°} | = O(u"*/6'"*).

In addition to the asymptotic formula of P)(cos 6) in terms of cos n6, we
need a formula of Hilb type which gives us P (cos 6) in terms of

D-12((n + N)6),
where J,(x) is the Bessel function of order a.
LemMa 6. For0 < 0 < w/2,
tu(sin 0)*P) (cos 8) = A6 (n + N) 2 r_1p((n + N)6)
+ A6 cos & — sin 616 *(sin 6) 6**(n 4+ A) 7
“Saap((n +N)60) + Re,
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where
R =0(06n?) ifno=c
=0 ine=Zec
See [15].
About Bessel functions, we need the Mehler-Sonine formula

2 * gin 2t dt
J)\—1/2(x) = Sin X

1 (z\"7h (- 1)
ra - e (3) (5)
0 <\ < 1[18, p. 170].

We also need the estimate

| Ja(z) | = A%,
0 <z =1, areal [18, p. 43]
and the asymptotic formula

1/2
Jo(2) = <7.-%> [cos (z — ar/2 — w/4) + O(1/x)]

[18, p. 199].
In addition to the classical theorems of Hardy and M. Riesz on the integrals

%f:f(t) dt, ]:f(t)t'ldt and ‘/o.rj‘(t)/(x_t)dt

we need these theorems in their L”'® form [6], [7]. We also need the weighted
norm form of the Hardy-Littlewood theorem on fractional integration [13].
For convenience we state it here.

LemMma 7. If
H(z) =f Fa™ |z — | di,
0
a+ﬁ+’)’=1,04<1/29,‘Y<l—l/p,a+7>0,then

A 5Lp(0’ ®) if feLp(O’ ®), 1<p< o,

In our applications we have an integral of the form

2%

) = [ IO = 0

Since in this range of integration 2 = |z — t|,t = |z — ¢ [, and « and v

for us will be positive, we may dominate fA(z) by
2z
h@] s [ 1016 e = o7
x/2

for some small e. Thus we may ignore the conditionsa < 1/p,vy < 1 — 1/p.
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3. The main theorems

TuroreM 1. Let
F(8)(sin 6)% € L?(0, ),

1<p< o, —-1/p<a<l-—1/p, and

£(8) ~ D neo @y cos nb,
1.e.,

O = 2 f £(8) cos no d.
w Jo
We set
8) = D% o anr"th(sin ) P} (cos 6)

for x> 0. Then
lim,.1 f2(6) = f'(6)
exusts for almost all 6. Also

lim,, ” [f:‘(o) - f)‘(0)](sin 6)* ” » =0,
£(0)(sin 6)* ¢ L?, and
[ 7*(0) (sin 6)* || , < A(e, p)|| F(8) (sin 6)° || ,
where A(a, p) is independent of f.

Our next theorem is the dual of this and the two theorems together allow
us to go back and forth between ultraspherical series and Fourier series.

THEOREM 2. Let
g)‘(O)(S.ln 0)« € Lp(()’ 7r)7

1<p< o, =1/p<a<l—1/p,N>0. Thenif
7(8) ~ D= ba th(sin 6)*P}(cos 6),

t.e.,
by = tn f g"(6) (sin )P}, (cos 0) do,
o
we set
9:(8) = Xm0 by ™ cOS 6.
Then

lim,.. g-(8) = g(6)
exists for almost all 6. Also g(0)(sin )% ¢ L”,
lima,1— || [g-(8) — g(6)](sin 6)[| , = O,

I g(6)(sin )% || , < A(e, p) || g°(8) (sin 6) ||
where A(a, p) s independent of f.

We first prove Theorem 1 for the case 0 < A < 1. Without loss of gen-
erality we may assume that [§ f(6) d6 = 0. We also assume for the moment

and
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that f(0) ¢ C>. We will remove this restriction later on. We also assume
for the moment that 0 < 6 < x/2. That f(6) exists almost everywhere
follows from the asymptotic formula for P)(cos 6). We have

£260) =2 32 831° (sin 0P (oo8 ) [ f(e) con m do
T n=0 0

2 0/6

=21 fl) [i "ty P}, (cos 6) cos ’mp] (sin 6)* de
™ Jo n=1

+ 2 f’ f(o) [i 7t P, (cos 6) cos n:p] (sin 6)* dp
™ Je/6 n==]
=2+ 1)

The points ¢ with ¢ near 6 cause most of the difficulty so we handle I first.
Different methods are used to take care of I.

By Lemma 2 we have that . 7"th(sin 0)*P)(cos 6)cos ng converges
uniformly for each r < 1 as do all of its formal derivatives with respect to
¢. Thus we may differentiate the series term by term. Integrating by parts
twice we see that

I, = —(sin O)* fo:o 6_2[_(_¢_) [ Zn: ™12, P (cos 6) cos n«p] do

6(02 n=1

> (—=1)""n"*, P}, (cos 8)

=1 n=1

+ (sin 6)* o)
dp

— (sin 6)* M‘ > r"n 6, P} (cos 6) cos n6/6
dp  |e=6/6 n=1

— (sin 0)™f(6/6) z; ™, P (cos 6) sin 76/6.

Let J(6) = lim,,; I. Using dominated convergence and Lemmas 1 and 3,
we see that

J@) = — (sin6)* i [i 1"ty P}, (cos 6) cos mo] de
a/6 n=1

dp?

0

+ (sin6)* ‘31}5;)  (—1)"n % P (e0s 0)

g=r n=

— (sin6)* o) i > w7, P (cos 6) cosn6/6
¢ o~/

ne=]
— (sin6)"1(6/6) Z}l n't), P’ (cos 8) sin n8/6

for 6 = 0, .
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We write the first term on the right as

9 0

—(sin6)" lim |, o—bze (?f—(:?) > w7 P} (cos 8) cos n de.
>0 Y0/6< =T aqo n=1

From Lemmas 1 and 3, and for0 < 6 < 7/2,0/6 S ¢ S mand |¢ — 6| = ¢,

we have that Y my 7 2th P} (cos 6)cos ne is an infinitely differentiable func-

tion of ¢. Integrating by parts twice we see that

2 )
J(0) = — (sin6)*lim /I o—012¢ f(p) i;,, [Zn‘ztﬁ P, (cos 6) cos nga] do
>0 Y9/6<osT Gga n=1

lim X n~%) P} (cos )

=0 ¢>0 n=1

+ (sing)* 3e)
dp

- [cos n(6 + &) — cos n(f — e)]
+ (sin 6)(6) lim,+o 2= 7't P (cos 6)
. [sinn(d 4+ &) — sinn(d — &)]
= M(6) + A(6) + B(6).
We have used Lemmas 1 and 3 which show that
w2t Ph(cos 6)cos ne

may be differentiated term by term with respect to ¢ and also that f(¢) and
3f(¢)/d¢ are continuous.

That A(8) = 0 follows immediately from Lemma 2. To find B(6), we use
Lemma 1 to obtain

B(68) = £(6) lim,so X ey cos[(n + N\)6 — Ar/2]cos nf sin ne

for @ £ 0, 7. Then a simple calculation shows that

B(0) = f(8)/2 lem% i n cos [(0 - g) )\] sin ne

>0 n=1
+ £(6)/2 lim,no 2% 07"
+ [cos (6 — x/2)\ cos 2n8 — sin (§ — 7/2)\ sin 2nf)] sin ne,

The second sum approaches zero at ¢ — 0 because the convergence is uniform
for ¢ < 6/2. But

lim,.o ZL; 7 sin ne = /2
so we have
B(6) = (x/4)f(6) cos [(6 — x/2)N].
Now to the major difficulty of this paper, M (8). Using Mehler’s formula,
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we obtain

0

. 1=\ 1. 9 —2 I‘(n+2)\)
- lim [ yomarze 7o) 2 A Dn +2))
A(sin 0) im o}é’gf)érf(«’) a¢2nz_=1n 7 NCES)) COS N

. f" cos (n + Ny dy do
b [cos ¢ — cos 6]

M(0)

Il

2

— A(sin 6)*™ lim f flo) %;2 21 % 4 An*° 4 B cos ne
>0 n=

I

. f" cos (n + Ny dy do
0

[cos ¢ — cos ]+

A will denote an arbitrary constant which may vary from one occurrence to
the next. B, is a bounded sequence. The second and third terms contain
series which converge more rapidly than the first term and so are easier to
handle. We confine ourselves to the first term. When the limits on an
integral are not stated it will be assumed to be over /6 < ¢ < 7, |0 — ¢
= ¢. Calling the first term AN (6) we have

2 ]
N(@9) = (sin )™ IHE% [f(so) (%-2 j; [cos ¥ — cos 6]

c D M cos mg cos (n + Ny dy de
= 3 Gin 0 1im [10) 2 [ foos 9 — cos a1
= sin im [ f(e) 5 | leo ¢

=1

7oy 0 72Qi(m, @, W) [cos ¥ — cos O] dy do
=f+fot+ i+ 1.

where

Qi(n, 0, ¥) = cos nle + ¢)cosNy fore =1
cosn(e — Y)ecos Ny  fori = 2
—sin n(e + ¢)sin W fori = 3

sin n(¢ — ¢)sin Ay fori = 4.

I

I

I

Il

f1 and f; cause little trouble since the functions that the series represent are
twice differentiable in the range of integration. f; and fi are treated by simi-
lar methods. We treat f;.

Using Lemma 3, we get

o [°
£2(6) = (sin )" lim ff(<p) ——2f [cos ¥ — cos 61" cos M | ¢ — ¥ '™ dy de
>0 a(p 0

2 [}
+ (sin 09 im [ 7(0) 2 [ feos ¢ ~ cos 1™ cos Wi — ¥) v de
>0 a‘P 0
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where I(t) eC” for |t| < 2r — §, 6 > 0. Again the second integral causes
no trouble so we only treat the first. Calling it M,(8) we see that

M0) = (1 = ) (sin ) lim [7(¢)

0
. a-a—f [cos ¢ — cos 61" cos W [o — | sgn (¢ — ¥) d¥ do
0 Jo

by dominated convergence, using Lemma 4. We write this as

M) = (1 =) lim [F(0)EG, 0) do

where
F. ]
K(,¢) = (sin 6)'™ E;f [cos ¢ — cos 6] cos A\ | o — ¢ | sgn (o — ¢) dy.
0
Lety = 6 — u. We see that

[}
K(6, ¢) =(%j; W eos N0 —u) o — 0+ u| " sgn (o — 0 + u) du

+ (sin )™ %’ foo {[cos (6 — u) — cos O]** — (w sin 6)*}

ccosNO —u) o — 0+ u|sgn (o — 0 + u) du
=K, + E;.

K, is the dominate term and we estimate it first. We consider two cases,
0/6 < ¢ < 0 and 0 < ¢ = w. Considering the second first, we set
u = (¢ — 0)t and get

F) 0/ (p—0) - _4)‘
K, = 0 b £ cosA[f — t(e — 0)I(1 4 ¢) 7 dt
S 6/(p—0)
- (‘i> LI f sin Mo — (o — 0)] dt
v/ 00— o

+2 _{ Mlp—w|:<rj7-t>x - 1] sin Mo — t(p — 0)] dt

o\* 1 1 cos \d
_<s3) iy Ry R

Ife=220,|L| =C. If0<¢ <20 we have

L1=)\.[+)\'£9/(H)—_—L2+L3,

But | L, | < C and it is easily seen that | Ls| = A log 6/(¢ — 6). Thus
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K=2= +°°s"0+0|:1og +1]
oMo — o] -9
cos N 1 6
_0—¢+O[(0+¢)1"*¢*+10g¢—0+1:|
by Lemma 4.
Now we consider 6/6 < ¢ < 6.
0—¢
K1=——a— wWreos AN —u) o — 0+ u|™ du
Ao Jo

]
+ 9 wWreos A0 —u) e — 0+ ul|du
ag& 0—o

1
- % f P71 = )™ cos N9 — (8 — )] dt
0
F) 0/(0—¢p) N
-+ 5, 27— 1) cos Mo — (0 — )] di
= L4 + L5 .

Clearly | L, | = C.

o\* 1
A0
? ¢/ 0 —o
o\ 1
—(5>0—¢_L6'

For6/6 = ¢ < 6/2,|Lg| = C. For /2 = ¢ < 6 we have
0/ (6—¢) ¢ N
Ly = 7\f (—-> sin A[§ — t(6 — ¢)] dt + O(1)
2 t—1

0/(6—¢) ¢ A
(t_—1> sin Mo — #(0 — )] dt

8/(0—¢)
= )\L sin N[0 — (6 — o)] dt

+0 [ | e [(t__t__ly _ l:ldt:l +0(1)

_ 1 cosAl2e — 4] [ o]
=i o +0 logo___¢ + 0(1).

Thus

_ 0= ¢ | cos 20 — 6] [
L=op=4 T—v T O[5

_ cos M2p —0] [ 1 6 ]
0 —¢ +0 ¢’[¢+0]1‘*+10g0-—¢+1

 cos M 1 8
== 10 [«»ka T T s, 1]

]+ 0(1)

since [ cos A (20 — 0) — cos N0 | = O(| 6 — o).

333



334 RICHARD ASKEY AND STEPHEN WAINGER

Now we go back and consider the error term E,. First consider the case
0/6 = ¢ < 6. Set

s(u)=fa_ san (o — 0+ 8) | o — 0 + ¢t dt

=1 =N u— (0= [
We have

‘£ ’ {[cos (6 — u) — cos 61" — [u sin 6"}

ccos N0 —w) |o — 04+ u| ™ sgn (0 — 0 + u) du
]
= lim | { } cos N6 — u) ds(u)

>0 Ye
= [(1 — cos )™ — (88in 6)* (1 — \) T
— (1 — A) 7 limg-o[(cos (8 — &) — cos 8)* — (& sin 6)7]
cle— (0 — go)]l—)‘ cos A(@ — ¢)

6
—lim [ Q=N u— (0=

>0 Ve
: % [([cos (8 — u) — cos 61" — (wsin 6)*")cos M6 — u)] du
= [(1 — cos )* — (8sin )*7J(1 — N) ™

—fo Q=N u—= (08—

. 5% [(lcos (6 — u) — cos 01" — (u sin )*™) cos A(6 — w)] du

by Lemma 5.
Thus

By = (sin )" ¢ (1 — cos )" — (6 sin 6)*7]

']
- (sinO)Hfo sgnfu— (06— )] lu— (0 —o|™

. %[[(cos (6 — u) — cos 0)*" — (usin 6)* cos A (6 — u)] du

]
= 0((8/¢)'6") + O[(sin 6)'> fo sgnfu— (0 —9)]lu—(0—0|

- WM + w6 sin 6] du
=006 + 00670 — )'™),

where we have used Lemma 5 three times.
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The case § < ¢ < = is easier. We consider two cases: § < ¢ < 20 and 26
< ¢ < w. For the first we have
']
E, = A (sing)"™ f ([cos (6 — u) — cos 6" — (u sin 6)*™)
0
ccos N6 — u)lp — 0 + ul ™ du

]
=0 (OH‘ fo W e — 0 + 4 du> =0 <t9'l fo oux[go — 0+ du)
=000 — 0+ 070) =00 (e —0) +67).

For 20 = ¢ < 7 we have

']
E.=0 (o“” f WO o — 0 + w du)
0

‘]
=0 (0_1¢_)‘_1 f u du) = 0(¢™).
0
We now treat I;. Recall that

6/6
I = f (o) % 7t (sin 0)*PY, (cos 8) cos ne de.
0

Using Lemma 6, we get for the sum under the integral

A 220arm 0 (n + N aal(n 4+ N)6leos ne
+ A 25 r"1(0)6(n + M) asnl(n 4 N)6lcos ne
+ A4 D nairs(n, 6)
=U+V+ W

In the above equation

f1(6) = [6 cos 6 — sin 616 (sin 6) 7,
and
| (n, 0) | = O(n™)

uniformly in 6. W is therefore clearly bounded. By the estimates for Bes-
sel functions (Lemma 6)

V = 0f WO 6" (n + N+ )\)?\—3/20x—312}
+0{| Zneymaa "6 (n + N7 [(n + N6
- cosl(n + )0 — (A — 3/2)(r/2) — m/4]cos ne |}
+ 0L e " (n + 27 + NI,

It is easy to see that the first and third of the three sums above are O(9).
In the second sum one sums by parts, summing

r"cos [(n + N0 — (N — 3/2)w/2 — w/4]cos ne
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and taking differences of the powers of n. An easy estimate then shows that
this sum is

06 log (1/6)} = O(1).
In U we use the Mehler-Sonine formula (Lemma 6) to get

U=A4 ~/1 & = DY e 7" + M) sin [(n 4+ M) cos ne d.

We divide the range of integration into two parts, 1 < ¢ < 2and ¢ = 2.
For the first we get

A f (& — 1) D1 70 ™ (n + A)'7 sin n(6t — ©) cos N6t dt
plus similar terms. Treating just the first term we obtain the estimate

0 [0‘“‘ f ’ (& — 1)t — o)*? dt] =006

by Lemma, 3, and the fact that ¢ < 6/6 and 0 < A < 1. Calling the second
integral AJ, we have

J = f R(t) D m=t "0 (n 4 A)' ™ sin (n + \)6t cos ne dt

where h(t) = (# — 1)™. Observe that

W(t) = 0(¢™™) and A7(t) = O(t™")
ast— o, Integrating by parts we get
J = —h(2) a1 "0 (n + N cos 20(n + A) cos ne

f h’(t) S = "0 (n 4+ A) 7 cos (n 4+ )6t cos ne di.

The first term is O(6™) by an argument similar to that given above. In the

second term we split the sum into two parts, 1 £ n < 1/6andn > 1/6. For

178 we obtain

0 (f (@) S M ™M + AT dt) = 0(67).
2
The other term is handled by an integration by parts which gives
O (2) X1 67 (n + M)
[ f W (8) 25667 (n + 07 dt] = 0(67).
2

Thus J = O(6') which is the estimate we need to show

n=0(3 [ 1561 do).
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Thus we have shown that

£0 = 04®) +0 (5 [ 501 de) + 00820 [ 661/ = o) de

oLl ol Lromes 0]

+o([[ 0 -0 a0)

+o([ -0 @)+ 0 (3 [ 10 a0)

" f(e)
+ 0( 20 @ d¢)'
The first term is clearly a bounded operator in L”'®. The second, fourth,
eighth and ninth are bounded in L% by Hardy’s inequality. Since A < 1
and 0 < 6 = /2, (cos A0) " is bounded and so the third term gives a bounded
operator in L”'® by the Hardy-Littlewood generalization of M. Riesz’s
theorem. The fifth term is bounded in L”'* by a simple application of Héld-
er’s inequality. The sixth and seventh terms are weighted fractional in-
tegrals and they are bounded by Lemma 7.

Next we must remove the restriction that 0 < 6 < #/2. This follows from
the fact that

& (sin (7 — 6))*Ph(cos (r — 6)) = (—1)"th(sin 6)*P)(cos 6)
and
cosn(r — 0) = (—1)" cos né.

We also need to remove the restriction that f ¢ C*. We have shown that
15 o S AN S llove-

Since the f ¢ C* are dense in L”'* we may extend the operator to a bounded
linear operator T". For f ¢ L”'* we define

Tf = limy.y 2 ar™thPh(cos 6) (sin 6)*.

The fact that Tf exists for almost every 6 and is integrable on compact proper
subintervals of (0, ) follows from the asymptotic formulas (Lemma 1).
To complete the proof of Theorem 1 for 0 < A < 1 we must show that
T"f = Tf almost everywhere. For this it suffices to show

| " Ty(0)g(0) do = fo " P(0)g(0) do

for g ¢ C* and vanishing in a neighborhood of 0 and of 7. We know that
Tfn(o) = T)‘fn(o)
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for f, e C*. Let f, eC* and f, — f in L™* Since T" is continuous in L”'*
it follows that

limyae fo "1 (0)g(6) db = fo " T (6)g(6) do.

From the asymptotic formulas for P}, , Lemma 1, we see that
1p

[[’_8 | T(6) | (sin 6)*? dﬁ] < Aol fllpa-

Since g vanishes outside a neighborhood of 0 and 7 this implies

lim, e [ " Th.(6)g(0) db = [ " T7(6)g(0) do.
0 0
Thus

[ " Ty(0)(0) do = [ " T10)9(0) .
0 0

Before we complete the proof of Theorem 1, ie., extend the theorem to
allN > Oinstead of just 0 < A < 1, wegive a proof of Theorem 2 for 0 < A < 1.
This we prove by a standard duality argument. Let

g(8) ~ Db, th P)(cos 6)(sin 6)*.

We need only consider a dense subset of L”'*, e.g., the bounded C” functions.
Then 7, = O(1) for all @ > 0. So the series

o (0) = > b, cos nd

converges to a C” function. We wish to show that
lorllpe = Al g llpsee -

We choose a function f e L "™ where 1/p + 1/p’ = 1. This space is the
dual space to L”**.  We choose f ~ > a, cos n so that

1 llp=allgrllpe = forf(ﬁ')gx(@) 9 =AY b, =4 fo"f“(e)y(ﬂ) do

where f(6) is the function defined in Theorem 1. Then by Theorem 1 and
Holder’s inequality we get

£l —a i gr lloe = A NS llprma [l 9 [l

or the operator taking g into g\ is bounded in L***.
To extend our theorems to A > 1 we use an idea of Muckenhoupt and Stein
[10]. To the series
f(8) ~ 3 anPh(cos 6)

they associate the series
F(r, 0) = 28 2 an(n + 20) ™" sin 6 P37 (cos 6).
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They show that

[ 170,01 sn 0 o < 4, ["1560)1? (sin 0)* s,

1 < p < o where 4, does not depend on f or r. They use the function
Py (cos 0) instead of PY™(cos 6) because it is the function which arises
naturally when trying to obtain an H” theory for ultraspherical expansions.
In our work we do not have this option, since PX"%(cos 6) is not a polynomial
for 0 < a < 1, so we use Py *(cos ). Also their theorem is a transplanta-
tion theorem for a different series, and a different measure. Recall that we
essentially transplant between

>~ a.P(cos 6)(sin 9)*
and
> @ n Py (cos 6) (sin 6)M

with the measure df and they transplant between

> @, P)(cos )
and

> an v P (cos 6)sin 6
with the measure (sin )™ dg. For p in the critical range,
N+ 1)/(M+1) <p < (2r+ 1)/,

it is possible to go from one of these results to the other; but for other p it is
not possible to get one result from the statement of the other theorem. Since
our result between A and A + 1 is still unproven we would like to be able to
get it from their work. This is possible using the following inequalities
which are derived in [10].

Lemma 8. If .
Qr,0,0) = 2 772:_% ()% sin OP5S (cos 6) P (cos o)
thenforO S0=70=¢=7/2,N> 0, we have
Q(r,6,¢) = 0 ((sinp)™7) i 20 < o,
Q(r,0,0) = O ((sin 9)™7") if ¢ < 0/2,

Ao/ N [ -\ o
_ar (sin6)™ (sin ) sin (0 — )
Qr, 6,¢) = 1 —2rcos (0 —¢) + 12

. —oan—1 + sin 0 sin [ .
+0 [(sm 0) (1 + log m)] if 6/2 ¢ =26

As a preliminary step to completing the proofs of Theorem 1 and 2, we prove

TaEOREM 3. Let f(0) e L%, 1 < p < », —1/p < a <1 — 1/p. We
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define
an = 1) fo F(8) P} (cos 6) (sin 0)* d,
and set
T, £(0) = D meo aur™tnsPhFS (cos 6) (sin )M,
Then
(1) I Tefllpe = A S llpes
(2) lim,.; T, f(8) = Tf(6)

a.e. and in L*'* norm, and

I T loa = A1 S llpva-
Conversely if

by = £ fo F@)PX (cos 6) (sin 6)™ do
and if we set
T.f(8) = 2 an this Phis(cos 6)(sin 6)*

I - 5(6) llpa = A S llpve s
lim,,; T, f(6) = Tf(8) a.e. and in L*'* norm, and

I Tf llpve < A 1S llpvee -
Proof. We would like to show that

we have

3) T.56) = [ 7e)Qr,0,¢) (sin 6)" (sin )" do.

This is not quite true since we only have

M1 o 2N 1
(4) ta—1 = m tn [1 + 0(;})]

instead of equality without the factor 1 4+ O(1/n). However the term in-
volving O(1/n) is enough better than the main term that we may disregard
it. A sketch of a proof is that 1 4+ O(1/n) in (4) can be replaced by

14+ a/n+ a/ + oo + a/n* + 0™

where k is sufficiently large. There are estimates for

1 ., .
> el () sin 0P, (cos 6) P (cos ¢)
which are similar to those for Q(r, 6, ¢) but better by a power of 6 or ¢. For
this reason we ignore these terms and assume that (3) holds. Then the
estimates given by Muckenhoupt and Stein for Q(r, 9, ¢) suffice to prove the
first part of Theorem 3. The second half is done by duality.
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To complete the proof of Theorems 1 and 2 we choose A > 0 and let [A]
denote the greatest integer less than or equal to A\. Applying Theorem 3
[A] times to > a, th Ph(cos 8) (sin )" leads us to the series

2 =0 an trx ) P3G) (cos 6) (sin 6)*™™,
This is the ultraspherical expansion of a function /™ (8) ¢ L***, and by Theo-
rem 2 there is a ¢g(8) ¢ L”'® such that
g9(8) ~ 250 an cos(n + N8 = 2% o basng cos(n + N])6.
But the mapping between

h(8) ~ Dm0 @n cOS 18
and

k(8) ~ Dm0 @ncos(n + 1)8 = D nobuiscos(n + 1)6
is bounded in L”'* so we obtain a bounded operator from
> an th P (cos 6)(sin 6)*
to
Z a, cos no.

This completes Theorem 2 and a duality argument takes care of Theorem 1.

4. Applications

Our first application is to obtain an analogue of the Marcinkiewicz multiplier
theorem for ultraspherical expansions. One form of it follows immediately
from Theorems 1 and 2, but for many applications it is important to have the
theorem for expansions in terms of P} (cos 6) instead of P} (cos 6) (sin §)*.
We will give the argument that is needed to take care of this point in detail
in this application and then just state results for further applications.

Let [§ | f(6) | (sin 6)™d6 be finite and define

o= [ " 1(6)P, (cos 6) (sin 6)™ db.
0

‘We write
£(8) ~ Dm0 ca ts Ph(cos 6).

£% will be the functions f such that

N2f] = [ fo "17(0) I? (sin 0)° (sin 6)* do]”p

is finite. We say that a sequence s, is an £7 multiplier if given f ¢ £2 there
is a function Tf ¢ £7 such that

SnCn = [r Tf(8) P}, (cos ) (sin 6)™ do

and
NZITfl = ANZIA.
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The analogue of the theorem of Marcinkiewicz is as follows.

TaEOREM 4. Let {s.} be a sequence of real numbers satisfying
(a) |s.| =C n=20,1,---.
(b) Zgz-tilsk+1“ %|=C n=01,---.

Then {s.} is an £5 multiplier sequence for

1<p< o, A=2/pA=1/p<a<l—=1/p+ (1 —2/p)A\
In particular {s,} is an £§ multiplier for
(L+20)/(1+2) <p < (1+27)/\

For the sequence s, = 1,n < N;s, = 0, n > N this gives a new proof of
Pollard’s mean convergence theorem and gives some insight into why the
numbers 2 + 1/X and (1 + 2\)/(1 4+ \) occur in his work.

We consider the series

(sin 0)™ Dm0 $n ¢a {5 Ph(cos 6)(sin 6)*.

By Theorem 1 this is (sin 6) ™ h(8) with h(6) € L if Y s, ¢y to cos nf e L7*.
By the Marcinkiewicz theorem this is so if Y ¢, t, cosnf e L. But this
is in L* if

f(8) = (sin )™ > ¢n t% Ph(cos 6)(sin 6)*

is in £3 for ap + (2 — p)\ = Bp.
But we have —1 < 8p < p — 1 so we must have

(p—2A—1<ap<p—1+4 (p— 2,

which is the condition given above.

We say that a series Y a, is lacunary if @, = O for n < ny, na, - - , with
g1/ = N > 1. The following information is known about lacunary cosine
series. If a lacunary cosine series, Y a, cos n, is summable on a set of posi-
tive measure, then ), a, cos n8 converges to a function in L” for every p < .
Using the asymptotic formula for P)(cos 6) it is then easy to show that a
lacunary ultraspherical expansion of an £ function is in £;. Using Theo-
rems 1 and 2 it is then possible to prove that an £; function is in £§ for any
p < (14 2)\)/(1 + M) and is in £2 for p larger than (1 + 2\)/(1 + ) if
a is chosen appropriately. However, it is not necessarily in £§ for

p=(1+20)/(1+N).

This follows since the £ norm of ¢, Pﬁ(cos 0) is bounded and the eyt
norm goes to infinity like a power of log #n. Use Lemma 6 and the asymptotic
formula in J.(x) which follows Lemma 6. This observation is due to E.
Stein. In his thesis, D. Rider [12] has observed that for expansions on the
sphere, the usual type of lacunary theorem fails. If f is integrable on the
sphere and its expansion is lacunary, then it does not necessarily belong to
any L” space on the sphere for p > 1. This shows that the expansions of
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zonal functions are not as typical of spherical harmonic expansions as one
might hope.

Finally let us state the analogue of a theorem of Hardy and Littlewood.
For Fourier series they have proven the following theorem.

TurorEM A. Let f(6) ¢ L'(0, w) and define a, by
On = lf f(0) cos nd do
™ Jo

Then if tni1 < an , £(0) € L7(0, 7) if and only if Y, ak n*7* is finite,1 < p < .

We have generalized this theorem to quasi-monotone coefficients [1], so
that we can get a stronger theorem for ultraspherical expansions than follows
from Theorem A. Also we state our theorem for weighted norms but this
could easily have been done in Theorem A.

Tueorem B. If a, is defined as in Theorem A and if
(n + D70y < n%a,

for some k and a, — 0 then

fo" 1£(6) |? (sin 6)* < oo
if and only of
Saola@Pn+1)""? < 0, 1<p< o, —1<ap<p-—1.

The numbers (n + 1) could be replaced by any similar sequence. More
importantly sin 6 could be replaced by 6. We state the theorem in this form
because of the form of our transplantation theorem. Actually, as we state,
the theorem we only need to assume (7 + 2) *a,42 < 7 *a, . From Theorem
B and Theorems 1 and 2, we obtain Theorem 5 by the same argument as in
Theorem 4.

TueoreM 5. Let f(6) e £6(0, =) and define a, by

an = (B)%n + )™ o’ F8)P, (cos 8) (sin 0)™ do

so that
£(8) ~ Do an(n + N)Ph(cos 6).

Then if Gny1 < @, and n'a, — 0 we have f ¢ £2(0, =) if and only if
a=0anf(n 4+ N)(1 + 28 — a)p — 2(1 4 N)} 4s finite,
l<p< o,dp—(2A+1)<ap< 1+Np—(2n+1).
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