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INTRODUCTION
Recently, B. JR. Levin and I. V. Ostrovskii have shown [4] that if f is a rea

entire function (i.e., real on the real axis) with only real zeros such that "most"
of the zeros of f" lie "near" the real axis, then f is at most of "small" infinite
order. This is an important step in the direction of resolving an old question
of Polya and Wiman. (For a statement of the problem, an account of partial
results and bibliography we refer the reader to [4].)

In order to state the Theorem of Levin and Ostrovskii more precisely we re-
call the definition of an A-set of complex numbers.

DEFINITION. An A-set is a sequence a} of complex numbers such hat

The result referred to bove tkes the following form.

THEOREM A. If all the zeros of the real entire function f(z) are real and the
zeros off(z) form an A-set, then

log log M(r, f) O (r log r).

Without the assumption of reality on f and its zeros Levin and Ostrovskii
prove only the following somewhat sharpened version of an earlier theorem
due to A. Edrei [2, Theorem 3].

THEOREM B. Iff is of the form
(i) f(z) P(z)e() (P and q entire)

where P z satisfies

(ii) [ lg+ lg+ M t, P) dt < +
and the zeros of f(z)f (z) form an A-set, then

(iii) log log M(r, f) 0 (r).

Moreover, Q(z is of exponential type and satisfies

(iv) f lg+ O’(t)[ dt < -t--
1 -+-t
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Levin and Ostrovskii pose the question of whether the assumption that the
zeros of f(z)f" (z) form an A-set is already sufficient to yield the assertion that
f is representable in the form (i) with P satisfying (ii), and consequently the
conclusion of Theorem B holding for f and Q.
Although we are unable to settle this question, we succeed in showing that if

the zeros off(z)f" (z) are to form an A-set, thenf must have "almost as many"
zeros as the growth of f will allow.

1. Statement of results.
We shall assume throughout that the reader is familiar with the standard

notation and fundamental results of the Nevanlinna Theory.
Our main result is given by

THEOREM 1. Let f(reio) be an entire function such that the zeros of ff" form
an A-set. Assume, moreover, that

log+ r,(1.1)
limsup =X (0

_ _
+)- log r

(log+ x log+ (log+-i x) and log+ x log+ x).

Then if k >_ 3,

(1.2) lim sup
lg+ T(r,f)

5,- log r

and if l 2, we have only

log+ T(r, f)(1.3) limsup r where - for >_ 1,
r-* logr and r <_ 1 for < 1.

Since the counting function n(r, 1/f) of the zeros of f may grow so rapidly
on some sequence of r-values that

lira supr** {log+ n(r, 1/f)/log r} for every k 1, 2,

we complement Theorem 1 with the following result in which we abandon the
use of log r as a comparison function.

THEOREM 2. Let f(reio) be entire and h(r) a positive function of r. Assume
that the zeros of ff" form an A-set. If

log r(1.4) lim 0,
-, h(r)

and

(1.5) lim
lg+ n (r’))

=0,h(r)
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then

1.6 lim
lg+ T(r, f)

r- h(r) O,

provided that r avoids the values of an exceptional set of finite measure.

2. Preliminary lemmas
We remark that Theorems 1 and 2 already appear in a weaker form (in-

volving an assumption on the zeros of ft) in an unpublished chapter of the
author’s thesis [3, Chapter 3]. Also, the proofs we present here are consider-
ably simpler since we shall avail ourselves of the following striking lemma due
to Levin and Ostrovskii [4, Theorem i].

LEMMA 1. If the zeros of the entire function f(z) and of its second derivative

f" z form an A-set, then

(2.1) S; m(r, ;)dr :0 (1R)r

We shall also have need for Weierstrass products which do not grow un-
necessarily fast and are associated with sequences of zeros whose exponent of
convergence may be infinite. The following lemma provides us with such
products whose growth is sufficiently restricted for our purposes.

LEMMA 2. Let {a,},l be a sequence of complex numbers (not necessarily
distinct) with no finite point of accumulation, and assume that

Then the function -(z) defined by

(2.2) r(z) II=l 1- exp -+-+ -+-pva
where

(2.3)
p, [log1+ 9] > 0,[ denotes the

largest integer function)

is entire.
Moreover,

T(r, ’) <_ K{r(l+n(r’ll))+e+ -I- exp (2/log if)l/e}
(2.4)

(r > 1, K independent of r.)

Cortorrrt. Let f(z) be an entire function whose zeros have an infinite ex-
ponent of convergence. Then f(z) may be represented in the form
(2.5) f(z) z%(z)e(),
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where >_ 0 is an integer, Q(z) is entire and -(z) is an entire function satisfying
(2.4).

Proof.

(2.6)

It is known [1, p. 131] that

(z)1--- exp a.-4-b-2--,2-+-...-f-2a
Hence in view of (2.2)

(2.7) og (z) _< Z:

_< exp f Z

p
Z

From (2.3) we also have

(2.s)
Now

Z
p ,-t-1

(2.9) -Ifr < 1,

(2.10)

p, _< logl+e v < p, + 1.

E

Z

For r _> 1, we have, in view of (2.8),

Z

(2.11)

But

Z
p t,-t-1

a--r <-- r(lg+n(ar’l/r )l+e-I-1

(> 1).

1 1 1

lal<_r a, +1 lal<e a, +1 + -"e<_lal<_rr a
(2.12)

1 1<E + E
I.< a, :p’l-1

Moreover, from (2.8) it follows that

(2.13) e,,+ o,,+ o, < +"

Combining (2.10) or (2.11) with (2.12) nd (2.13), we find that for M1 r,
plz (o+n(,.,/,))*++, 1}(’) L K{r

In ddition, by (2.8) putting n(r) n(r, 1/), we find

z ’+* 1 < 1

(2.15)
1

y(log a) (log r)e
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Put o [exp {(2/log )1/} + 1] and observe that for > 0

Then,

(2.16)

log r(log ) > log r(log 0) > 2.

0 1
p_n(6r) y(log a)(log )e r) ylog 6(log +

o+1

1 (2/log ) I/e_<o-I- ] _<e -I- 1-t-g.p=vO-t-1

The conclusion of the lemma follows easily from (2.7), (2.9), (2.14) and
(2.16).
We shall also find it convenient to apply the following modification of a

well-known lemma of Borel [i, p. 12-16].

LEMMA 3. Let w(x) be a positive non-decreasing and unbounded function de-
fined for x >_ Xo, and let a > O) be given. If the points of discontinuity of w
have no finite point of accumulation, then

(2.17) w(x + 1/log w(x)) < {w(x)} 1+

for all x >_ x0, outside a set of values of x whose total measure is finite.

Proof. We remark first that if w(x) is continuous this lemma coincides
with that of Borel. Next, we show that the discontinuous case of our lemma
follows easily from the continuous one.

In order to see this, we arrange the points of discontinuity of f in an increas-
ing sequence x < x2 < Given an arbitrary i > 0) we choose a sequence

" (n 1 2, ..),suchthatof open intervals x’n Xn),
H

(2.18) xn < Xn < Xn < Xn+l,

and such that

(2.19)
ff

We now define a continuous function @(x) as follows.

e(x)

(x X’n) +
X X

Put

if x (x,, x,)

if xe (x.,x),

(n 1, 2, ...).

Since (x) satisfies the assumptions of our lemma and is continuous, the
lemma of Borel asserts that (2.17) holds for x _> x0, with 5 in place of w,
outside a set E of x values of finite measure. Since w(x) 5(x) for
x [in (X’,, X:); the inequality (2.17) holds for w(x) provided only that

f!
x E and x On (Xtn Xn). In view of (2.19) and the fact that E is of finite
measure, our conclusion follows.
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3. Proofs of the theorems
Let denote the exponent of convergence of the zeros of f. If + ,

we first show that Theorems 1 and 2 are immediate consequences of Theorem
B of Levin and Ostrovskii.

Proof of Theorems 1 and 2 for < -+- . If X < + then f may be repre-
sented in the form (i) of Theorem B where P is entire of finite order and there-
fore p satisfies condition (ii) of Theorem B.

Also for X < -k , we have

log+ n r,f(3.1)
lim 0- log r

Since

(k 2,3, ...).

(3.2) T(r, f) <_ log M(r, f),
it follows from (iii) of Theorem B and (3.2) that

(3.3) lim
lg+ T(r, f) 0 (l 2, 3, ...),

r- log r

which proves Theorem 1 in this case.
For X < -k , in view of (1.4), Theorem 2 is an immediate consequence of

Theorem 1 with/ 2.

Proof of Theorems 1 and 2 for -+- . Applying the corollary of Lemma 2
we represent f(z) in the form (2.5) and taking the logarithmic derivative we
hve

(3.4) f’(z)/f(z) 1/z 4- r’(z)/(z) 4- Q’(z).

Since Q’ is entire we have by definition, T(r, Q’) re(r, Q’) and from (3.4)
and elementary properties of the Nevanlinna m-function, it follows that

(3.5) T(r, Q’) <_ m(r, if/f) + m(r, r’/r) + 0(1).

Dividing in (3.5) by r and integrating from R to aR, (a > 1), we obtain
: T(r, Q’)

dr < dr -t- dr + 0(3.6)
r3 ra r

Since the zeros of ff" form an A-set, we may apply Lemma 1 to the first
integral on the right hand side of (3.6) and we find

T(r, Q’)
dr < re(r, r’/-) dr + 0

lo R
(3.7) r r
(From this point on we shall find it convenient to use K to denote a constant

independent of and r whose value may differ from one usage to the next.)
Now [5, pp. 62-63]

log+ T(r, ) dr.(3.8) .m(r, r’/r) dr < K
r r



494 SIMON HELLERSTEIN

From (3.7), (3.8) and the monotonicity of the characteristic function, we
deduce that for > 1,

R log R(3.9) T(R, Q’) <_ K log+ T((rR, -) --[ o.. 1

Since Q is entire, we have by well-known inequalities

(3.10) T(R, e’) <_ log+M(R, eQ) _< M(R, Q) <_ RM(R, Q’) -+- 0(1)
and therefore, making use of a well-known inequality [5, p. 24], for 0 < R < p,

log+ T(R, e’) <_ log+ M(R, Q’) + 0(log R)
(3.11)

< p + R T(p, Q’) + 0(log R).
-p-R

From the representation forf given by (2.5) together with (3.11) and (3.9),
it follows that

(3.12)

log+ T(R,f)

_
log+ T(R, -) + log+ T(R, e) + log+ R

< K(log+T(R,) - p+RIlog+T(ap,r)
1 0 log+

Puging o R, and resrieging so hag 1 < N e, (.12) implies gha

lo+ R, f)

KN ( 1)
{log+ T(R, ) + log+ T(eR, ) + R log+

From (2.4) and (3.13) we find that

(3.14)
log+ T(R, f) _<

( 1)
log+ n a3R, log+ R

+Rlog+R+ logo"

Taking log+ of the two sides of (3.14) and applying the elementary in-
equality

log+ (a + + 3") _< log+ {3 max (a, , 3")}

max {log+ a, log+ , log+ 3"} + log 3, (a,/, 3’ real),
we arrive at

log+ T(R, f) <_ max {(1 + e)log+ n(o’3R, 1/r) -t- log+ R,

(3.15) +log+ R + og R, 1/e log+ (2/log a)

log+ 1/(a- 1) -- log+ K -- log 3.
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To prove Theorem 1, we first note that fixing a e in (3.15) and recalling
that the zeros off(z) and zr(z) are the same, it follows that for/c >_ 3,

(3.16)
log+ T(R, f) _< log+ n(e3R, 1/r) + 0 (logk_l R)

_< log+ n(e3R, l/f) + O(logk_l R).

Further, by the First Fundamental Theorem and the monotonicity of the
n-function we also have

(3.17)
T(R,f) >_ N(R,) -t-0(

n r,
1) >_ dr +0(1

/e r

0(1).
\e j/

From (3.17) it follows easily that

lg+ n (R’ ) log+ T(R, f)3.18 lim sup < lim sup
R log R -, log R

(k 2,3, ...).

If/c _> 3, Theorem 1 now follows from (3.18) and (3.16).
For/c 2, we make use of (3.15) with a e to obtain

(3.19) limsuplog+ T(R,f)< max{ lg+n(R’-)
-, log R (1 -f- e)lim sup

log R

Since e > 0) is arbitrary, (3.18) together with (3.19) imply (1.3) which com-
pletes the proof of Theorem 1.

In order to prove Theorem 2 for k q- , we choose an R0 > 2 such that
n(Ro, 1/r) _> 3 and define

(3.20) o =(R) =(l_t_ Rlogn R,
(R_> R0).

Using the elementary inequalities" log (1 -+- x) > x/2 for 0 < x < 1 and
(1 -+- x)/ 1 > (x/3) 2-m > x/6 for 0 < x < 1, it follows from (3.20) that
for R > R0,

(3.21) log+ (2/log a) _< log (12R log n(R, 1/r) ),

and

(3.22) log+ 1/(a 1) _< log (6R log n(R, 1/r)).
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In addition, applying Lemma 3 to the function n(R, l./u) with a 1, we
have for R _> R0,

lg+ n (3R’ -rl)
(3.23)

< log+ n R, -+- log 2
log n R,

outside a set E of R values whose total measure is finite.
In view of (3.21), (3.22), and (3.23) we find from (3.15) that

log T(R, f) <_ max (1 -+- e) log+ n(R, 1/) + log R + log 2,

(3.24) log+ R + log R, (l/e) log (12R log n(R, l/v)

log (6R log n(R, 1/)) + log+ K}

(e > 0, R E).

(1.5), we easily deduce

(3.25) lim
log2 T R, f O.

R-. h(R)

This completes our proof.
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