CONTINOUSLY SPLITTABLE DISTRIBUTIONS IN HILBERT SPACE

BY
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1. Introduction

1.1. This paper is concerned with a class of weak distributions on Hilbert
space. Let H be a real Hilbert space. A weak distribution is a linear mapping
on H which takes each linear function (z, -) on H into a random variable
m(x) on a probability measure space. It is supposed that o-algebra of meas-
urable sets is the smallest such that all the m(x) are measurable. See [2],
[4] and [5].

The normal distribution 7 is characterized, up to a variance parameter c,
by the property that orthogonal vectors z and y correspond to stochastically
independent random variables n(x) and n(y). Then each n(x) is normally
distributed with variance c|| z ||* and mean zero. See [5, Theorem 3].

1.2. By a spectral measure & we mean a completely additive Boolean
algebra of commuting projections. We say that & splits a weak distribution
m if, for each x in H and each P in &, m(Px) and m((I — P)x) are stochastically
independent. Every spectral measure splits the normal distribution.

One way splittable distributions arise is from suitably smooth stochastic
processes with independent increments. For example let X,, 0 < ¢ < 1,
be such a process. Let H = L,(0,1). Let m(f) = [ f(¢t) dX;. Then m is
split by the natural spectral measure on Ly(0, 1).

1.3. A non-atomic spectral measure is one without any non-zero minimal
projections. Our main result says if & is a non-atomic spectral measure which
splits a weak distribution m, and if m is absolutely continuous with regard to
the normal distribution n, then m is equivalent to n and is actually a translate
of n by an element of H. Our proof makes use of two properties of the normal
distribution both due to I. E. Segal. They are the duality transform [4,
Theorem 3], and the ergodicity theorem [3, Theorem 1].

1.4. Let 21, ---, z, be orthogonal vectors in H. Let

ﬁo(tla"',tn)

be a bounded Baire function. Then f(z) = ¢(t1, -+, t.) with & =
(#1,2), -+ ta = (2., x) is called a tame function on H. It clearly corresponds
to a random variable with regard to the normal distribution. Given a trans-
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formation T on H, which is not necessarily linear, it is natural to ask whether
the map f(z) — f(T ') sends the normal distribution into one absolutely
continuous to it. A complete answer for linear 7' has been given by Segal
in [2, Theorem 3] and a sufficient condition in the non-linear case by Gross
[1, Theorem 4]. Our result lets us extend Segal’s result as follows:

We will say that a not necessarily linear transformation 7' on H is split by a
spectral measure § if Tx = PTPx + (I — P)T(I — P)x for each P in & and
each « in H. (When & is the set of projections of a maximal abelian ring,
this is essentially the class of transformations on L, of a measure space such
that (Tf)(z) = F(x, f(x)) for a suitable F(x, t).) As an immediate con-
sequence of our main result we have:

CoroLLARY. Let T be a not necessarily linear transformation on a real Hil-
bert space H which is split by a non-atomic spectral measure & on H. Suppose
that T maps the normal distribution into a distribution absolutely continuous to
it; then T is just the translation x — x -+ a for some fixed a in H.

2. The details

2.1. Let n be the normal distribution on the real Hilbert space H. Let
T[H] be the probability measure space on which the random variables n(x)
act. A random variable over I'[H] will be referred to as a random variable
over H. Since, if £ and y are orthogonal thenn(x) and n(y) are stochastically
independent; it follows that, for any projection P,

I'[H] = T'[PH] X T'[(I — P)H].

Drrinirion. Let P be a projection on H. Let f be a random variable
over H. Then P splits f additively (respectively multiplicatively) if
I = J1 + f2 (respectively f = fi - f2) where fi is a random variable over PH and
J21s a random variable over (I — P)H. We shall say that a spectral measure
& splits f if each P in € splits f. If f splits with respect to a non-atomic spectral
measure, we shall say that f splits continuously.

2.2. A random variable over H of the form a + n(x) with x in H will be
called an affine functional.

Prorosition 1. Let f be a square integrable random variable relative to the
normal distribution on a real Hilbert space H. If f is split additively by a
non-atomic spectral measure on H then f is an affine functional.

The proof depends on the following:

LemMa 1. Let & be a non-atomic spectral measure on a real Hilbert space H.
Let K be a second real Hilbert space and let t be in H ® K. If for each P in &
there are orthogonal projections @ and R on K so that

P®Q+(I—-—P)®Rlt=t,
thent = 0.
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Proof. Let T be the Hilbert-Schmidt transformation from H to K cor-
responding to ¢. Thatis (Tx,y) = ({,x ® y) forallzin H and y in K. Then

QTP + RT(I — P) = T and PT*Q + (I — P)T*R = T*

A computation shows that 7*7T commutes with each P in &. But 777 is of

trace-class. Since it commutes with a non-atomic spectral measure it must
be zero.

Proof of Proposition 1. By the duality transform [4, Theorem 3], f may be
considered as a symmetric tensor over H. Therefore f = Z:Lo f- where f, is
a symmetric tensor of rank r. Denoting the space of symmetric tensors over
H by S[H], we have for any projection P,

S[H] = S[PH] ® S[({ — P)H].
It follows readily that for P in & and r > 1, P splits f, in the sense that
P® P+ (I—-P)® - ® U~ P)fs =/
Hence by Lemma 1, f, = O for r > 2. This is equivalent to the stated result.

2.3. The map ¢ — —z on H induces an automorphism of the measurable
functions over H which preserves expectations. We denote this by f(z)
— f(—z) although strictly speaking f is not a function of the variable z in H
but of a variable in T'[H]. We say that f is even if f(z) = f(—=x) almost
everywhere.

Prorosirion 2. Suppose that f is a random variable over the real Hilbert
space H relative to the normal distribution. Suppose further that f is even and
non-negative. Suppose finally thatl f splils multiplicatively with regard to a non-
atomic spectral measure & on H. Then f is a constant.

Proof. For P in & suppose f = fi-f» where fi is a random variable over
PH and f, is a random variable over (I — P)H. Then

J(z) = f(=2) = fi( =Px) -fo( — (I — P)z.
And so

@) = (f(Pr)-fi( =Pe)} - {fo((I — P)x)-fo(—(I — P)a)}.

It follows that f(x) = f*(Uz) where U is the orthogonal operator
—P + I — P. Since & is non-atomic the set of all U cannot leave invariant
any subspace having finite positive dimension. Segal’s ergodicity theorem,
(Theorem 1 of [3]) says that any square integrable random variable invariant
under such a set must be constant. The requirement of square integrability
is not essential since g is invariant if and only if all (g) are where ¢ ranges over
the bounded continuous functions. We conclude that f* is constant and
hence f is also.
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24. CororLraRY 1. Let f be a random variable over a real Hilbert space H
relative to the normal distribulion. Suppose that f splits additively with regard
to a non-atomac spectral measure &.  We have the following:

(a) If f is even then f is constant.

(b) The random variable f is a constant plus an odd-random variable.

(¢) If the non-negative part of f is square integrable, then f is an affine func-

tional.

Proof. Part (a) follows on applying Proposition 2 to exp (f). Part (b)
follows immediately from (a). To see part (¢) we have f = N + ¢ with A
constant and ¢ is an odd random variable. Denoting the non-negative part
of h by k" we have g(z) = g(z)* — g(—x)*. Now g7 is square integrable.
It follows that f itself is square integrable. The result follows from Proposi-
tion 1.

2.6. We refer to a measurable subset of I'[H] as an event. An event A
splits if the characteristic function x(A) splits multiplicatively.

ProrositioN 3. Let A be an event over a real Hilbert space H relative to the
normal distribution. Suppose A splits relative to a non-atomic spectral measure
&. Then A has probability 0 or 1.

Proof. Suppose prob (A) < 1. Let —A denote the event with charac-
teristic function x(A)(—=x). Then A n — A is the event with characteristic
function x(A4)-x(—A4). It has probability less than 1. Since x(A4)-x(—A4)
is even and splits relative to &, we have prob (4 n — A) = 0 by Proposition 2.
It follows that prob (A4) + prob (—A4) < 1. But prob (—A4) = prob (4).
Therefore prob (4) < 4. Wehave shown that if 4 is a continuously splittable
event then prob (A4) = 1 or prob (4) < %.

Tor P in & let A(P) denote the event over PH determined by 4. If
Py, Py --- are orthogonal projections in & and P = Y P, it is easy to see
that

r[PH] = ] r[p: H).

Hence, if for each ¢, prob (A(P;)) = 1, then prob (A(P)) = 1. It follows
that we can pick a maximal P in & such that prob (A(P)) = 1. By maxi-
mality prob (A(P’)) < % for any P’ orthogonal to P.

Suppose P = [. Since & is non-atomie, given k, we can write

T—P=Qi+t - +Q
with the @; in & Then

prob (A(I — P)) = prob (A(Q:)) --- prob (A(Qx)) < ()"
Therefore prob (A(I — P)) = 0 and
prob (4) = prob (A(P))-prob (A(I — P)) = 0.
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2.6. ProrositioN 4. Let H be a real Hilbert space. Let f be a non-negative
random variable relative to the mormal distribution on H. Suppose f splits
multiplicatively relative to a non-atomic spectral measure & on H. Suppose
Sfurther that the non-negative part of log (f) is square integrable. Then f is a
constant times the exponential of a continuous linear functional on H.

Proof. The event A = {x|f(z) > 0} splits continuously. Hence by
Proposition 3 either f = 0 or f is positive. In the latter case part (¢) of
Corollary 1 applies to log (f).

2.7. 'THEOREM. Let m be a weak distribution over a real Hilbert space H
which splits relative to a non-atomic spectral measure and is absolutely continuous
with regard to the normal distribution. Then m is the translate of the normal
distribution by a vector in H.

Proof. Let f be the Radon-Nikodym derivative of m relative to n. Then
f splits multiplicatively. By Proposition 3, f is positive; consequently the
distributions are equivalent. Now, denoting the non-negative part of log (¢)
by [log (¢)]*, g — [log (¢)] maps the non-negative functions in I, to functions
in Ly. Consequently [log (f)]* is square integrable and the result follows
from Proposition 4.
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