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1. Introduction
Let K be a field of algebraic functions of one variable over an algebraically

closed field k and let R be an integrally closed sub-domain of K, properly
containing k, which is contained in all but a finite number of valuation rings
of Kilo. Cunnea [3, Corollary 4.2] has proved that R is a unique factoriza-
tion domain if and only if K has genus 0. The present writer [111 has discussed
the question of the existence of a euclidean algorithm in a ring which is essen-
tially like R and, in particular, has proved that R is euclidean if K has genus
0. As usual, the existence of a euclidean algorithm in R implies that fac-
torization is unique. In the light of this and of Cunnea’s results the follow-
ing is perhaps of interest.

THEOREM. Let K be a field of algebraic functions of one variable over an

infinite field k and let R be an integrally closed sub-domain of K, properly con-
taining k, which has no poles outside a finite set S ?1, ,1 of places of
K/k. Then R is euclidean if and only if
(1) gWds 1,

where g is the genus of K and ds is the greatest common divisor of the degrees of
the places in S.

We recall the essential results of [1] and deduce the sufficiency part of the
theorem in 2. In 3 we prove a lemma on linear spaces and the proof of
the theorem is concluded in 4. The case of finite k is mentioned in 5.

2. Euclid’s algorithm in function fields

Let b be a divisor of K based on the set S and let (b, S) denote the set

(2) (5, S) {/e K ,(/) _> (5), e S},

where denotes the order function at . By a straightforward adaptation
of the argument in [1], it follows that R is a euclidean domain if and only if

(3) K 1 ((, S) -F R),

where the union is taken over all divisors 5 based on S such that deg (b) >_ 1.
Moreover
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In [1], k was a finite field; the extension to an infinite field presents no difficulty.

Section 7 of [1] is fallacious, but is not relevant to the present paper; see Corrigendum
and Addendum to appear in J. London Math. Soc.
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(4) dimkK/((, S) + R) deg (b) + l(b) 1 + g

(-),
where (b-1) denotes the dimension of the space of differentials which are

0 (mod b-1). It is an immediate consequence of (3) and (4) that R is
euclidean if g 0 and deg (b) 1. This proves the sufficiency part of the
theorem.

3. A lemma on linear spaces
To prove necessity, we must examine the implications of (3) and for this

we require the following lemma.

LEMMA. Let L1, LN be sub-spaces of K over lc and suppose that

K- LlU uLN.
Then K Li for some i with 1 <_ i <_ N.

Proof. (Induction on N.) If N 1, there is nothing to prove. Suppose
that the lemma has been proved for fewer than N linear spaces, that

K LlU uL
and that K # Li for each i. Then

K# L2u...uL

by the induction hypothesis. Hence there exists ale L1 but al Li (2 _<
i <_ N). Similarly, there exists a2 e L2 but a. Li (i 1, 3, N). Now
the elements al + Xla, al + k a2 of K, where ),1, XN are distinct
elements of/c (/c is infinite), are all different. Also, none of these vectors is in
L2, for al + X a2 e L implies al + Xi a2 Xi a L2 implies al L2--a con-
tradiction.
Thus two distinct vectors belong to the same sub-space; say

Hence

That is,

But ), X. so as e Lt, 2--a contradiction. This proves the lemma.

4. Proof of the theorem
We must prove that if g + d > 1 then R is not euclidean.
Let a be a fixed divisor of K, based on S, of degree < 2 2g. Let

(5) K0 (a, S)

Then deg (a-1) > 2g 2 and so
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(6) dimK/(Ko + R) (a-) O.

Hence, K K0 + R, or, in other words, the neighbourhood Ko when translated
along the lattice R covers K. Evidently (1) holds if and only if

(7) K0 K0 [U ((b, S) + R)].

We regard K as being embedded in the locally linearly compact space

x x
whereK denotes the completion of K, considered s for, t with respect
to the valuation

c K, 0 < c < 1.
(See [4] and [5].)
The idea of the proof is to show that either (7) does not hold (in which case

R is not euclidean) or that it holds with a finite union; say

(8) K0 c K0 n [Lt u u Lx],

where L (f, S) 4- R for some f, 1 g i _< N. In the latter case, we use
the lemma to show that R is not euclidean.
We suppose that the linear spaces L (f, S) 4- R have been ordered in

some way (this is clearly possible) and for each n we consider all cosets

(9) 51 d-kt, "", L. d-k.

of Lt, L, with k L, ki e K. Denote by , the set of all intersections

F, Clt (L + X)

formed from these cosets. Then either

(10) KonF, 0

for every F e , or there exist, ). in K such that for the correspond-
ing F
(11) K0n F 0.

In case (10) we know that
K0 U=iL,

and so we are in the situation (8).
If (11) holds for every n, then there exists a sequence (k) such that

for every finite sub-family the corresponding F. satisfies

(12) KonF, 0.

But K0 is linearly compact and so

(13) KonF 0,

where
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F N,: (L -4- Xi).

Hence, there exists a e K which is not in any of the L and so

K UL.
This means (cf. (3)) that R cnnot be euclidean.

Thus, either R is not euclidean (in which case there is nothing to prove) or
it follows from (8) that

K-- Ll L.
By the lemm, K L for some i. But this is impossible if g -- ds > 1,
from (4). Hence R is not euclidean, nd the proof of the theorem i’s complete.

5. The case of finite k

The proof breaks down in the cse when/c is finite, which is the case most
closely related to classical number theory. The theorem still holds if S
contains exactly two places, but I have not been able to extend the argument
to the general case.
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