
THE COHOMOLOGY OF STABLE TWO STAGE
POSTNIKOV SYSTEMS

BY

LARRY SMITH

In this note we will study the cohomology algebra of a certain class of two
stage Postnikov system. This question was considered originally in [4] [5] [6]
[7]. We begin with a few definitions.

DEFINITION. By a generalized Eilenberg-MacLane space (GEM) we shall
mean a Cartesian product of K (Tr, n) spaces where is a finitely generated
abelian group and n

_
i.

DEFINITION. A two stage Postinikov system is a diagram

F= F

B B,
where

() F and B are GEM’s.

(ii) F E P
Bis the path space fibration over B. B is of course

a simply connected GEM.
(iii) F-E- B is the fibre space induced from F-E-Bby the map

e :B--B.
Now it is well known that B and B have H-space structures, unique up to

homotopy, derived from the product in r. (In fact well chosen models, are
actually topological abelian groups.)

DEFINITION. ; is called stable if B and B have H-space structures, multi-
plicatively homotopy equivalent to the standard ones, in which e B -- B is
a map of H-spaces.

Associated with a two stage Postnikov system we have an Eilenberg-Moore
spectral sequence (see [12]) {E, d} such that

Er == H*(E; k), E Tor,.(.;) (H*(B;/),/)
where k is a field.
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This spectral sequence is part of an extensive research conducted by Ellen-
berg and Moore. Their work is just now beginning to appear in Commentarii
Mathematici Helvetici and would of course serve as an encyclopedic reference
for the properties of this spectral sequence used in our work.
Our study of stable two stage Postnikov systems centers around the result

established in 2 and 4.
THEOREM. If 8 is a stable two stage Postnikov system, k Z p a prime, and

B contains no factors of the form K(Z, 1), K(Z 1), r > 1, when p 2,
then E
Our methods actually allow us to compute E. Further we are able to

determine the structure of H*(E; Z) as an algebra over Z.

We will begin by developing a few simple techniques for computing
Torr (A, k) when A and F are Hopf algebras over a field k. These will prove
useful in the sequel. We refer to [8] for the basic definitions.

All algebras will be assumed graded, connected, commutative and locally
finite. (R) always means (R) k

THEOREM 1.1. Suppose that F is an algebra, A c F a sub-algebra with F a
projective A-module. Let F A and suppose given modules Aa.r C); then
there exists a spectral sequence Er dr} such that

(i) Er Torr (A, C)
(ii) E’q Tor (A, Tor (k, C) ).

Proof. See [3, p. 349].

We wish to employ this spectral sequence when F is a Hopf algebra and .4 is
a sub-Hopf algebra of F. To do this we shall need

THEOREM 1.2 (Milnor-Moore). If F is a Hopf algebra, A F a sub-Hopf
algebra and F A then F --- A (R) as a left A-module and a right -co-
module.

Proof. See [8, Prop. 4.4].

COROLLARY 1.3. If is a Hopf algebra and h F is a sub-Hopf algebra then
F is a free A-module.

DEFINITION. An ideal I F is called a Hopf ideal if

(I) r(R)I+I(R)r

where F - F (R) F is the co-product in F.

If I is a Hopf ideal then ]?/I is a Hopf algebra with the induced co-product.

PnOeOSTON 1.4. If F is a co-commutative Hopf algebra and I F is a Hopf
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ideal then there exists a, unique sub-Hopf algebra A c F so that

X.r

Proof. Let gt F/I. Then there is a natural epimorphism of Hopf alge-
bras F - It with kernel I. Passing to duals we obtain a monomorphism

"gt -F
Set A* * 2"
Passing to duals again and identifying F and 2 with their double duals we

obtain a sub-Hopf algebra A** c F Set A A**.
Now by Theorem 1.2, F* h* * as a A*-comodule and an [t*-module.

* f* F* * *The map - is given by y -- 1 (R) y Passing to duals we obtain
F A (R) t as a A-module and F -- gt is given by

x(R) y---->xy if degx 0

--0 if degx > 0;

thusker {xi.yieFI
Uniqueness follows from A* F*
Notation. Let F and A be co-commutative Hopf algebras, 1" -- A a map

of Hopf algebras. Then ker q c F is a Hopf ideal and we can apply Proposi-
tion 1.4 to obtain a sub-Hopf algebra generating ker . We will denote this
sub-Hopf algebra by sub-ker

PROPOSITION 1.5. Suppose that F, A are co-commutative Hopf algebras and
F - A is a map of Hopf algebras. Let A sub-ker q; then as Hopfalgebras

Torr (A,/) --- A// (R) Tor (/,/).

Proof. Since A is a sub-Hopf algebra of I’ it follows by Corollary 1.3 that
F is a free A-module. Thus by Theorem 1.1 we have a spectral sequence
/Er, drl such that

(i)
(ii)

Er Tort (A,/c)
E Tora (A, Tor (/,/)

whereat FA imA.
Now im A is a sub-Hopf algebra and therefore by Corollary 1.3, A is a

free im -module. Thus

E’* A (R)a Tor (/,/c), E"* 0 p 0,

and so the edge homomorphism gives an isomorphism

A (R)a Torx (/,/) --- Tort (A, k).

Finally observe that Tor (/c, k) is a trivial t-module and hence

A (R) Tor (/c, lc) ----- A//2 (R) Tor (/,/c) -- A (R) Tor k, k).
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2. Two stage Postnikov systems. Z-coefficients
For convenience we recall a few things from the introduction. Through-

out this section will be a fixed stable two stage Postnikov system

F

B ’ B,

We will leg {E, d} denoge igs Eilenberg-Moore speegral sequence and assume
ghag ghe ground field k is Z. All eohomology will be aken wigh Z as eoe-
eiengs and we leave i ou of our nogaion. inally we assume B contains no
faegors of ghe form K(Z, 1) or K(Z, 1), r > 1.

PROPOSITION 2.1. E H*(B) im * @ Toru. , (Z, Z).

Proof. Since is stable * H*(B) H*(B) is a map of Hopf algebras.
Further by the results of Serre, H*(B) and H*(B) are co-commutative.
Now apply the results of 1.
POPOSTO 2.2. E E.

Proof. By the results of Serre, H*(B) P[V], i.e. a polynomial algebra
on a certain vector space V. Now sub-ker * P[V]. It therefore follows
by Borel’s structure theorem for Hopf algebras over Z [8, Theorem 7.11] that

* P[x ..x. ...].sub-ker is also a polynomial algebra, say sub-ker
Therefore using a Koszul complex [3, p. 151] or [12, 2.1 and 2.2] we see

that

Tor., , (Z, Z) E[u, u,, ...] deg u (-1, deg x).

Thus E H*(B) im * @ E[u, u,, ...] as an algebra. Hence as an
algebra E is generated by E’* and E’*. But recall that

--pr,d E’* =0

if p 0, 1 and r 2. Therefore d 0,r 2, and E E.
Coaoxav 2.3. Ker (p*" H*(B) H*(E)} (m).

Proof. Recall that we have a commutative diagram

H*(B)
o EO., H*(E).

T
p*
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Since clearly 0 H*(B) --> H*(B)//im * (R) E[ul, ...] has kernel (im *)
the result follows. El
The above result for p 2 is deceptively easy. We turn next to a consider-

ation of the situation when p is an odd prime. We will return to the case
p 2 in 5 to study the structure of H*(E) as an algebra and as an algebra
over a(2).

3. Z-coefficients, p an odd prime. Preliminaries

One of the most basic of all stable two stage Postnikov systems is the diagram

K(Z, n- 1) K(Z, n- 1)

K(Z, n 1) -- L(Z, n)

K(Z, n)

where L(Z, n) is the path space on K(Z, n). More directly we could con-
sider this system as simply the fibration

K(Z, n 1) - L(Z, n) K(Z,, n).

Throughout this section p is an odd prime. The necessary modifications to
accommodate the case p 2 are left to the reader. We will denote the rood p
Eilenberg-Moore spectral sequence of the above system by {/, 3}. In this
section we will determine completely the behavior of the spectral sequence
{/’,, 3,}. In the next section we will see how this can be used to study the
case of an arbitrary stable two stage Postnikov system.
We begin by recalling the results of Cartan [2] on H*(Z, n, Z). We de-

note by a(p) the Steenrod algebra rood p [11]. By a monomial in a(p) we
mean an element ( see [11]

where e 0, 1, and s are positive integers. We will write

op11 pt p, I (Co, sl, c, s,

DEFINITION. A monomial P is called admissible if

DEFINITION.
e(P) by

If P is admissible we define the excess of pZ, denoted by

e(P) 2(s psi4 c) -t- _,’-o c,

If we write P op,Ip, andP is admissible then it is easy to see that

(i) e(PI) c0+2s-degP.
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We also have

(ii) e(P’) +degP1 2psl+eo.

THEOREM 3.1 (Cartan). H*(Zv n, Z,) . S[{/Pt.}] where O, 1 and
P" is admissible with e(P) < n. D

Here S[xl, denotes the free commutative algebra on generators x,
The above isomorphism is an isomorphism of Hopf algebras over a(p).

Let a* QH*(Z n, Z) PH*(Z n 1, Z) (see [1], [2]) denote the
cohomology suspension of the fibration

K(Z,n- 1) L(Zv,n) K(Z,n).

COROLLARY 3.2. ker a* is the vector space spanned by P*, where
e( I) n 1 in QH*(Z n, Z).

Proof. Merely observe that

z*(Pt,) P*(t.)
and apply Cartan’s Theorem.

LEMMA 3.3. P’P is admissible and e(P’P) n 1 iffP is admissible,
e(P) g n- l and 2s= degP+n- 1.

Proof. This follows by manipulating with the formula

e(P’P) 2s deg P.
LEMMA 3.4. The correspondence

where J is admissible and
(i) deg (PZt) is odd
(ii) 2s degP+n- 1

defines a vector space isomorphism between the indecomposable elements of odd
degree in H*(Zv n, Zv) and ker z*.

Proof. Follows from Theorem 3.1, Corollary 3.2 and Lemma 3.3.

DNWm. If V is a graded vector space then sV is the graded vector
space defined by (sV) V+. If x, x, is a vector space base for
V then sx, is the corresponding basis for sV.

DEFINITION.

=0 if i

(V-)= V if i

0 if i

(Ifp 2setV+ V,V- (0).)

If V is a graded vector space then we define V+ and V- by

(V+) V; if i is even

is odd

is odd

is even.
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DEFINITION. If V is a graded vector space then

*(v) r[v+] (R) E[V-]

T(V) P[V+]/(V+) p (R) E[V-].

DEFINITION. If V is a graded vector space, we define the Poincard series
of V to be the formal power series

P(V, t) -0 (dim V)t

DEFINITION. If W is a bigraded vector space, we define the Poincard series
of W to be the formal power series

P(W, t) :=0 c, , c, +--n dim W’i’’.

If V is a graded vector space we recall that

TorsEv Zp Z)

_
S*[sV]

as a Hopf algebra.
If W is another vector spacef" V -- W a linear map then there is an induced

map
f" [v]- s[w]

and hence an induced map

f* TorsEvl (Z, Z) -- Torswl (Zv, Zv)

which is given by

* g- s*[v]
where (sf)(sv) sf(v) and requiring sf to be a map of algebras with divided
powers, i.e. sf(’,,(sv) ,,(sf(v) for all v e V+.

sf P t,,} ], e O, 1, e(P) < n, as a Hopf algebra.

Proof. Apply Cartan’s Theorem and the above remarks.
]-r--l+r, $If z /7’* then d,(x) e 0, r > 2 and hence x determines an

2’*. / -00element x= e Since O, q > O, E; Z, we see that if x has
positive complementary degree x determines a unique element, possibly zero,

]x[ e F-H*(Z, n 1, Z) H*(Z n 1, Z).

In [12] we showed that
*(pe.) ]s P

where a* is the cohomology suspension. (See also [1] for a very similar situ-
ation.) Thus we see

LEMA 3.6. The elements in f_,-l,, that are boundaries under some dr are all
sP t,, where e( I) n 1.linear combinations of elements of the form

Proof. Apply Corollary 3.2 and the observation above concerning the co-
homology suspension. [:3
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Before continuing we make the important observation that Ir, rl is a
spectral sequence of Hopf algebras, i.e. is a differential Hopf algebra with
differential and /1 --- (, r) as a Hopf algebra. This can be seen
either by diagram chasing or direct from the definition of I, 1 in [12].

LEMMA 3.7 ’ T[{s P }] where O, 1; e(P) < n .
Proof. We know by Lemma 3.6 that

’* {vector space spanned by all elements of

the form sP,, where e 0,1, e(I) < n- el
and hence by Borel’s structure theorem for Hopf algebras over Z and Lemma
3.5 we see that

f. ::) T[{ sP,,} ], e 0, 1; e(P) < n .
The lemma will be complete when we show that

P( T[{sP}], t) P(H*(Z n 1, Z), t).

To see this we recall that by Cartan’s Theorem

H*(Z, n 1, Z,)
_

S[{tP_I}], 0, 1;e(P) < n 1

as a Hopf algebra. If we now filter H*(Z, n 1, Z) by the primitive fil-
tration [8] and denote the associated graded by G we see

G S*[{ePJn_}].
We now recall that for any x H*(Z, n 1, Z)+ then

x Prx,
and so if we define a correspondence

(fepj_) o::;
and more generally

0

we en define mp

2r deg x.

2t e + deg J + n 1

2t deg 0(,.-(#’P_,)

S*({P_I} T[{ seP}]
t O, 1 t O, 1

e(P") < n- 1 e(P) < n- t

by

p,re,_ .----o sBpe

,,(BP_) ’-; sO%,(’P_)
and requiring that w be a map of algebras, where of course we have to apply
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Lemma 3.3 to show that ptpJ is admissible of excess <n. It is straight-
forward to verify that 0 is an isomorphism. Hence

P(T[[sPI,}],t) P(G,t) P(H*(Z ,n- 1;Z),t).

and hence the lemma is established.

LEMMA 3.8. IfP is admissible and does not begin in a and
(i) degP 2t( p 1)
(ii) e(P) 2t

then P pt.

and

Write P ptlpJ; then we have

e(P+/-) + deg P) 2ptl

e(P -t- deg(P) 2t + 2t( p 1) 2pt.

Therefore tl and from

2t 2t- deg PJ= e(P) 2t

we see deg P 0 and hence P 1.

LEMMA 3.9. Suppose that n 2t - 1 and fi-,r 3r} is the Eilenberg-Moore
spectral sequence of

K(Z, n 1) - L(Z, n) K(Z, n)

(i.e. as above), then
(i) dr(’!(s.+) O,r < p 1
(ii) 3_(/(s2+1)) ksP’e2,+ k 0 eZ
Proof. If we apply the argument of [1, Theorem 4.1] to the spectral se-

quence {/’r, 3r} we see that cr 0, r < p 1, and so (i) follows.
To see (ii) we note that be Lemma 3.7 ,(s+l) cannot survive to E and

by the argument of [1, Theorem 4.1] it can never be a boundary under any
If 3_(, st+) 0 then since 3r(’ s+), r _> p, would vanish for dimen-
sional reasons we would contradict the fact that , st+ does not survive
to E.

Therefore 3_(,(s+1) 0.-
Now note

deg (_l(/(s+)) 1, 2tp + 2)

(-1,2t(p- 1) + 1 + 2t+ 1).

Therefore applying Lemma 3.6 we see that 3_(-(s.+) is a linear combina-
tion of elements of the form sP t+ where

(i) e (P) 2t
(ii) degP 2t(p- 1).
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But by Lemma 3.8 the only admissible monomial satisfying this condition
is fipt. Therefore

THEOREM 3.10.
fibration

Let r dr} be the Eilenberg-Moore spectral sequence of the

K(Z, n 1) - L(Z, n) -- K(Z, n)

(as it has been throughout this section); then
(i) dr-0, r p- 1
(ii) d-I is determined by

sP ,n))dp_l(’p(
g J)sP P , X OeZand2t 1 degJn,

(iii)
and requiring that it be a derivation of algebras
E E.

Proof.
to the present case.
To prove (ii) let

We obtain (i) by applying the argument of [1, Theorem 4.1J

and choose a map

such that

degPJ+n 2t-+- 1

g K(Z, n) -- K(Z, 2t -- 1)

g*( t2 t+l)
We then have a diagram

K(Z, n 1)
g

K(Z 2t)

L(Z, n)
Pg

L(Z, 2t q- 1)

K(Z,n)
g

K(Z,2t q- 1).
Denote the Eilenberg-Moore spectral sequence of the right hand fibration by
{/r, ,}. By naturality of the Eilenberg-Moore spectral sequence we have
map of spectral sequences

Then

and so applying Lemma 3.9 at the crucial point we see

sP

_
g*v(st+

g*- V(st+)
g*(XsP +)
hsPtP
(by remark preceding Lemma 3.5).
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If we now recall that a complex of the form F[u] @ E[v] with 0(u) v is a-
cyclic we see that/ T[{ sP,,} ], c O, 1; e(P) < n and applying
Lemma 3.7 we see that/! =/.

It is of course very likely that the constant ), above is actually d=l but we
see no way to prove this. Actually we have been somewhat sloppy, the con-
stant ) depends on PJ. and we have failed to indicate this dependence, but
this is of no consequence.
We will close this section with some remarks on H*(, n, Z).

Q2t+IH*( tx *(PROPOSITION 3.11. If X e , n, Z) then P 0 e QH r, n, Z).

Proof. This follows from [2, Expose! 16, 2, Theorem 1].

Q2t+Ig*( Qt+H*(COROLLARY 3.12. The map p , n, Z) , n, Z)
by x -- Px is a monomorphism of vector spaces. []

It is interesting to note that Rothenberg-Steenrod (unpublished) have re-
cently obtained new proofs of Cartan’s theorems using the "Milnor-Moore"
spectral sequence derived from Milnor’s construction of a classifying space for
a topological group.

4. Two stage Postnikov systems. Z-coefficients
Throughout this section will be a fixed sable two stage Postnikov system

E

B B,.

All eohomology will be gaken wigh Z-coefficiengs p an odd prime (ghe necessary
modificagions go aecomodage ghe ease p 2 will be left go ghe reader). The
rood p Eilenberg-Moore specgral sequence of g will be denoted by {E,

PROPOSITION 4:.1. E H*(B) // , (R) Toru-k , (Z,

Proof. Apply ghe magerial of 1 go ghe ease ag hand.

LEMMA 4.2. Suppose given a diagram of spaces;
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then we can fill it in to a commutative diagram

XXnY X’ TwY, 1
X,,// B’

Proof. Direct from the definitions.,
Let x e Q sub-ker, and choose a map

B. ---> K(Z, deg xi) K

representing x. Consider the diagram

K

B X PK PK

B rq’> K.

One readily sees that (i’io )*" B*(K) B*(B) is the zero map. Since
K K(Z,, deg x) it follows that o, B - K is null homotopic. Hence
B K PK has the same homotopy type as B 2K.

Let {/r, dr} denote the Eilenberg-Moore spectral sequence of the above
diagram. The Eilenberg-Moore spectral sequence of the fibration

K- PK K

will be denoted by {/r, r}. We then have

PROPOSITION 4.3. ,. H*(B) (R) ,. and d,. 1 @ 3,.. [El

Applying Lemma 4.2 we obtain a diagram

$
")B K

B )B

By the naturality of the Eilenberg-Moore spectral sequence we obtain
map of spectral sequences

{/L &} -,
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Suppose now that we choose a basis xl, x,,, for Q sub-ker e

LEMMA 4.4. ptlxl Pt’*x,, 2t - 1 deg xi, are linearly in-
dependent elements of Q sub-ker

Proof. By applying Theorem 1.2 we see that x, x, are indecom-
posable in H*(B). Hence by Proposition 3.11, Ptxi is an indecomposable
element of H*(B) and since

pr x P x) PO 0

it follows that Px ker *. Since Px is also indecomposable it follows
that po *.sub-ker The result now follows by Corollary 3.12. [::]

Thus we can choose a basis

{x ,...
for Q sub-ker e and thus we have

LEMMA 4.5. Sub-ker e* S[{xi} u {Ptxi} t {y}].
,

Proof. Clearly it suffices to show that sub-ker e is a free commutative
algebra. Recall that sub-ker e is a sub-Hopf algebra of H*(By). By
Cartan’s Theorem H*(B,) is a free commutative algebra. Hence by Borel’s
structure theorem for Hopf algebras over Z, [8, Theorem 7.11] we have
sub-ker e is a free commutative algebra. [::]

COROLLARY 4.6.

E H*(B) * (R) F[sx ](R) E[sP ixl, ...] (R) E[syl, ...].

Proof. Since deg y is always even this follows from Proposition 4.1 and
Lemma 4.5.

THEOREM 4.7. The differentials d satisfy
(i) d=O, 2<_s<p-1
(ii) d_(%,(sx)) )sP’x, 2t + 1 deg x,) 0Z.
Proof. Let d, r >_ 2, be the first non-zero differential and let z e E be an

element of minimal degree with d(z) 0. Then z is indecomposable. By
Corollary 4.6 the indecomposable elements of E have filtration degree 0, -1
or --pq. Since r >_ 2 we can assume that the filtration degree of z is --pq.
Thus without loss of generality we can assume that z (sx).
Now consider the map {g*} {/, } -- {E, d}. We have

and hence ,
e (,(sx)) ,(s,+).

Now applying Theorem 3.10 we see that
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d((sx) g*.(s,+)
=0 if2_r<p- 1.

Since

$
g XsP 2ti+1

the result is established.

THEOaEM4.8. E H*(B) * @ T[{sx, ...} {y, ...}]andhence
E E.

Proof. By Theorem 4.7 E E_ and

E, H[H*(B)* F[sx E[sP,... x,.. ]@E[sy,..]]

where

and so

E H*(B) * @ P[sx ,...]/(sx, ...) E[sy ,...] U[r[{sx}]

E[{P x }]]
Now recalling that

I[’sx] (R) E[ptx]

is cyclic nd that

P[sxl .]/(sx, (R) E[syl .’.] T[{sx, ...} o {y, ...}],

we see that

EvH*(B)@*(R) T[{sz, ...} o y ,..}].

Therefore as an algebra, Ev is generated by E* and E1’*. Since

r+,., 0, r :> p, 0, 1d. E* --> ,
we see that dr 0, r _>p, on a set of algebra generates for E. Since dr is
derivation it follows that dr 0, r _> p and hence E E. [21

If the reader has been making the necessary modifications to uccomodte the
case p 2 then yet another, although unusually complicated proof of Proposi-
tion 2.2 is obtained.

COnOLLAaY 4.9. ker p* --- (m .).

Proof. As in Corollary 2.3.

5. The algebra structure

As in the last few sections 8 will denote fixed stable two stage Postnikov
system
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All cohomol0gy will be taken with Z-coefficients, p a prime (p 2 is not
excluded). The rood p Eilenberg-Moore spectral sequence of 8 is denoted by
{E,
In the last section we established that there is a filtration {F-nH*(E)}

with associated graded object, denoted by 9H*(E), given by

9H*(E) ---as Hopf algebras.
To determine the structure of H*(E) we recall come results of [11, Chapter

1]. Consider the maps

given by
iS,:B XEr-->B XBX E

iS(x, y) (x, p(y), y), (x, y) (x, (y), y)

Note that E c B E and that i5 E E. Therefore we have defined
a difference homomorphism [11]

(i5 )* H*(B X B X E) --> H*(B X E, E).

Consider the diagram
* $

H*(B X B E)
(P- ) )H*(B X E,E) H*(E).

PROPOSITION 5.1.

F-1H*(E) {xeH*(E) yH*(B X B X E)

with (p ) *(y) (x)}.

Proof. See [12, Theorem 1.3.3].

Note that if B . we then obtain the Eilenberg-Moore spectral sequence
of the fibration F -- E -- B and

COROLLARY 5.2. F-1H*(F) im{s*: H*(B) H*(F)} where s* is
the cohomology suspension. []

PROPOSITION 5.3. There exist elements xl yl Q sub-ker * such
that

H*(E) --. H*(B)/ker p* (R) T[{sx ...} t {sy ...}].

Proof. This follows from Theorem 4.8 and Corollary 4.9.
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For simplicity in the sequel we will write R H*(B)/ker p*.
Choose elements ul, vl, e F-1H*(E) to represent sxl, syl,

respectively.

PROPOSITION 5.4. i*(u) * *a (X) i*(v) a (Yi)

Proof. Consider the commutative diagram

* H*H*(B X B, X E,)
(#" q’)

H*(B X E,,E) (E)

-*
H*H*(B X E,) P H*(E,, F) (F)

where the vertiaal maps are induced by inclusion. Now it is clear that

(/5, ,7,)*(1 X xi X 1) 8(u), (15, ,)*(1 X y X 1) (v)

since the bottom line determines the cohomology suspensio in F - E, - Bcommutativity of the diagram yields the result.
Let M im {s* Q sub-ker * --> H*(F)} and let S H*(E) be the sub-

a(p)-lgebra generated by M.

PROPOSITION 5.5. The sequence of Hopf algebras

*
R P H*(E) S

has the following properties:
(i) p* is one to one
(ii) i* is onto hence S im i*
(iii) ker i* [.H*(E).
Proof. Both (i) and (ii) are trivial so we turn to (iii). To prove (iii),

filter H*(E) by F-’H*(E) as in Theorem 4.8.
Filter H*(F) by the filtration determined by the Eilenberg-Moore spectral

sequence of F- E,-B. Then this determines filtration on A H*(F).
It is not too difficult to see that i*" H*(E) -- A H*(F) is a filtration-
preserving map.

Passing to associated gradeds we have

9A T[{ sxx ...} u sy ..’}]

9H*(E) R @ T[{sx ...} u {sy ...}]
and

9i*’R (R) T--T by r(R) t--0, degr > 0

---->rt, degr 0

Since H*(E) is a free R-module it follows that

ker {i* H*(E) ----> S} {rt} r R and deg r > 0}. []
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DEFINITION. J_ sequence of commutative algebras

h-
"f- - Ai Ai+

is called co-exact at A if

ker fi (im f_) f_ (h_) A
COROLLARY 5.6. The sequence of Hopf algebras

i*
Z, R p- H*(E) S -- Zis co-exact; the maps p* and i* being maps of a(p )-algebras.

PROPOSITION 5.7. (i) As an algebra, S S[L] where

* *(L- Qim{a*" Qsub-ker --H F)}.

(ii) As an algebra over a(p), S U(M) where

* *(M im{a*" Qsub-ker --H F)}.

Proof. Let us begin by proving (ii). By Cartan’s results we have
H*(F) V(Z) where X im {a* QH*(B) -->H*(F)}.

Since Q sub-ker q* c:: QH*(B), it follows that M X. Hence it follows
that S U(M).
To prove (i) note that by (ii) S U(M) U(X) is a sub-Hopf algebra of

U(X). Since U(X) is a free commutative algebra on QX by the results of
Cartan, Borel’s structure theorem for Hopf algebras over Z yields (i).
(If p 2 we merely substitute the results of Serre [9] for those of Cartan.) El

*- *If we define k Qsub-kerq -Qsub-ker byk(x) Px, 2t- 1 degx,
it is not too difficult to see that

(dim L) dim (Q sub-ker *) dim (kQ sub-ker *)
dim (kQ sub-ker *-)(

THEOREM 5.7. As an algebra,

H*(E) R (R) S.

Proof. Consider the co-exact sequence

p* .( i*
Z --- R H E) S--- Z.

By Proposition 5.6, S -- S[L]. Therefore we can construct a map

A -- H*(E)such that i*. 1 S -- S.
Therefore the result follows.
Following MacLane we say that

Z R H*(E) A- Z
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is "cleft" as a sequence of algebras.

Warning. S U(M) but M need not be a free unstable module. It is
therefore not true in general that the sequence

p* ,( i*
Z--RH E) A--Z,

is a cleft a(p) extension. In fact simple examples show that this extension
is not always cleft over a(p).

THEOREM 5.8. The sequence

i*
Z -- R H*(E) U(M) Z

is a co-exact sequence of ((p )-algebras that splits as a sequence of algebras. []

The study of the above extension when p 2 "reduces" to the extension
problem of [6]. To make this precise we will show that

THEOREM 5.9. A8 an algebra over a(p)

H*(E) U(F-).
Proof. We remind the reader that U is defined in [6, 3]. It was also

shown in [12, 1.4] that F-H*(E) is an a(p)-submodule of H*(E).
To prove this result we proceed as follows. In the notation of Proposition

5.3 choose elements u, ..., v, F-1H*(E) to represent sx, ...,
sy. 9H*(E).

Since F-1 H*(E) is a map of ((p)-modules the universal properties of
the algebra U(F-) assure that the inclusion induces a map

U(F-) ----> H*(E)
of a(p)-algebras.
We contend that is an isomorphism. For convenience in what follows

we will denote by , . the elements corresponding to u, v. when thought of
as elements of U(F-).
Now 1, , , are an R-basis for F-. This follows from the fact

that they correspond to 1, sx, sy, in 9H*(E) which are an R-basis
for E * @ E-’*. Therefore we have

(i) the monomials 1, u , 1 Vmuv. v where 0 , rt p and, 0 1 are an R-basis for H*(E), for they correspond to the monomials
sx sx: syl sy. that are an R-basis for H*(E);

-r -61 -m(ii) the monomials 1, u u, vl v where 0 rt < p and e 0, 1
are an R-generating set for U,(F-). This follows directly from the definition
of U(F-).
Now since U(F-) ---> H*(E) is a map of algebras we have

Uil Uin Yi Vm nil Uin Vj Vim
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and hence i" takes an R-generating set in a one-one fashion to an R-basis.
Therefore is an isomorphism.
Thus we see that a knowledge of the a(p)-module structure of F-1H*(E)

will determine the a( p )-algebra structure of H*(E). Determining this a(p)-
structure seems to be a hard problem.

Acknowledgment. Theorem 5.7 was first proved in the case p 2 by
Kristensen in [5] using his theory of cohomology operations in the Serre
spectral sequence of a fibre space. Massey and Peterson [7] have obtained
neat proof based on [6]. Theorem 5.9 for p 2, also follows from the results
of [6] and we assume that this will appear in [7].

Appendix. Rational coefficients
The results of 1 can be used to yield some simple results on multiplicative

fibre maps when the ground field is the rational numbers Q. In this section
all cohomology is taken with Q as coefficients.

THEOREM. If
F..._> E P-2- B

is a multiplicative fibre map and H*(B is co-commutative then

H*(F)
_

Wor.)(Q, H*(E)
as an algebra.

Proof. Consider the Eilenberg-Moore spectral sequence of . Using the
results of 1 we see that

E Tor,()(Q, H*(E)) H*(E) p* (R) Tor,b. , (Q, Q).

Now sub-ker p* H*(B) is a sub-Hopf algebra. Therefore by Borel’s
structure theorem for Hopf algebras over Q we see that sub-ker p* S[V].
It follows that

Torsub-ke * (Q, Q) SlaV]
and

E H*(E) p* (R) S[sV].

Since sV c E’* we see that E’* and E1’* generate E as an algebra.
Hence E E.

Since E is a free commutative algebra and H*(E) is commutative with
9H*(E) E it follows that H*(E) E as an algebra.
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