A TOPOLOGICAL H-COBORDISM THEOREM FOR n > 5

BY
E. H. CoNNELL!

An H-cobordism is a compact manifold M with boundary components N
and N which are deformation retracts of M. If M = M"isa simply connected
differentiable manifold and n > 6, then M is diffeomorphic to N X I [11].
If M is a combinatorial manifold and n > 5, then M — N is piecewise-linearly
homeomorphic to N X [0, 1) (p. 251 of [14]). In this paper it will be shown
that if M is a topological n-manifold and n > 5, then M — N is homeomorphic
toN X [0,1). Thisisdone by a type of topological engulfirig (see Lemma 1).

A stronger form of Lemma 1 has independently (and previously) been
obtained by M. H. A. Newman [1]. A corollary to these procedures is that if
Y is a closed topological manifold which is a homotopy sphere, and n > 5,
then Y is homeomorphic to 8”. The reader is assumed familiar with the proof
of the combinatorial engulfing lemma [2], [5], [8].

Notation. Suppose M is a metric space with the distance between 2 and
y € M denoted by d(z,y). If Y < M is any subset of M, d(z, Y) will denote
the distance from z to Y, d(Y) will denote the diameter of Y, and for any
e>0,V(Y, M, ¢) will denote the set {ze N : d(2, Y) < ¢}. If K is a finite
complex, the statement that f : K — R" is piecewise-linear (p.w.l.) means
3 a subdivision K; of K such that any simplex ¢ of K; is mapped linearly into
R™ by f. If M is a topological manifold, the interior and boundary of M are
denoted by Int M and M respectively. D" denotes the closed n-cell in R",

D" = {(x, %, - 2s): =1 <2;,<1,2=1,2, -+ n}.

Hypothesis I. M = M" is a compact, connected topological n-manifold
(n > 5) with boundary consisting of two components, d M = N u N; =M, N)
=qg{M,N) =0fori=1,2,---,n — 3;

g:NxX[0,11-M~N and §g:NX[0,1]>M — N

are topological embeddings with g(x, 0) = z for all ze¢ N and §(y, 0) = y
for all ye N. (Note: If M isany topological manifold with boundary com-
ponents N and N, then it follows from [13] that the embeddings ¢ and §
exist.)

Lemma 1. Suppose Hypothesis I. Suppose K C R" is a fintte m-complex
(a rectilinear complex in B*), m < n — 3, h: R" — Int M s a topological
embedding, and € is a number with 0 < ¢ < 1. Then 3 a homeomorphism
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H : M — M satisfying:
(1) H(z) =xzforzeNug(N X [0,1 — ¢])
(2) H(gIN X [0,1)]) D A(K).

Proof. The proof is given for m < n — 4. The case m = n — 3 contains
an extra difficulty that makes the proof less transparent. This difficulty may
be handled in a way completely analogous to the combinatorial case (see note
at end of Case 1).

The proof is by induction on m = dim K. Suppose m < n — 4 and the
lemma, is true when dim K < m — 1. The proof below actually shows with-
out any induction on m that the lemma is true when 2(1 4+ dim K) < n.
This is because no singularities are encountered in these dimensions.

Let each of hy, he, -+ bz ¢ R” — Int M be a topological embedding with

Vi<i<e Bi(R™)]u g(N X [0,1 — e]) u (N X [0,1 — ¢]) = M.

Let & > 0 such that V{rn(K), M, 26} < h(R").
Let K be a subdivision of K with @; and @ subcomplexes of K, satisfying

dim (@n@) <m—1, Ki=Qug@, @) CyglN XI[0,1)],

M) cIntM — g(N X (0,1 — ¢]),
and thus

M@in@Q) CyglN X (1 —¢g1)]

Letf:Q X I—>Int M — g(N X (0,1 — £]) be a continuous function
satisfying:

(a) f(z,1) = h(z) for x € Q.

(b) flz, t) = h(z) e VIR(K), M, 8} ng[N X (1 — ¢ 1)]forzeQin Q
and t e [0, 1].

(e) f(x,0) eg[N X (1 — ¢, 1)]forzeq.

Such an f exists because
wmf{Int M — g(N X (0,1 —¢€]),g9IN X (1 —&1)]} =0

fort=1,2,--- m. Let K, be a subdivision of K; with L, and L the induced
subdivision of @, and Q. Let o}, o, ++ o be the closed i-simplexes of
(LyIynL)fori=0,1,--- ,m. Finally,let0 =¢t(, <t < --- <t, = 1be
a partition of [0, 1]. If the subdivision K, and the partition £, < t; - -+ < ¢,
are fine enough, then f : L X I — M will satisfy Property P below.

DEeriNiTION. A continuous function f: L X I — M has Property P
provided

(1) ILXI)cCIntM —g[N X (0,1 — ¢]]

(2) flz,1) = h(z) forzeL

(3) f(LanL X [0,1]) € V(K(K), M, )
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(4) ok X [tas, ta)) < me(R™) for some b = b(%, j, a) when 0 < ¢ < m,
1<j<r(i),and1l <a <Lk

(5) Alf(o% X [tas , ta])] < 6for0<i<m,1<j<r(d)andl <a <k

Now suppose that the subdivision K, and the partition tp < t < --- < &,
are given so that f satisfies Property P. Note also that, in addition to (3),
f satisfies

For the remainder of this proof, the simplexes o}, the partition &, < # <

- < t,, and the function b = b(s, j, a) are fixed. The statement that
some a : L X I — M satisfies Property P means with respect to this fixed
data. Notice that if « satisfies Property P and 8: L X I — M has
B(z, 1) = h(x) and B is a close enough approximation to «, then g8 will also
have Property P.

DerFintTioN. For0 <¢<m,1 £j<r(1),1 £ a <Ly,

X(4,4,a) € (L X1I)
is defined by

X(4,j,a) = LXOul[LnL] XI0,1]
UL X[0,taa]ufe: X [toa,ta 18 <17, 1<t<1(s)}
U ot X [tacr, t] 1 1 < 8 < 41,

Inductive Hypothesis (%, 7, a) = IH(%, j, a). There exists a continuous
function
Q(i,j,a) + L X I—-M

which satisfies Property P and a homeomorphism

H(i,j‘a) TM—->M
ssatisfying
(1) Hgjo(z) =xforre Nug(N X [0,1 — &]).
(2) Hajw(gIN X [0,1)]) D h(L1) U aw,ia0lX (3, j, a).

The purpose of the proof is to show that IH(m, r(m), v) is true.
Fact 1. IH(0,1,1) is true.

Fact2. IH(i,j — 1,a) = IH(%,j,a) for0 <7< m,2 <7 L r(d),
1<a<

Fact 3. IH(i,7(z),a) =IH(z+ 1,1,a)for0 <7i<m,1 < a<lvw
Fact4. IH(m,r(m),a) =IH(0,1,a 4+ 1) forl < a <.

The proof of Fact 2 is presented in detail. The proofs of Facts 1, 3, and 4
require only trivial modifications and are not included.
Suppose 0 <1 <m,2<j <r(0),1l <a<Lv,and IH(z,j — 1, a) is true.
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For simplicity of notation, let
H = H(i,j_l,a) M —->M and o = Q(3,5—1,a) + LXI—M.
Then « has Property P and

(1) H(z) =xforzeNug(N X[0,1— &)
(2) H(9IN X [0,1)]) D h(L1) v a[X(3,5 — 1, a)]

Proof of Fact 2, Case 1.  Suppose
a0 X [tar, ta) n {Y = h(In) ya(Lsn L X [0, 1] u L X 1} = @.

Let Uy, Us, Us be open subsets of Int M with a(e; X [te1, t) © Ui,
Cl(U,) c U, Cl (U, c Us, Cl(U;) C hb(i,j,a)(Rn), and UsnY = @. Let
Z < L X I be a finite subcomplex of some subdivision of L X I with
o (Us) ©€ Z € o (Us). Now by a general position approximation argu-
ment, 3 a continuous

aGi =B:LXI—>M
which satisfies Property P and

(1) B(o5 X ltas, ta]) € Us .

(2) BN(U) € a(Uh) C Z.

(3) Bla™ (M — Us) = ala™ (M — Us).

(4) Mhys.iwB|Z : Z—R"isp.w.l and in general position. In particular, if

S = Cl {weo; X [tas, tJ : AyeZ with % y, B(x) = B(y)},
thendimS <2(m+1) —n<(n—4)+m+2—-—n=m— 2.
In addition, it is assumed that 8 approximates « close enough that
H(gIN X [0, 1)] D k(L) u BIX(3,j — 1, a)]

(see (2) above). .

Let 7 : 05 X [ta1, ta] — o; be the projection. Since 8 has Property P,

B(w(8) X [tas, ta]) T hoci g, (R").

Since ke ..oy B(m(8S) X [tae1 , ta]) is & rectilinear complex in R, of dimension
<m — 1, the inductive hypothesis on m may be applied. (Note that
if 2(m + 1) < n, then no induction on m is necessary.)

Let 0 < A < ¢ such that

H(gIN X [0,1 — A)]) D k(L) u BIX(%,j — 1, a)].
Then 3 a homeomorphism Gy : M — M satisfying
(a) Gi(x) = x for
zeNuH(g(N X[0,1 —A])) DNug(N X[0,1 — ¢]).
(b) Gi(H(gIN X [0, 1)])) D B(w(8) X [ta1, ta]).
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Now since o5 X [ta1 , ta] collapses to
[X(5,5 — 1,0) n (o} X ltamt, L))l U (7(8) X [tat, tal)
= (07 X taa) U (7(S) ¥ 807) X [fo1, tal,
d a homeomorphism G, : M — M satisfying

(A) Goz) =zxforxe(M — Uy) ug(N X [0,1 — ¢])
(B) GGy H(g[N X [0, 1)] D k(L) u B[X(3, j, a)].

(See p. 486 of [2].)
The homeomorphism H; ;4 is given by

Hijo = GG H = GG Hg -

H; ;o and a¢,jq = B satisfy TH(4, 7, a). (Note: The changes necessary
for the case m = n — 3 are almost identical to the changes necessary in the
combinatorial case. The inductive hypothesis TH(Z, j — 1, a) would require
covering only the m-skeleton of a(; j1,»[X (7,7 — 1, a)], i.e., the (m + 1)-cells
need not be contained in H (; j1,,(g[N X [0, 1)]). The singular set S would
be defined by intersections of a(ci X [te_1, ta]) With a(Z™), where Z™ is the
m-skeleton of Z.)

Proof of Fact2,Case2. Suppose
a(of X ltas, ta) n{Y = (L) ua(Lin L X [0,1] UL X 1)} = 6.

This case is similar to Case 1 except h(R") is used instead of hye,j,0(R").
Note that Case 2 always holds when ¢ = ».
Since
ML)ve(IsnL X [0,1luL X 1) c V((K), M, s)
and .
d[a(o';' X [ta-—l ’ tﬂ])] <4,
it follows that

a(0h X [tar, ta]) © V(M(K), M, 25) < h(R").
Let Uy, Us, Us; be open subsets of Int M with
MEK) U a(oh X [tar, tad u Lyn L X [0,1]) € Un,
Cl (Uy) c U,, Cl (U,) c Us, Cl (Us) < h(R").
Let Z < L X I be a finite subcomplex of some subdivision of L X I with
o N U,) C© Z C a(Us).
Now by a relative general position approximation argument, 3 a continuous
g =B:LXI—>M
which satisfies Property P and
(1) B(ob X ltas, taduLn L X [0,1]) C U,
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(2) B (h) ca(U) CZ

(3) Bla (M —Us) = a|a (M — Us)

(4) K'8|Z:Z — R"is p.wl and in general position relative to L; .
In particular, if S = Cl {Z eoh X [tas, ta : (AyeZ, y #= z, B(z) = B(y)) or
(3w e Ly — L with 8(x) = h(w)} then

dmS <2m+1) - n<n—44+m+2—n=m— 2.
The remainder of the proof is now a repeat from Case 1. Since
dim (w(8) X [te—1, ta]) < m,
it may be engulfed without uncovering
ML)uB(LinL X [0,1]u X(i,j — 1, a)).

Then using the collapsing technique, engulf all of 8(s; X [ta—1, ta]). This
completes Lemma 1.

Lemma 2. Suppose Hypothesis I, b is a number with 0 < b < 1,
g(N X [0,1) € M — g(N X [0,1 — b)),
g(N X 10,1]) € M — g(N X [0,1 — b)),

and h : R — Int M s a topological embedding. Then for any number a with
0 < a < b, 3 homeomorphisms f : M — M and f : M — M with

flg(N X [0,1 —a])ug(N X [0,1 —b]) =Id
Flg(¥ x 10,1 —al) ug(N X [0,1 —]) = Id

Il

and
fgIN X [0, 1)] u fglN X [0, 1)] D h(D").

Proof. Let T be a rectilinear triangulation of R" which has D" as a sub-
complex. Let X be the subcomplex of T composed of all closed simplexes
¢ C D" with h(c) n

{M — [g(N X [0,1 —a/2)) ug(N X [0,1 — a/2])]} ¢

and let Y be the closed star of X in T (in all of R™). Suppose that the tri-
angulation T is fine enough that

MY)C{M — [g(N X [0,1 —3a/4]) ug(N X [0,1 — 3a/4])]}.
Let A > 0>
Vin(X), M, 34} < h(Y) and V{g(N X [0,1 — a/2]), M, A}
C g(N X [0,1 — a/4]).

Let T, be a subdivision of T » for any simplex o1 of 71, d(h(a1)) < A. Let
X1 and Y, be the sets X and Y under the triangulation 7, . Let K be the
(n — 3)-skeleton of ¥; and K be the maximal complex of the first derived
of Y; which does not intersect K. Then dimK = 2 < n — 3. Now apply
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Lemma 1 to the H-cobordism M — [N X [0,1 — b)] and obtain a homeomor-
phism
fi:M — GIN X[0,1 —b)]>M — GIN X[0,1 —b)]
such that fi(z) = xforzed(N,1 —b) ug(N X [0, 1 — a/4]) and
fi(gIN X [0, 1)] D h(K).
Extend f1 to a homeomorphism f; : M — M satisfying

(1) fu(z) = zforzeg(N,[0,1 — b)) ug(N X [0,1 — a/4])
(2) A@gIN X [0, 1)]) D A(K).

In the same manner, apply Lemma 1 to the H-cobordism M — g[N X [0,
1 — b)] and obtain a homeomorphism f : M — M satisfying

(1) f(z) = zforzeg(N X [0,1 — b)) ug(¥N X [0,1 — a/4]).
(2) J(gIN X [0, 1)]) D h(K).

Statement A. 3 a homeomorphism fo : M — M >
(i) fz(x) =T

forz e M — (Y1) D g(N X [0,1 — 3a/4]) u (N X [0, 1 — 3a/4])
(ii) fafi(gIN X [0, 1)]) u f(GIN X [0, 1)]) D A(Xy)
(iii) d(fe(x), ) < A for any xeM.

Statement B. The proof of Lemma 2 is completed by setting f = faf;.

Proof of Statement B assuming Statement A. It must be shown that if
pe D”» -
h(p) efa fi(gIN X [0, D)]) u f(GIN X [0, 1)]).

If p e X1 , then this follows from Statement A (ii). Now supposep ¢ D" — X .
Then it follows from the definition of X that

h(p) eg(N X [0,1 —a/2]) ug(N X [0,1 — a/2]).
Casel. h(p)ed(N X [0,1 —a/2]). Sincef|g(N X [0,1 —a/2]) = Id.,

it follows that
h(p) ef(gIN X [0, 1)])
and this case is immediate.
Case 2. h(p) eg(N X [0,1 — a/2]). The sequence of facts

(a) filg(N X [0,1 — a/4]) = Id.
(b) V{g(N X 10,1 —a/2]), M, A} < g(N X [0,1 — a/4])
(e) d(fe(z),z) < Aforzel.

imply that h(p) e fifo(gIN X [0, 1)]). This completes the proof of State-
ment B.
Sketch of Proof of Statement A. The ideas here are taken from p. 499-500
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of [5]. Each point ye Y can be described in terms of ‘“barycentric coor-
dinates”, N(y) e K, X(y) €K, and t(y) € [0, 1], such that

y = yNy) + 1 — t(x)My).

Using these coordinates it is possible to define ahomeomorphism U : Y1 — Yy »
each interval [\(y), M y)] is mapped onto itself and

UL {fi(gIN X [0, 1)) n k(Y1)} v FTH{F(GIN X [0, D)]) n h(Y1)} = V1.
Define a homeomorphism W : Y; — Y, by

W(y) = 5 dlV (M), M, A}, KOy

+ (1= Lo, w41, 50.00) U6)
when
yeY1i — (KuK) and A > d[V{k(X), M, A, h(A(y))],
W(y) =y otherwise.
Define a homeomorphism f, : M — M by
fo(x) = WWE(x) for e h(Y1)

fo(z) =2 forz e M — h(Y,).

The facts
W (A y), X»)]) = INy), XM(»)] forye¥y — (KuK),

dih(a)] < A for each simplex o of Y,

and
ViMX), M, 3A} < h(Yy)
imply
WX =U|X, W |aY, = 1d,
fol M — W(Y1) =1d, d(fo(z),z) <A

and

S fi(gIN X [0, D] u JGIV X [0, 1]) D h(Xy)
This completes the proof of Statement A and Lemma 2.
TuroreEM 1. Suppose Hypothesis I, and that
g(N X [0,1)) n g(N X [0, 1]) = 0.

Then if b is a number, 0 < b < 1, A homeomorphisms f : M — M and
fiM—>M>

Flg(N X[0,1 —b)ug(N X[0,1—-0])=1Id
Flg(N X [0,1 — b)) ug(N X [0,1—1]) =1d
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and )
f(gIN X [0, 1)]) u f(gIN X [0,1)]) = M.

Also 3 a homeomorphism H : g[N X [0,1)] > M — N.

Proof. Leteachof hy, hs, -+ b : R" — Int M be a topological embedding
with
Uicick Bi(D™) u g(N X [0,1 — b)) u §(N X [0,1 —b]) = M.

Inductive Hypothesis (i) = IH(i) ¢ = 1, 2, --+ k. 3 homeomorphisms
fiand f; : M — M >

each of f; and f; |g(N X [0, 1 — b)) u (N X [0, 1 — b]) = Id
and
F(gIN X [0, 1)]) u Fi(gIN X [0, 1)]) D Uigsci ho(D").

The proof involves showing IH(k) is true and setting f = f, and f = f;.
IH(1) follows immediately from Lemma 2. Suppose IH(%) is true for some
1,1 <4 < k,and show IH(Z + 1) is true. The collar neighborhoods of Lemma
2 will be

fig(N X [0,1]) € M — g(N X [0,1 = b)) = M — f:g(N X [0,1 — b])
and
Fig(NX[0,1)cM —g(N X[0,1 —b]) =M —fig(N X [0,1 — b]).
Now 3 a number a, 0 < a < b with
figIN X 0,1 — a)lufigIN X [0,1 — @)] D Uicici he(D")
By Lemma 2, 3 homeomorphisms & and & : M — M with
a|fig(N X[0,1 —a]) Uf;g(N X [0,1 —0]) =1d

a|fig(N X [0,1 —a])ufig(N X[0,1—0]) =1Id
and
ofi gIN X [0, )] u &fs gIN X [0, 1)] D hia(D").

The induction is completed by setting
fin=ofi: M > M and f—q}*-], = &fz.M—>M

This completes the proof of the first part of Theorem 1. (The f and f con-
structed here are actually isotopic to the identity.)
Note that f7'f : M — M satisfies

Ff1g(N X [0,1 —b]) =1Id
and )
FY(gIN X [0, 1)) u glN X [0,1)] = M.

Thus the existence of the homeomorphism H : g[N X [0, 1)] = M — N
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follows in a standard way from a countable number of applications of the
first part of the theorem.

CoroLLARY 1. If Y 4s a compact topological n-manifold (n > 5) without
boundary, which has the homotopy type of S*, then Y is homeomorphi to S".

Sketch of proof. Let B™ and Br be disjoint topological n-cells in ¥ and
p e Bf. Then Y — By is homeomorphic to ¥ — p. It follows from Theorem
1 and the fact that

Y — (Int B"u Int B})

is a topological H-cobordism that ¥ — By is homeomorphic to R". Thus
Y — p is homeomorphic to R" and Y is homeomorphic to S™.
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