THE LOGARITHMIC POTENTIAL OPERATOR

BY
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Introduction

Let O be a bounded open plane set (not necessarily connected) with bound-
ary components consisting of smooth Jordan curves. Let O denote the open
set complementary to O.

The classical eigenvalue problems associated with the solutions of the
differential equation

A o B
ZV¢+¢_O

in O, arise from prescribing boundary values for ¢ or its normal derivative,
or more generally, a relation between them [1].

However, it is also possible to ask for those solutions of the equation which
are related to solutions of another equation in the complementary set O
through prescribed matching conditions at the common boundary.

Some properties of the solutions to the following problem of this type will
be obtained as one of the results of the present paper:

Find those solutions of the given differential equation which admit a con-
tinuously differentiable extension to harmonic function(s) in the comple-
mentary set 0, having the development

¢(2) =kloglz|+0 @1/|2]) near infinity

Application of Green’s identity to an annulus centered at any point 2 in
the complex plane E, yields after a standard limiting argument, the equation

M) = = 2 [ logle — ] 6() dn

where 7 denotes two-dimensional Lebesgue measure. Thus ¢ is seen to be an
eigenfunction to an operator of integral type having as its kernel
— (2/m)log | z — ¢ |, and defined for sufficiently smooth functions.

More generally, if S is any plane set having positive measure, consider the
associated logarithmic operator L defined by

(1) 1)@ = =2 [toglz = ¢15) dn, zes

for any f which is square integrable over S.
The integral in (1) has received considerable attention in the case where
f dr is a regular Borel measure on S [2], [3] and is used to define the logarithmic
capacity of S. The corresponding operators in higher dimensional space have
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been analyzed in detail by Cotlar [4] through the theory of singular integrals.
However, the simpler operator presented above has several interesting prop-
erties which apparently have not been uncovered in previous investigations.

The foremost of these, is that L can have at most one negative eigenvalue,
and its existence depends solely upon the magnitude of the transfinite diam-
eter of the closure of the support of S (defined below). When suitably nor-
malized, there is a unique real eigenfunction associated with the negative
eigenvalue, and it has a continuously differentiable extension to the entire
plane, E, which is everywhere positive and subharmonie.

The support of a plane set

If S is a Lebesgue measurable set in the plane, then S¥, the support of S,
is defined as follows:

S* = {z: z¢8, Ar(2) n S has positive measure for any r > 0}
Arz) = {¢:]e — ¢| <1}

If S has positive measure then S* is non-empty, and thus 8 ~ S* has measure
zero. S* is relatively closed in 8, and may be related to the usual definition
of the support of 7 restricted to S, but the above definition is more useful for
the present considerations.

Any function f which is integrable over S is integrable over 8* and

Lde=L‘fd7.

Hence the operator L when defined as in (1) will have the same range for all
sets S having a common support S*, and so it will be assumed hereafter,
whenever necessary, that § is itself a support set. (Observe that (S*)* =
S*.) It will also be assumed that S and S have the same measure.

The operator L

As is usual, let L*(8) be the space of measurable functions on S which are
square integrable over 8. Forf e L*(S),let || fll, = (s |f|7dr)"?, p = 1, 2.

Application of the Schwarz inequality to (1) yields the following estimates
for f e L*(8S), and for 2, 2, in any compact set K:

1) | < Zowp ([ Goglz = £1) am)™ 111 < Me 11

_ 9 lz _ g_l 2 1/2

| (Lf)(2) — (Lf)(20) | < - (/s (log m) dfr) £ 12
<lz—al Xz, cach a ¢ (0, 1)

(utilizing the inequality log (1 + X) < X*/afor X > 0,a ¢ (0,1)). Mgk

is used generically to denote a positive constant which depends on the compact
set K.
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Hence L maps bounded sets of L’ (8) into equibounded equicontinuous sets
of C*(K) foreach a ¢ (0,1) and each compact set K C E, the complex plane.
(For each « ¢ (0,1) and each integer n = 0, 1,2, --- , C"**(8) is the space
of continuous functions on a set S, having n*® order partial derivatives in S°,
which are Hélder continuous on S with exponent «.) From the Ascoli the-
orem, it follows that L is a compact operator from L*(S) — C*(K) when the
latter space is supplied with the topology of uniform convergence.

Since L is compact and has a real symmetric kernel, it is well known that
its spectrum consists of at most a bounded sequence of real numbers having
zero as the only possible limit point. Each non-zero point in the spectrum
is an eigenvalue of finite multiplicity, and there is at least one such eigen-
value [5].

Let A be an eigenvalue to L, and ¢ an associated eigenfunction which may
be assumed to be real. Then, as a function in the range of L, ¢ may be ex-
tended continuously to E through the defining equation

(2) M) = =2 [log |2 = ¢19(0) ds, all 2 ¢ B
™ Y8

LemMA. Let N\ be an eigenvalue of L, and ¢ an assoctated real etgenfunction.
Then for each z ¢ E and each r > 0, the following formula holds:

_ N[ iy o 2 lz — ¢
(3)  n(z) = ﬂfo ¢(z + re”) do - Lm' IOg"—T—'“ ¢(¢) dre
where A, = {¢ |2 — ¢ | < r}.
Proof. From (2),

_2

(2 + re®) = fslog |z + re” — ¢ | ¢(¢) dr

3

[\V]

I

™

_ _{f log| 2 + ré® — ¢ | 6(¢) dry
SNA,
f log |z + re’ — ¢ | 6(%) dfr}.
SN{$:lz—F >}

Integrating over 6, interchanging the orders of integration (which is permis-
sible) and subsequently utilizing the well-known formula

-l 27 ,
—2—;[ log |1 — ae”| d§ = min (0,log | a|)
0

yields

1 2w i0
)\%fo o(z + re”) do

lz —

_ 2 _ 2 ¢l
= ;Llog]z §'l¢(§')d7';+;fsnAr10g’“—7’—¢(f)dTr

which gives the desired result.
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CoroLLARY 1. {0} s not an eigenvalue (not in the point spectrum) of L.

Proof. If A = 0, then (3) shows that for any possible associated eigen-
function ¢,

f log |z = ¢ ¢(¢) dry = 0 for all 2, r.
sNA, r
From continuity of ¢, it follows that ¢ = 0 a.e. on S, and hence ¢ is not an

eigenfunction.

CoRroLLARY 2. If an eigenfunction of L is constant in a neighborhood of a
point of S, then that constant value is zero. In particular, the eigenfunctions of
L cannot be constant on S.

Proof. (Recall that S is assumed to coincide with its support.) The
hypotheses are exactly those needed to guarantee that the eigenfunction ¢
has its constant value, say a, in a set S n A, of positive measure. Since the
associated eigenvalue cannot be zero, (3) may again be applied to yield

lz=¢1, _
afsmr log — dry =0

and this gives the desired result.

CoroLLARY 3. Each eigenfunction to L is harmonic in S, the open set com-
plementary to S, and near infinity has the development

(4) ¢(z)=%loglz|[s¢dr+0<r%>

Proof. This well-known property of logarithmic potentials follows from
(3) and the fact that for z e S, the area integral vanishes for sufficiently small .
Thus ¢ has the Gauss mean value property in S. The development is a
trivial consequence of definition (2).

Negative eigenvalue(s) and associated eigenfunctions

More interesting properties of the operator L emerge when attention is
restricted to its negative eigenvalues.

TueoreEM 1. If \ 1s a negative eigenvalue to L, and ¢ is an assoctated eigen-
Sfunction so normalized that f,g odr > 0, then ¢ s posttive and subharmonic every-
where in E.

Proof. The development (4) together with the hypothesized normaliza-
tion fs ¢ dr > 0 imply that ¢ cannot have a negative limiting value at infinity.
Thus if ¢ assumes a negative value in E, it must have a strict negative mini-
mum at some point 2z, ¢ E. However, ¢ remains negative in a neighborhood
of 2¢, and so by (3)

1 2T i0
#(20) > %fo #(20 + re”) db,

for sufficiently small » > 0.
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Hence ¢ cannot have a strict negative minimum at 2o, and so ¢ > 0 every-
where in E.

To show that ¢ must be positive everywhere, consider (3) for any fixed
zeE andforr > 0, let

27 3
M(r) = % fo 6(z + re) db

= ¢(2) + —2)—\ log le—¢] o(¢) drg .
™ SNA, r
Forr > ro > 0,
M(T) - M(’I"o) _ 2 To
r — 7o N — 10) log r 8N4y, $(5) d

2 r
+ TN — 10) j;n[A,..A,o] log Tz =¢] #(¢) dry .

It is easily shown that the second term on the right approaches zero as
r — 1. Hence

0< M(r) = —7r—ir fmA (&) dre for any r > 0

2 4 (7
N fA o($) dry = —5\—7,[0 pM(p) dp
or
M) < —@Q/N)rM(r).

Integrating this inequality gives
M(r) < M(ro) exp (—(* — r5)/A)  forr > 17 >0

and hence
M(r) < ¢() ™ for any r > 0.

If ¢ (2) = O for any z ¢ E, then M(r) = 0 which implies that ¢ = 0, a con-
tradiction.
Therefore ¢ > 0 everywhere, and again from (3)

1 2T "
8() <o [ 6(e + re) a9

for any z ¢ E, r > 0. This proves that ¢ is subharmonic everywhere [6].
Finally, from the development (4), it follows that ¢ becomes logarithmically
infinite at infinity.

TaEOREM 2 (uniqueness). L can have at most one negative etgenvalue, and
the associated etgenfunction when suttably normalized ts unique.

Proof. Suppose there were two linearly independent real eigenfunctions
¢1, ¢ associated with negative eigenvalues of L (not necessarily distinet).
Then it may be assumed that they are orthogonal so that f.g dr1d2dr = 0 and,
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from the preceding theorem, that each is positive. The contradiction is
apparent.

Hence there can be within a constant factor at most one eigenfunction
associated with the negative eigenvalues of L. In particular, there can be at
most one negative eigenvalue, since the eigenfunctions associated with distinct
eigenvalues are always linearly independent.

Hereafter, the unique negative eigenvalue of L will be denoted by u when
it exists, and the unique associated positive normalized eigenfunction by ¢, i.e.

(5) fszp? dr = 1.

Existence and relation to transfinite diameter

From Hilbert space theory, it is known that if u exists, then it satisfies the
relations

=
Il

inf {—%Lfsloglz — ¢ | f(2)f(¢) dr. dfr}

feL2(D)
T Izrfsfslog Iz — ¢ [ w(2)y(5) dr. drt

where LI(S) = {f:f e L*(S) with || f[l. < 1}.
From the studies of Pélya and Szegd [7], [2] it is known that the transfinite
diameter d of S satisfies a similar inequality, viz.,

—log d < inf {—L /;log |z — ¢|dv(2) dl'(?)}

ve®1
where ®; is the class of regular Borel measures » on S normalized so that
»(8) = 1.
The relation implied by the strong similarity of these definitions manifests
itself in the following:

TureorEM 3. The operator L possesses a negative etgenvalue tff the transfinite
diameter d of S exceeds one, in which case —p < (2/7) A log d, where A <s the
area of S.

Proof. Assume u exists and let ¢ be the unique associated non-negative
eigenfunction. Then the restriction of the measure ¢ dr/ || ¢ |1 to Sisin ®; .

Hence
o O
2 ([[y 2

By the Schwarz inequality and assumed normalization of ¢,

v h)* < [dne [ #) dr. = 4

with strict inequality since ¢ is not constant. Therefore, —p < (2/7) A log d
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as asserted. Moreover, log d > 0= d > 1 proving the necessity of this
condition.

To prove its sufficiency, it is necessary to resort to the general theory of
the transfinite diameter as initiated by Fekete. It is known [2] that for each
positive integer N there exist distinct points 2,, 22, - - - , 2y in S for which the

positive numbers
N 2/N(N—1)
dy = JI¥imuscil 2 — 24
define a sequence coverging to d monotonically from above.
For a given N define

= (1/4n) minici<j<n( | 2 — 25|, 3), forn =1,2, ...
and
Uin = Snfz:|z—2z;| <ra, ji=12---,N

T(an), n=12---

where 7 is plane Lebesgue measure. Since S is assumed to be a support set,
each m;, > 0 and the Borel measures », are defined through the simple func-
tions

I

M jn

f%(z) = I/ijn: ZEan, j=1’27"'7N;n=112:"'
= 0, otherwise
by
dve, = fudr, n=12 ...,

The measures », are absolutely continuous with respect to 7 by definition and
are normalized by construction. Hence each v, e®;. For each n =
1,2, -+, consider the integral

I[Vn] = _j;]‘;l()g l z2—¢ l an(z) dl’n(f)

which may be split as follows:

Iv,] = ——L)(sloglz— ¢ | dha
(6)

= (Nm,,,) fv f y,, 08 |2 = | dr, dr

]ﬂ

where \, is the Borel measure on the product space S X S defined through
the simple function

Aﬂ(z’ g‘) = fn(z).f'n(g')y (z) g-)eUi”X Uin> i7£.7;7:’.7=112’)N

= 0, otherwise
by
M = A, dr X dr.

Note that

[ < [ [ ) da) =1

By Alaoglu’s theorem [8], there exists a subsequence {A,,} and a limit meas-
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ure Ay for which

I f . =f
Py sxsgd)\’“ sxsgd)w

for each function g e C (S X S). It is simple to verify that the limit measure
Ax is the atomic measure which assigns to each point (z:, 2;), ¢ # j; ¢, J =
1,2, ---, N, the mass N
Following Hille [2], introduce for each M > 0 the continuous function
log|z — ¢ |l = min (log M, —log|z — ¢|)
and note that for M > r™
lim — sxsloglz — ¢ dhy = }61_{2 [gxs log|z — ¢ | lu ANy

k>0

=f [loglz—fllud)\n’
8X3

=—[ 1 -
-[gxs oglz — ¢|d\y

1 2 N
= — = — 2
<N> P log [ 2 — %]

= _NZ; 1 log dy .

The remaining term in (6) approaches zero as n — o, since for 2, { € Ujn ,
it follows that |z — ¢ | < 2r, < 1/n. Thus

_ _ dry
osf%< gl —thar< K [

2rn
<onkt [ 1E - Ky
0 r

and so

0< i__l_ﬂ,j”dr,ft] (=loglz—¢|) dr;

i=L (N'mja)? in
K'(r)"" & 1 K’ <1>3’2
< < (=
- N E Nmsy — N \n
where K, K' are positive constants. Therefore there exists an n; so large that

N -1 1
—log d < Ilvn,] < — i log dv + ¥

If d > 1, then the right-hand side of the inequality is negative for N suffi-
ciently large. Hence there exist functions f, ¢ L’ (S) for which

—,/; j; log I 2= lfn(z)fn(f) dr, d'r; <0

which by Hilbert space theory guarantees the existence of a negative eigen-
value for L.
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As a result of the previous theorem, it follows that the L operator is positive
for support sets of transfinite diameter not exceeding one, while for the other
support sets, the operator of integral type with kernel

—@2/m)log|z — ¢| + wp (W) (z # ¢)

is positive [5].
Of more immediate significance is the fact that for support sets of transfinite
diameter exceeding one, the eigenvalue u constitutes a new and well-defined
functional, which is related to the transfinite diameter through the inequality

—u < (2/7)Alog d (Theorem 3).

The dependence of this functional on the support set has also been investigated,
and the results will be presented in a subsequent paper.

Differentiability

The logarithmic operator was introduced through an eigenvalue problem
related to the solutions of the classical differential equation (\/4)V’¢ 4+ ¢ = 0
in a bounded open set. We conclude this paper with a brief study of the
differentiability of the eigenfunctions of the logarithmic operator.

Let S be a bounded support set, and L, the logarithmic operator on L*(S).
Suppose that A is an eigenvalue of L and ¢ is an associated (real) eigenfunc-
tion. It has already been proven that ¢ ¢ C*(K) for each compact set K C E
and for each a ¢ (0, 1), and that ¢ is harmonic in S.

Following Vekua [9], we introduce the operator T’ by

(1)) = -1 [ L0

and observe that from the estimate

[rmtar <k [an [ o0 [HO0E <o ppy

it follows that T is also a bounded operator from L*(S) into L*(K) for each
compact set K C E.

Inasmuch as (Tf) (z) may be obtained by formally differentiating (—Lf(2))
with respect to z (in the complex sense), it is not difficult to show that T'f is
indeed the weak z derivative of —Ljf relative to L*(K) for any compact set
K c E. Moreover, when f e C*(S), then defining f = 0 in S gives

1 If(r +2) —J@ F 2l
ke
SMxlz-—zol for z,2p ¢ K.
Hence TfeC*(K) also. In particular then, each eigenfunction ¢ ¢ C'(E)
and is in C*1*(K) for each compact set K C E and each a ¢ (0, 1).

By resorting to the theory of singular integrals, Vekua establishtzs much
stronger results, one of which implies that if D is a disc and f e C*(D), then

| Tf(2) — Tf(zo) | <
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Tf e C*"*(D), and

9
5; (IN(2) = f(2), 2eD
= 0, z¢D.
Using this fact with a partition of unity yields the desired

TueoreM 4. Let S be a bounded support set. Then any ergenfunction ¢ to
the logarithmic operator L on L*(S) has a continuously differentiable extension to
E. Moreover ¢ is twice continuously differentiable in S° (the interior of S) and
there satisfies the equation:

M4V + ¢ = 0.

Proof. Since ¢ ¢ C*(S), then for each disc D < &,

M) = =2 [ log|z — ¢ 1p(0)e(c) dn

_2 fw log |z — ¢ | (L — p()16(s) dry

™ J8

where p (¢) is a C” function which is radially symmetric with respect to the
center of the disc D, is unity on a concentric subdisc D, and vanishes identically
outside D. Vekua’s theorem applied to the first integral gives for z € DY ,
2
A2 2
029z 4
since the second integral is harmonic for z e D} . We remark that arbitrary
support sets may have empty interiors and hence the major assertion of the
theorem may be vacuuous. However, if S is open, then §* =8 =8 and
we have identified the eigenfunctions and eigenvalues of L with those of the
problem posed in the introduction.

V¢ =—ps +0=—¢
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