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Introduction

This paper arose from the following problem: to find conditions under
which a locally connected, rim-compact Hausdorff space H has a locally
connected Hausdorff compactification. This proves to be the case (Theorem
4.2) if and only if at most finitely many of the components of H are compact.
In trying to find a simple proof, the authors realized that a systematic and
simple approach to the theory of locally connected spaces can be obtained by
stressing—even more than Wilder [13]—the use of quasicomponents. We
use, among other notions (e.g. “paddedness”) the property of being qua-
silocally connected at a point [13, p. 40], and observe that the useful Propo-
sition 1.7 holds for quasicomponents but not for components. The qua-
sicomponent approach leads naturally to the result that in a connected,
compact Hausdorff space, the property ‘‘components coincide with qua-
sicomponents on every open subset’ is equivalent to local connectedness (The-
orem 3.3). (Recall that components and quasicomponents coincide on
every closed subset of any compact Hausdorff space.)

To ask for a reasonable necessary and sufficient condition that a locally
connected completely regular Hausdorff space have a locally connected Haus-
dorff compactification seems hopeless. However, it is known [6] that every
compactification of such a space is locally connected if and only if the space is
pseudo-compact. We readily obtain a proof of this theorem, and add some
corollaries.

Example 5.3 seems to be of interest. Here we exhibit a subspace S of
Euclidean three-space which is the union of a countable number of pairwise
disjoint closed intervals, each nowhere dense in S, but S is nevertheless con-
nected and locally connected.

The authors wish to thank the referee for his many helpful suggestions and
corrections, which improved the paper substantially.

1. Components and quasicomponents

1.1. DgeriniTiONS. Let p be a point in the space X. If the subset S of X
is both open and closed in X, we say S is clopen in X.
The component of p in X is the maximal connected subset of X containing p.
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The quasicomponent of p in X is the intersection of all the clopen subsets of
X containing p.
A netghborhood of p is a set containing p in its interior.

1.2. ProposiTiON. (Quast)components are closed and pairwise disjoint, and
every quasicomponent 1s a union of components.

1.3. ProrosiTiON. FEvery open quasicomponent is a component.

Proof. 1If Q is an open quasicomponent, then @ is clopen (1.2). Now if @
were the disjoint union of two proper relatively clopen sets, these sets would be
clopen in the whole space, and @ would not be a quasicomponent.

1.4. ProposiTioN. Components and quasicomponents coincide in every com-
pact Hausdorff space. (This is well known. See, e.g., [8, §42, II, 2].)

1.5. PropositioN. If X C Y,and Cxis a (quast)componentin X, there is a
(quasi)component Cy in Y such that Cx < Cy .

Proof. A component Cx in X is still connected in Y, and is contained in the
largest connected set in Y containing it. As to quasicomponents, if H is clo-
penin Y, then H n X is clopen in X. The result follows at once.

1.6. PropositioN. If Q is a quasicomponent in the space X, and K a com-
pact set in X disjoint from Q, then there exists a clopen set S containing @ and
missing K; moreover, Q is a quasicomponent of X\K.

Proof. For each k ¢ K, there is a clopen set Sy, containing ¢ and missing k.
The open cover { X\Sk}rex of K has a finite subcover. The intersection of the
corresponding Sy is the desired S. Since S is clopen, and misses K, the quasi-
components of S are also quasicomponents of X, hence @ is also a quasicompo-
nent of X\K.

1.7. ProrosrTioN. If U isan open subset of the connected space X such that
U\U is compact and non-empty, then every quasicomponent @ of U meets U\U.

Proof. Suppose the contrary. Then, by Proposition 1.6, there is a set S,
clopen in U, which contains  and misses U\U,so S © U. Hence S is a proper
clopen subset of the connected space X; a contradiction.

In this lemma, ‘“quasicomponent” cannot be replaced by ‘‘component’,
as is well known (see Example 5.1).

2. Local connectedness

2.1. DeriNiTiONs. A space X is locally connected at p if every neighbor-
hood of p contains an open connected neighborhood of p.

X is weakly locally connected ( connected ““‘im kleinen’”) at p if every neighbor-
hood of p contains a connected neighborhood of p; equivalently, for every
neighborhood U of p, the component of p in U is a neighborhood of p. In
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regular spaces, this is equivalent to: every neighborhood of p contains a closed
connected neighborhood of p.

X is quastlocally connected at p if for every neighborhood U of p, the quasi-
component of p in U is a neighborhood of p [13, p. 40].

X is padded at p if for every neighborhood U of p, there exist open sets W
and V such that p e W < W < V < U, and V\W has onlp finitely many com-
ponents ([5]; see also [12, p. 19]).

The space X is said to have any of the properties defined here if it has that
property at each of its points.

2.2. ProposITioN [13, pp. 40-41]. If X s locally connected at p, then X 1s
weakly locally connected at p.

If X is weakly locally connected at p, then X s quasilocally connected at p.

Neither of these implications can be reversed.

See Example 5.4 for a space which is quasilocally connected at a point, but
is not weakly locally connected there. For aspace that is weakly locally con-
nected at a point, but not locally connected, see, for example, [7, p. 113].

2.3. ProrosITION. If the connected space X is padded ot p, then X s locally
connected at p. (The converse is false—see Example 5.1.)

Proof. Let U be a neighborhood of p. Choose open neighborhoods W and
V of p such that W < V < U, and V\W has only finitely many distinct compo-
nents Cy, --+ ,C,. Foreachs 1 <7 < n,thereis a quasicomponent Q; of V
such that C; C Q. (the Q; need not be distinet). We assert that each v e V is
in some @;. If not, for each ¢ < n thereisaset V;, clopenin V, containing
v and missing Q;. But then N}~ V;is open in V and closed in W, and is
therefore clopen in X, which is impossible.

Since V has only finitely many quasicomponents, each of them is open, and
is therefore a component (1.3). Then the component of p in V is an open con-
nected neighborhood of p lying in U.

2.4. PropositioN. In a locally connected space, components and quasi-
components coincide in every open subset.

Proof. If X is locally connected and U is open in X, then any component
in U is a neighborhood of each of its points, and is therefore open. Hence
every quasicomponent in U, being a union of components (1.2), is open. But
then every quasicomponent is a component (1.3).

2.5. TaEOREM. The following conditions on a space X are equivalent:
(i) X 7s quasilocally connected

(ii) X s weakly locally connected

(iii) X 7s locally connected

(iv) (quasi)components in every open subsel of X are open.

Proof. TFirst, observe that the two assertions in (iv) are equivalent by (1.2)
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and (1.3). Then, since a set is open if and only if it is a neighborhood of each
of its points, (iv) is equivalent to (i), (ii) and (iii).

2.6. CoroLLARY. A locally connected space is the topological union of its
(quast)components, i.e., each (quast)component is clopen.

It follows that in all problems of an internal nature concerning a locally con-
nected space, one may assume that the space ts connected.

2.7. ProposiTioN. A space X fails to be weakly locally connected at the
point p if and only if for some neighborhood U of p, there is a collection of distinct
components {C.} in U such that every neighborhood of p meets infinitely many of
the C, .

2.8. ProrositioN. If X is a dense subspace of Y, and X is locally connected
at p e X, then Y 4s locally connected at p.

The proofs of 2.7 and 2.8 are straightforward.

3. Compact and rim-compact spaces

3.1. DeriNiTiOoN. X 4s rim-compact (semicompact, or locally peripherally
compact) at p if every neighborhood of p contains an open neighborhood of p
with compact boundary. (Clearly, every locally compact space is rim-com-
pact. Every rim-compact Hausdorff space is completely regular; see [9].)

X has dimension 0 at p if every neighborhood of p contains an open neigh-
borhood of p with empty boundary.
A compact, connected Hausdorff space is called a continuum.

3.2. Prorosrrion [3]. If X is a rim-compact Hausdorff space, then X has
a compactification X* such that X*\X, as a subspace of X*, has dimension 0.

In continua, or in rim-compact connected Hausdorff spaces, the converses
of Propositions 2.3 and 2.4 are valid. This gives a new characterization of lo-
cal connectedness in these spaces.

3.3. TaeorEM. If X is a continuum, or more generally, a rim-compact
connected Haudorff space, the following are equivalent:
(i) X s locally connected
(ii) X 7s padded
(iii) Components and quasicomponents coincide on every open subset of X.

Proof. In view of Propositions 2.3 and 2.4, we need only prove that (i)
implies (ii) and (iii) implies (i).

To prove (i) implies (ii) we proceed as follows. Let p be a point in the open
set U, and let W be an open neighborhood of p such that W < U, and W\W
is compact. Since X is locally connected, each point x ¢ W\W is contained
in an open connected set U, such that U, < U\{p}. It follows that W\W
can be covered by a finite collection of connected open sets whose union lies in
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U. Consequently, W\W can be covered by a finite collection of disjoint
connected open sets whose union lies in U; denote these by Uy, -+ ,Ua,
and let O be their union. Set V = W u O, and let G = V\O. Then
peGC GcVcUandOcVc GcO,sothat V\G is a finite union of
connected sets; i.e., X is padded at p.

The proof that (iii) implies (i) is more complicated. We shall assume that
X is not locally connected, and construct an open set U™ on which components
and quasicomponents do not agree. There is an open set U in X such that
some quasicomponent @ of U is not open (Theorem 2.5); i.e., there is a ¢ ¢ @
such that every neighborhood of ¢ contains points outside Q. Let Uy and U,
be open sets such that

qu1C U]C U, C Uzc U,

and such that U;\U; and U,/Us are compact. The quasicomponent of ¢ in
U, meets U;\U, , and the quasicomponent of ¢ in U, meets Us\ U, (Proposition
1.7). Hence @ meets these two boundaries by Proposition 1.5. Clearly,
any quasicomponent of U which meets U; meets these same boundaries.

Theset H = Q n (U;\Uy) is compact. Weset U* = U\H. The component
C, of ¢ in U* is wholly contained in U, , since U;\U, separates U from X\U, ,
and C, € Q. We shall show that the quasicomponent Q, of ¢ in U* meets
U:\Us:, so that C; # Q.

Let S be any clopen set in U™ containing Q,. By the choice of ¢, S con-
tains a point p e U;\Q. The quasicomponent P of p in U meets U\U,. P
is disjoint from H, since P # @ and H C @ (the quasicomponents P and Q
are disjoint). Hence (Proposition 1.5) P is also a quasicomponent of p in
U* = U\H. Since p ¢S, P < 8, for § is clopen in U*. Hence S meets the
compact set U;\U,. It follows from Proposition 1.6 that Q, meets U\U. .

According to Theorem 2.5, (i) above is equivalent to “X is quasilocally
connected” and to “X is weakly locally connected” in any space. Recall
also that components and quasicomponents always coincide on every closed
subset of a compact Hausdorff space (Proposition 1.4).

3.4. TuaroreM [13, p. 104]. Let X be a continuum, and let F be the set of all
points of X at which X fails to be locally connected. Then either F is empty, or I
contains a continuwm consisting of more than one point.

Actually we shall prove that F contains a continuum contained in the
topological limit superior of a collection of continua. Under the stronger
hypothesis that X is a metrizable continuum, it has been shown (see [8, p. 176])
that the set of points at which X fails to be weakly locally connected contains
a continuum which is the topological limit of a sequence of continua. :

Wilder (loc. cit.) proved 3.4 for locally compact connected spaces. The
proof below (which of course yields the same result) is considerably shorter.

Proof. If F is non-empty, there is a point p in F at which X fails to be
weakly locally connected (Theorem 2.5). By Proposition 2.7, there is an
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open neighborhood V of p, and a collection {C.} of components of V = H,
none of which contain p, such that every neighborhood of p meets infinitely
many of the C,. H is not connected, and therefore (since X is connected)
H is not clopen; i.e., the boundary B of H is nonempty. Since components
and quasicomponents coincide on the compact set H (Proposition 1.4), each
C, meets B (Proposition 1.7). Consider the compact set

S = Uq Ce, sopef,

and let C, be the (quasi)component of p in 8 u B. Now every clopen neigh-
borhood of p in S u B contains a connected C; , hence every such clopen set
meets the compact set B. Then, by Proposition 1.6, C, meets B. So C,is a
continuum containing more than one point, which, in turn, contains a sub-
continuum C containing p properly and lying in the interior of H (for example,
the component of p in U n S, where U is an open neighborhood of p whose
closure lies in the interior of H). Moreover, by the definitions of S and C, ,
every neighborhood of any point in C meets infinitely many of the C, , so by
Proposition 2.7, X is not weakly locally connected, and a fortiori not locally
connected, at any point of C.

4. Locally connected compactifications

Here we investigate conditions under which a locally connected space has
locally connected compactifications. Unless otherwise specified, ‘“space’, in
this section, means ‘“‘completely regular Hausdorff space”. Our first theorem
is an immediate consequence of Theorems 3.4 and 2.8.

4.1. Tuarorem. Let X be a connected, locally connected space, and let X*
be a compactification of X. If X*\X contains no continuum consisting of more
than one point, then X™ is locally connected. In particular, X* is locally con-
nected whenever X *\X {s totally disconnected, or of dimension 0, and the one-point
compactification of a locally compact, connected, locally connected Hausdorff
space s locally connected.

We may ask for conditions that a locally connected but not necessarily
connected space X have a locally connected compactification. Clearly, if a
space has more than finitely many compact components, any compactifica-
tion must contain a point p such that every neighborhood of p meets infinitely
many of these components, hence no compactification of such a space can be
locally connected. Therefore, for a space to have any locally connected
compactification, it must have at most finitely many compact components.
For rim-compact spaces, this condition is also sufficient.

4.2. TeHEOREM. A locally connected, rim-compact Hausdorff space X has a
locally connected compactification if and only if at most finitely many of the com-
ponents of X are compact.

If this condition is satisfied, such a space has, in fact, a compactification by a
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set of dimension 0. If in addition the space is locally compact, its one-point
compactificatron is already locally connected.

Rinow [10] treats so-called ‘‘perfect”’, locally connected extensions in the
locally compact case. His results can easily be generalized to the rim-
compact case by stressing the use of Wilder’s Theorem 3.4.

Proof. We have already seen that the condition is necessary.

To prove sufficiency, recall that since X is locally connected, it is the
topological union of its (clopen) components (2.6). First, suppose X is
locally compact, and let X u {p} be its one-point compactification.

Let {C.} be the collection of non-compact components of X. Then for
each a,

Cau {p} € X u {p}

is the one-point compactification of C, . It suffices to show that U, C, u {p}
is locally connected at p. Let U be a neighborhood of p in this subspace.
Evidently C, < U for all but finitely many values of a. Call these
ay, +++,an,and, for each 7,let U,, € U be an open connected neighborhood
of pin Cou {p} (4.1). Then Ui, U,, u U,.., C. is a connected open neigh-
borhood of p contained in U.

If X is rim-compact, each non-compact component C, of X is connected,
locally connected and rim-compact. For each a, compactify C. to C% by
a set of dimension 0 (3.2). By Theorem 4.1, each C% is locally connected.
Now remove one point from C%\C, for each a. The resulting spaces are
locally compact but not compact, hence so is their union. Let X™ be the one-
point compactification of this union, together with the union of the finitely
many compact components of X. Then X ™ is a locally connected compactifi-
cation of X by a set of dimension 0.

4.3. Example. It is not true that every compactification by a set of
dimension 0 of a rim-compact space (even a locally compact space) with
finitely many compact components is locally connected. Let X be the
topological union of infinitely many open intervals. The one-point compac-
tification of the topological union of infinitely many closed intervals is a non-
locally connected compactification of X by a set of dimension 0.

4.4. Remark. InExample 5.2, we construct a connected, locally connected
subset of the plane, rim-compact at every point but two, which has no locally
connected compactification.

It is natural to ask for a necessary and sufficient condition on a locally
connected space X that every compactification of X be locally connected.
This problem has been solved by Henriksen and Isbell [6]; the required condi-
tion is that X be pseudocompact (every real continuous function on X is
bounded). We give here a short proof of this and related results (4.6,
4.12).
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Recall that every completely regular Hausdorff space X has a compactifica-
tion BX (the Stone-Cech compactification) with the following property:
every continuous function from X into a compact space can be extended
continuously to 8X. A discussion of 8X, and of further properties of pseudo-
compact spaces, may be found in [4].

4.5. Lemma. Let X be a locally connected pseudocompact space, and let W
and V be open sets in X, with W C V. Then only finitely many components in
V intersect W.

Proof. Suppose an infinite collection {C,} of components of V intersect W.
For each n, choose one component D,, of C, n W. Then D, is open for each n.
Every component in V is open, hence each point in W has a neighborhood
meeting at most one D, , i.e., the collection {D,} is discrete. For each n,
choose 2, ¢ D, , and let f, be a continuous function from X into [0, n] such
that fu(zn) = n, fa(X\Ds) = 0. Define f on X by f(z) = D et fa().
Then f is a continuous real unbounded function on X, and X is not pseudo-
compact.

4.6. CoroLLARY. A locally connected pseudocompact space X has only
finitely many components.

Proof. Take W = V = X in Lemma 4.5.

47. TureoreEM. If X s locally connected and pseudocompact, and X is
dense in the regular space Y, then Y is locally connected.

Proof. Let p be a point in Y\ X, and V an open neighborhood of p. Choos®
W open so that p e W € W < V. By Lemma 4.5, only finitely many com-

ponents of ¥V n X meet W n X; denote these by Cy, -+, C,. Then pisin
the closure in ¥ of some of these components, say C1, -, Cy, 1 < k < n.
Now p is in the interior of W; it follows that Cy u - - - u Cj is a connected set

in W with p in its interior. So Y is weakly locally connected at every point
(recall 2.8) and is therefore locally connected.

4.8. CoroLLARY. If X 4s locally connected and pseudocompact, then every
compactification of X is locally connected. In particular, BX s locally connected.

4.9. TureoreM. If BX is locally connected, then X s pseudocompact.

Proof. Let Y be the graph in the plane of the function sin 1/z (0 < z < 1)
together with the segment S joining the points (0, —1) and (0, 1). Then
Y is compact, and Y\S is homeomorphic to the non-negative reals. If X
is not pseudocompact, there is a continuous f : X — Y\S such that f{X)\
f(X) D 8. Now f has a continuous extension f* : X — Y; since fis a
closed map, and f*(8X) is not locally connected, BX is not locally connected
[2, I, §11, 6].
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4.10. Tureorem (Banaschewski [1]). If BX s locally connected then X s
locally connected.

The following theorem sums up the results in 4.8, 4.9 and 4.10. (Compare
[11, Lemma 4], for normal spaces.)

4.11. Tueorem (Henriksen-Isbell). The following properties of a completely
regular Hausdorff space X are equivalent:
(i) BX s locally connected
(ii) Every space in which X is dense is locally connected
(ili) X 4s locally connected and pseudocompact.

4.12. THEOREM. A continuous tmage of a locally connected pséudocompact
space s locally connected.

Proof. Let f be a continuous mapping from the locally connected pseudo-
compact space X onto the completely regular space Y. Extend f to a con-
tinuous mapping f from 8X onto 8Y. BX is locally connected (4.8) and fis a
closed map, so 8Y is locally connected [2, I, §11, 6] and therefore Y is locally
connected (4.10).

5. Examples

5.1. Example. We construct a space X as follows. Consider a closed
rectangle, and a sequence of points {z,} on one side of the rectangle converging
to a point p on that side. From each z,, and from p, extend a closed unit
interval away from the rectangle, perpendicular to the side- From the set
so obtained, remove all the points from the boundary of the rectangle except
the points {x,} and p, and remove the interior of the interval extending from
p. The resulting subset of the plane is our space X. This space has the
following two properties.

(1) X is connected, and locally connected at p, but not padded at p.

(2) Let U be the subset of X consisting of all points of X not in the original
closed rectangle, so U consists of a countable family of half open intervals
together with a point g. Then U is open in X, and U\U is non-empty and
compact. The quasicomponent of ¢ in U meets U\U, but the component of
g in U does not.

5.2. Ezxample. Let X be the subset of the plane consisting of the segment
joining (0, 1) to (1, 1), the segment joining (0, —1) to (1, —1) and the seg-
ments {(1 — 1/n,y) : —1 <y <1},n=1,2, ... Then X is connected
and locally connected, and is rim-compact except at (1, 1) and (1, —1), but
X has no locally connected compactification. In fact, X is dense in no locally
connected space. To see this, consider the subset K of X consisting of all
points in X not lying between the graphsof y = x and y = —z;1i.e,,

K={(zy)eX:|y| >l
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Then K is compact, and its complement in X is an infinite discrete collection
of open intervals. Now if X is dense in ¥, and p ¢ Y\X, then U = Y\K is
a neighborhood of p whose closure has infinitely many compact components.
The same is clearly true of any smaller neighborhood of p, so Y fails to be
locally connected at p.

5.3. Example. We construct here a space which helps delimit the notion
of local connectedness. Our space S is a connected, locally connected subspace
of three dimensional Euclidean space which vs a countable union of disjoint line
segments, each nowhere dense in S.

The space S is constructed as follows. Let @ be the rational numbers in the
closed unit interval, and let D be a countable dense set of irrationals in that
interval. Let

Si={(2,9,2):0<2<1,yeQ,2¢Q},

S, = {(x,y,z) :er7yeD70SzS 1},
S; = {(z,y,2) :2eD,0< y<1,2zeD}.

Evidently each S; is a countable union of closed intervals, and the S; are
pairwise disjoint. Let S = S;uS:uS;. We shall show that S is connected
(similar reasoning shows that S is locally connected, since each point has a
base of ““‘cubes’, each very similar to S itself).

Let F, then, be a non-empty clopen subset of S. We shall show that F = S.
Clearly, if F contains any point on one of the line segments comprising S,
then F contains the entire segment. Now suppose F contains a point p, say
in 8;, and let L, be the segment in S containing p. Choose a sequence of
segments in S;, all having the same first coordinate, such that each of them
contains a point of F, and such that their distances from L, tend to zero (this
can be done, since F is an open neighborhood of L,). Since F is closed, ¥
then contains all the segments in S; whose second coordinate is the same as that
of p. Now every segment in S; contains a limit point of this subset of S; ;
it follows that S; € F. But S;is densein S,s0 S = F.

Our space S fails, of course, to be compact. Indeed, by a theorem of
Sierpinski [8, §42, I11, 6], no compact connected Hausdorff space is the union of a
countable collection of non-empty disjoint closed subsets. ¢“Compact” is essential
here; it cannot be replaced by “locally compact, metrizable and topologically
complete” (see, for example, [8, §42, III, 6a]). However, we can say this.
No separable metrizable topologically complete space M which is connected and
rem-compact 1s the union of a countable collection of disjoint compact subsets.
The proof is not difficult; M can be compactified by a countable set to a com-
pact metrizable space M [14]. Since M is connected, the result is an im-
mediate consequence of Sierpinski’s theorem. Even here, it is not possible to
omit rim-compactness (see Example 5.4) or topological completeness.

If we form a space S’ by identifying the end points of each interval in S,
then S’ is a homogeneous connected, locally connected space which is a count-
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able union of its (compact) constituents [8, §42, VII], each of which is homeo-
morphic to a circle.

5.4. Ezxample. Consider the sequence of points in the plane
pn=(1—1/n,1 —1/n),

n =12 ---. Foreachn,let S, be the square with p, and p,.1 at opposite
ends of a diagonal, and let R, be the rectangle two of whose sides are sides of
S» and S,; whose fourth vertexis (1 — 1/(n 4+ 2),1 — 1/n). For each S,
let S, and R/, be the reflections of S, and R, in the point (%, 0).

The space X consists of the point (1,1) = p, and the point p’ (the reflection
of pin (%, 0)), together with a countable collection of closed intervals chosen
as follows. In each S; (each R:) choose a sequence of segments with end-
points on opposite sides of Sy (Rx) whose distance from the line common to
Si and Ry (R and Siky1) becomes arbitrarily small. Similarly, in each R
(each Sy+) choose a sequence of segments approaching the common boundary
of Ry and Sy (8w and R—yyr , where Ry = Sy).

There is a base at p consisting of the intersections with X of the interiors of
squares in the plane whose sides are parallel to the sides of the S . If such a
basic set V fails to contain p’ in its closure, then it is easy to see that the
components in V are p and the line segments (or parts of them) lying in V,
so X is not weakly locally connected at p. On the other hand, the quasicom-
ponent of p in V contains all the S, and R; from some &k on (namely, the
smallest k for which V meets S_1), since any clopen subset of V containing p
has this property. Hence X is quasilocally connected at p. Notice that X
is connected and topologically complete.
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