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1. Introduction
In [3], there was defined a tensor product of H*-algebras A and B that are

modules over another H*-algebra C. In this paper the tensor product is
redefined in a slightly different fashion, its structure is discussed, and the
special case in which the algebras are group algebras of compact groups is
investigated in detail.

2. Tensor products
Proposition 1 and Theorem 1 of this section have analogues in 2 of [3].

The proofs are in each case similar to and, in fact, somewhat simpler than those
in [3], and so they are omitted. Throughout the section A, B, and C denote
H*-algebras, A is a right C-module and B is a left C-module.

DEFINITION. F(A, B) is the free algebra over ( generated by A B,
i.e. F(A, B) is the collection of all (finite) formal sums of the form
--1)i(ai, hi), ) e C, a e A, and bi e B, with the usual operations. F(A, B)
is also a pseudo-inner product space if we define

(al, 51), (a2,53)) (al, a2) (51,52)

and extend by linearity.
Denote by I1 the ideal in F(A, B) spaned by the set of all elements of the

following forms:

(1) (al -t- a., b) (al, b) (a2, b),
(2) (a,
(3) X(a, b) (Xa, b), and
(4))(a, b) (a,)b).

Denote by I. the ideal in F(A, B) spanned by the set of all elements of the
form

(5) (ac, b) (a, cb), ceC.

Then set I’ I’_ + I, the ideal spanned by all elements of the forms (1)
through (5).

PROPOSiTiON 1. 1’1 {XF(A,B) (X,X) 0}.

F(A, B) is a pseudo-normed space, with X (X, X). Denote by
if(A, B) its pseudo-normed completion, i.e. all Cauchy sequences from
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F(A, B). All the operations on F(A, B) extend to if(A, B) and fi;(A, B)
is a complete pseudo-normed algebra over C. Let 11, 12, and I denote the
closures in if(A, B) of 1’1, I, and I’, respectively. By Proposition 1, 11
is the closure of (0), and so I 12 is the closed ideal of if(A, B) spanned by
all elements of the form (5).

DEFINITION. A (R) c B, the tensor product of A and B over C, is the quotieat
algebra (A, B)/I. We denote the element (a, b) -t- I by a (R) b.

THEOREM 1. A (R) c B is isometric and isomorphic with a closed ideal E
in A (R) B; E is the orthogonal complement of the ideal D spanned by all elements
of the form ac (R) b- a (R) cb, a e A, b B, c e C.

COnOLLARY 1. A (R) c B is an H*-algebra, its minimal closed ideals can be
identified with those minimal closed ideals of A (R) B that are orthogonal to D.

COnOLLARY 2. If A and B are strongly semi-simple, then A (R) c B is strongly
semi-simple.

It should be pointed out that A (R) c B, as defined here, is not necessarily
isomorphic with the algebra defined in [3]. Suppose, for example, that A, B,
and C are closed ideals in an H*-algebra (. If M denotes the direct sum of
all the one-dimensional minimal ideals in A n B n C, then computations similar
to those following Proposition 3 of [3] show that A (R) c B is isomorphic with

M @ ((A he’) (R) (BnC)).

In particular, if M is the direct sum of all the one-dimensional ideals in A,
then A (R) A

__
M.

We show next that A (R) c B can be characterized in terms of certain universal
mapping properties (the development here parallels that in 12 of [1]).

DEFINITION. If H is an H*-algebra, a mapping A X B H is called
balanced if and only if it satisfies

(1) q is bilinear,
(2) q()lal, 51) q(al, X51) X(al, b),
(3) #(ai a2, bib2) #(aN, bi)#(a2, b2),
(4) #(aic, bi) #(aN, cbi), and
(5) =l)q(a, b) <_ .)(a, a)(b, b)

for all , a, b, and c.

I:)ROIOSlTON 2. The map A X B -- A (R) c B, defined by t( a, b) a (R) b,
is a balanced map, and linear combinations of elements in the range of are dense
inA (R)cB.

Proof. Conditions (1)-(4) for balanced maps obviously hold for t. As for
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(5), we have

Xit(ai, b) X(a (R) b) 112
inf{I X(ai, b) + X ll2"XI}

x,X(a,, a)(b,, b).

The second statement is obvious since the elements Xt(a, b) comprise
the image of F(A, B) under the quotient map.

THEOREM 2. If 9 A X B H is a balanced map, and is the map defined
in Proposition 2, then there is a unique continuous homomorphism

9 A (R)cB----H

*tosuch that 9 9 Conversely, if T is an H*-algebra and tl A )< B ----> T
is a balanced map with the properties that every balanced map 9 A )< B ---, H
"factors _through" T via tl (as above), and that linear combinations of range ele-
ments of tx are dense in T, then T is isomorphic and isometric with A (R) c B.

Proof. Extend 9 to a mapping 9’ on all of F(A, B) by defining

9’("X,(a,, b,)) X,9(a,,
Since 9 is balanced, 9’ is easily seen to be an algebra homomorphism on
F(A, B). By the definition of the pseudonorm on F(A, B), condition (5) for
balanced maps simply says that 9’ is bounded, with bound at most one.
Conditions (1) through (4) insure that 9’ I’ 0. Since 9’ is continuous it
extends uniquely to a homomorphism on if(A, B) to H that vanishes on I
and has the same bound. As a result, 9’ gives rise to a continuous homomor-
phism

q, (A, B)/I A (R) B H,

defined by 9*(X + I) 9’(X), again with the same bound (see [5, p. 16] ).
Observe that

9*t(a, b) 9*( (a, b) + I) 9’(a, b) 9(a, b),

and also that the uniqueness of 9* follows from the fact that linear combina-
tions of the elements in the range of are dense in A (R) c B.
As for the converse, we have homomorphisms

t*" T----)A (R)cB and tl" A (R)cB---->T,

each with bound at most one, such that t*tx and tx tl t. Thus tx t t’t1
and tx t, and so tx and t*t are both identity maps when restricted to
the linear spans of the ranges of tl and t, respectively. Since these are dense,
t* is an isometric isomorphism on T onto A (R) o B (isometry is immediate since
t*X <- ]]Xl[ t’ t*X <- t*X ]I, allXeT).
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3. Group algebras of compact groups
Suppose G, H, and K are compact groups. Let us denote elements of the
roup algebra L2(G) by g, gl, g2, elements of L2(H) by h, hi, and

elements of L2(K) by ], El, .... Denote by gh that function on G X H
whose value at (x, y) is g(x)h(y).
Suppose 0 K --. G and K -- H are continuous homomorphisms. For

example, G and H might be subgroups of some common group, K a closed
subgroup of G n H, and 0 and inclusion maps. As another example, K
might be a closed subgroup of G X H and and q the restrictions to K of pro-
jection maps into G and H. Module actions of L(K) on L(G) and L(H)
can be defined as follows:

and

(g.k) (x) f: g(xOz-1)k(z) dz,

(k.h)(y) J: k(z)h( (z-1)y) dz

for all x e G, y e H.
As was observed in [3], the map gh ---> g (R) h extends to an isometric iso-

morphism on L(G X H) onto L(G) (R) L(H). Thus if we set A L(G),
B L(H), and C L(K) we have, by Theorem 1, that A (R)c B is iso-
morphic and isometric with the ideal J of L(G H) that is the orthogonal
complement of the ideal generated by all functions of the form (g.])h g(k.h).
If F e J, then

((g,k)h g(k,h), F) 0

for all g, h, and ]. In other words

f ff g(x)h( (qz-)y) )F(z, y) dy dx dz 0

for all k, and so

ffa( or )h(y)F(x, y) ffa(x)h( (qz-)y)F(x, y) dy dx.

Changing variables, we have

ffg(x)h(y)f(xOz, y) dydx ffg(x)h(y)f(x, (z)y) dy dx,

or (gh, F(z’e)) (gh, F(e.,z)), where, in general, if(v) f(vu) and
f(v) f(uv). Each equality holds for all g and h, and almost every z e K.
Since linear combinations of the functions gh are dense in L(G X H), it
follows that F(’) F(.), i.e. that F(xOz, y) F(x, (,z)y) for almost
every pair (x, y) e G X H and almost all z e K. The next theorem asserts
that this property characterizes J when and are central.
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THEOREM 3. If OK and qK are subgroups of the centers of G and H, respec-
tively, then A (R) c B is isometric and isomorphic with the ideal in L(G X H)
consisting of all functions F such that F(’) F(.=) for almost all z e K.

Proof. Since and o are central, it is easily seen that (g,/c) g,/ and
(g,k g,k. Thus

(g,k)h g(k,h) )(.) (g,lc)h g(k,h),

((g,k)h g(k,h) )(’) (g%k)h g(k,h),

and the closed linear subspace L of L(G X H) spanned by all

(g,k)h g(k,h)

is translation invariant. It follows that L is an ideal (see [5, p. 125]), and
hence that L J. Thus in order to show that F e J it suffices to show that
(F, (g,k)h) (F, g(k,h) for all g, h, and k.
Suppose then that F e L(G X H) and that F(’) F(.) for almost

z e K. Then

(g,k)h, F) fff g(xOz-)k(z)h(y)F(x, y,) dz dx dy

fff g(x)k(z)h(y)’F(x0z, y)dx dy dz

(g(k,h), F) for all g, h, and

Thus F e J and the theorem is proved.
For G and H compact, the next theorem is a generalization of Theorem 4.1

in [2].

THEOREM 4. /f 0 and o are central, then A (R) c B is isomorphic and isometric
with L( G X H)/Q), where Q is a closed nor,nal subgroup of G X H.

Proof. Define Q to be the set of all pairs (tz, oz-), z e K. Since
are continuous and central, it is immediate that Q is a closed normal subgroup
of G X H. If F e J then F is (essentially) constant on the cosets of Q, for if

z, y) uOz, vqz- xOz, z- y
then

F(x, y) F(uez, (qz-)v) F(u, ,z(qz-)v) F(u, v).

Suppose, conversely, that F e L(G X H) is constant on the cosets of Q. Then
F(xOz, y) F(xOzO-z, (z)y) F(x, (qz)y), and F e J.
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Let us denote by m and m the normalized Haar measures on G X H and
(G X H)/Q, respectively. The discussion of "quotient measures" in 33 of
[5] shows that the map F -- F, where F( (x, y)Q) F(x, y), is a 1-1 linear
map from the collection of continuous functions in J onto the set of all con-
tinuous functions on (G X H)/Q. Furthermore,

f F(x, y) dm(x, y) f F( (x, y)Q) dm.((x, y)Q)

for all continuous F e J (that the measures are correctly normalized becomes
apparent upon integration of a constant function). It follows immediately,
since the norms and algebra products are defined in terms of integrals, that
the map F -- F extends to an isometric algebra isomorphism on J onto
L((G X H)/Q). Since J and A (R)c B were identified in Theorem 3, the
proof is completed.
As an example of the sort of situation to which Theorem 4 might apply,

suppose that 9 is a finite-dimensional compact connected group. It is shown
in [6, p. 479] that we may assume (G X H)/K, where G is a simply con-
nected, compact, semi-simple Lie group, H is a finite-dimensional, compact,
connected Abelian group, and K is a finite normal subgroup of G X H. By
the Pontrjagin Duality Theorem, H can be described algebraically as follows"
it is the dual of a (discrete) torsion-free Abelian group of finite rank (see
[4, pp. 385-386]). For (x, y)e K define 0(x, y) x and (x, y) y-1.
Since K is finite and G X H is connected, K is in the center of G X H, and so
0 and q are central homomorphisms. By Theorem 4, L((G X H)/Q)). is

isometric and isomorphic with A (R) c B, with A L2(G), B L2(H), and

C=L(K). But

Q {(o(x, y), q(x, y)-l) (x, y) e K} {(x, (y-)-) (x, y) e K} K

in this case, and so we have L(9) isomorphic and isometric with A (R) c B. As
a result, all irreducible representations S of 9 over C may be obtained (to
within equivalence) in the following manner. Choose an irreducible represen-
tation T of G and a character a of H with the property that T(x) a(y)I
for each of the finitely many pairs (x, y)eK. Then set S((x, y)K)
a(y)T(x) for each (x, y)K

It is not known whether the requirement that 0 and be central is essential
in Theorem 4. If the requirement were to be dropped then Q would have to
be redefined, probably as the closed normal subgroup generated by the set of
all pairs (0z, z-), z e K. With that definition of Q the conclusion of theorem
4 can be shown to hold in one special case where 0 and may be highly non-
central. Suppose, in fact, that G H K, and 0 q is the identity map.
As observed in 2 above, A (R) c B is then isometric and isomorphic with the
direct sum M of all one-dimensional minimal ideals in L(G). This in turn
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cn be identified with L(G/G’), where G’ is the closure of the commutator
subgroup of G. Finally, (G X G)/Q is topologically isomorphic with GIG’,
ndsoA @cB---L((G X G)/Q).
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