
QUADRATIC MAPS AND STABLE HOMOTOPY GROUPS
OF SPHERES

BY

The original proof [4] of the Bott periodicity theorem used Morse theory.
Recent work on this theorem has, however, been algebraic in nature [1],
[2], [3], [7]. The new proofs of the Bott periodicity theorem center around
showing that a stable homotopy class can be represented by a specially simple
sort of polynomial map. In [1] Atiyah and Bott ask whether it might be
possible to use this approach on other homotopy problems. Is there, for
example, some specially simple class of polynomial maps which carries the
stable homotopy of spheres? As a possible first step towards selecting such a
class we shall indicate that probably one wants to examine the properties of
quadratic maps. In detail, we shall show that"

1. The stable J-homomorphism can be interpreted as an algebraic opera-
tion which converts a linear map into a quadratic map.

2. Any element of a k-stem can be represented by a quadratic map
q R ---> n such that q(Sn-l) c R 0}.

In view of these results it is not surprising that many classical examples of
non-trivial maps from S to S are quadratic. The Hopf map S -- S is,
for instance, given by

(x, x, x, x) (2x x 2x x. 2x x + 2x x -x x. + x + x).
We remark that the results given here are mainly suggestive. No actual

computations of k-stems are done. But perhaps eventually the k-stem may
be envisaged as a group of equivalence classes of quadratic forms.
Our main technical lemma is 2.9. The proof of this lemma describes a

procedure for lowering the degree of a polynomial map. This procedure
resembles the linearization procedure of [1].
The general idea of this paper is due to M:. F. Atiyah. .It is a pleasure to

thank Professor Atiyah for several most enioyable conversations. Thanks
go also to N. Steenrod for his interest and comments.

R. Wood has also, independently, proved that any element in a k-stem can
be represented by a quadratic map.

1. The J-Homomorphism
1.1. Notation. R the real numbers.
R the space of all n-tuples a, a (a, ..., a,)aieR, Ilal[

(a + A-- a)1/2.
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Sn-1 {aeRn]llall 1}.
rk limn rk+n(Sn).
L(n, m) the vector space of all n m matrices of real numbers.
O(n) the group of all n n orthogonal matrices.
r(0) limn.(R) r(O(n)).
C the ]th Clifford algebra over R. This is an algebra with generators

el, e., e subject to the relations e -1, ee. -+- e.e 0 if i j.
For Clifford algebras see [2]. As a vector space over R, Ck has dimension 2k.
R+1 shall be identified with the subspace of C spanned by 1, e, ek.

The identification is given by

a a2 a+) a.l -t- = a+.e.
shall be identified with Rn+. The identification is given by

(a, b) +- (a, an, b, b)

where a (a, an), b (bl, b).

All rings are associative and have a unit element 1. 1 acts as the ideutity
on all modules. If A is a ring then A[X, Xn] denotes the ring of all
polynomials in the indeterminates X, Xn with coefficients in h. If h
and A2 are rings with A c A and W is a A-module, then W A1 denotes the
A-module obtained by considering W to be a A-module.

1.1. LEMMA. Let A be a ring such that every A-module is projective. Let
A be a ring with AI A. and suppose that as a A-module A2 is finitely generated.
Then if V is any finitely generated A-module there exists a finitely generated A-
module U and a finitely generated A.-module W such that W IA is isomorphic
toVU.

Proof. LetW A(R)V.

1.2. DEFINITION OFH. Identifying e e Ck with e e C+, i 1, 2,
gives an inclusion C c C+. If V and V are two finitely generated C-
modules set V V if and only if there exist finitely generated C+-modules
W and W such that

H is the set of equiwlenee classes. The operation of forming the direct
sum of two modules makes H into an abelian semi-group. The existence
of an additive universe follows from the preceding lemma, so H is an abelian
group.

1.3. LEMMa. If V is a finitely 9enerated C-module then it is possible to
choose a norm for V such that av a ]. v for all a e R+, v e V.

Proof. Let Pin (k) be as in [2]. Pin (k) is a compact group. Let
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be any inner product for V and set

(vl, v2) rein(k) (xv xv) dx,

where the integral is taken with respect to the normalized Haar measure on
Pin (k). Then for any x e Pin (k),(xvl, xv2)’ (v, v)’. It may now be
easily checked that in fact (xv, xv)’ (v, v)’ for every x e Sk.

1.4. DEFINITION OF A HOMOMORPHISM 7 Hk -- rk(0). Given a finitely
generated Ck-module V choose a norm for V such that I! av II a I1" v
for all a R+1, v e V. Let v, v. be an orthonormal R-basis for V. For
each a e Rk+l let T(a) be the matrix of v -- av with respect to the basis
vl, vn. Then T R+ - L(n, n) is a linear map of R-vector spaces.
Since T(S) c 0(n), T determines an element of rk(0). It is straightforward
to verify that"

(i)
(ii)

This element of rk(0) depends only on the isomorphism class of V"
If 7(V) denotes the element of r(0) determined by V, then

( v, v) ,(v,) + n(v).

(iii) If W is any finitely generated Ck,+l-module, then 7(WICk) O.

So 7 defines a group homomorphism Hk - rk(O).

1.5. THEOREM (Atiyah, Bott, Shapiro [2]).
is an isomorphism.

For all k >= O, 7 Hk - rk(O

Proof. The theorem is verified in three steps"
(i) Periodicity homomorphisms ,(0) -- +s(0), H -- H+s are defined

and proved to be isomorphisms.
(ii) For k 0, 1, 7, 7 Hk - rk(0) is proved to be an isomorphism.
(iii) The diagram

Hk ’ rk(0)

,+8(0)Hk+s

is proved to be commutative where the vertical arrows are the periodicity
isomorphisms.
A corollary of the theorem is"

1.6. ConoLaY. Any element of rk(O) can be represented by a linear map
T of R-vector spaces T" R+ --> L(n, n) such that T(Sk) O(n).

The Hopf construction [6]. Let f" Sk X S- -- S- be a continuous
Extend f to a continuous map

" Rk+l X R -+ R
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by setting
](tl a, t b) tl t.f(a, b)

for0 =< t, t.eR and flail llbll 1. Let

J(f) :Rk+l X R-- R X R
be

J(f)(a, b) (2](a, b), b I12 a 1.1).
J(f) maps Sk+" into S’. J(f) is the map obtained by applying the Hopf
construction to f.

1.8. The J-homomorphism [6]. Let w e k(O). Choose a map

, S --. O(n)

representing w. Letf:S S- -- Sn- bef(a, b) (a)(b). Then
J(f) determines an element of k and this operation defines a homomorphism
J: r(O) -- r1,.

1.9. DEFiNiTiOn. A mapf R -R is a polynomial map if for some/-tuple
(P, ..., P), P, eR[X, ..., X,,],f(a) (P(a), ..., P(a)) for all
a e R. (If f is polynomial then the/-tuple (P1, ..., P) is uniquely de-
determined byf). The degree of a polynomialf is the maximum of the degrees
of the P. A polynomial map f is homogeneous if each P is a homogeneous
polynomial and degree P degree P for all i, j. A polynomial map f is
quadratic if degree f -< 2.

1.10. COROLLARY. An element of r in the image of the J-homomorphism
can be represented by a homogeneous quadratic map q R’++ --> R’+ such that
q( S+) S.

Proof. Let w e (0). Choose a linear map T of R-vector spaces

T R+ L(n, n)

such that T(S) O(n) and T represents w. Then J(T) gives the required q.

Thus the (stable) J-homomorphism may be viewed as an algebraic opera-
tion converting linear maps into homogeneous quadratic maps.

2. Quadratic maps
2.1. DEFINITION. A continuous map f R" - R is admissible iff(0) 0

and f(a) 0 for all a e S"-. If f:R --> R is admissible then the i-th
suspension of f, denoted f(), is the map

f():R R--RR
by f()(a, b) (f(a), b).

2.2. Notation. M., the space of all admissible maps f R ---> R"-,
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topologized by the compact-open topology, f - f(1) gives an inclusion
Mk,. C Mk,+l.
M limn M,n. M is topologized by the direct limit topology.
Q,n the subspace of Mk, consisting of all admissible quadratic maps.
Q limn Q,.
[Y, z] the set of homotopy classes of continuous maps from the topological

space Y to the topological space Z.

2.3. DEFINITION. If Z1 and Z2 are topological spaces and f: Z1 - Z2
is a continuous map, thenf is a weak homotopy equivalence if for every compact
Hausdorff space Y, f indices a bijection of sets [Y, Z] - [Y, Z].

2.4. THEOREm. For all t, the inclusion Q M is a weatc homotopy
equivalence.

Before the proof, two definitions and three lemmas.

2.5. DEFINITION. Let Y be a topological space. A continuous map

f: yR’---,R

is admissible if f(y, 0) 0 for all y e Y, and f(y, a) 0 whenever a e S-1.
The set of all admissible maps from Y X R into R can be identified, in the
standard fashion [5], with the set of all continuous maps from Y into M_.,.
Two admissible maps f, g Y X R --* R are ad-homotopic if as maps of Y
into M_., they are homotopic.

2.6. DNTON. Let Y be a topological space and let R(Y) denote
the ring of all continuous real-valued functions on Y. A map

f:y R--R
is polynomial if there exists an /-tuple (P, ..., P),

PeR(Y)[X, ..., Xn]

such that
f(y, a) (P(y, a), ..., P(y, a)

for all (y, a) e Y X R’. (If f is polynomial then (P1, P) is uniquely
determined byf.) The degree of a polynomialf is the maximum of the degrees
of P, P. If degree f -< 2, then f is quadratic. Two admissible poly-
nomial maps

f,g: Y X R’---R

are polynomially ad-homotopic if there exists an admissible polynomial map

h: (Y [0,1]) ’-
such that h(y, O, a) f(y, a) and h(y, 1, a) g(y, a) for all (y, a) e Y R.



STABLE IIOMOTOPY GROUPS OF SPHERES 591

Polynomial ad-homotopy is an equivalence relation on the set of all admissible
polynomial maps from Y X R to R.

2.7. LEMMA. Let Y be a compact Hausdorff space, and let

f,g: Y R’-R
be two admissible polynomial maps. Then f and g are ad-homotopic if and only
if they are polynomially ad-homotopic.

Proof. Let p: Y X [0, 1] X R-Rbe an admissible map such that
p(y, O, a) f(y, a) and p(y, 1, a) g(y, a). By the Stone-Weierstrass
approximation theorem there exists an admissible polynomial map

h: YX [0,1] XRR
such that h approximates p on Y X [0, 1] X S"-1. Let

h: Y X R R

be hi(y, a) h(y, i, a), i 0, I. Then h0 is polynomially ad-homotopic to
f. A polynomial ad-homotopy is given by (1 t)ho + tf, 0 1.
Similarly h and g are polynomially ad-homotopic. Since h gives a poly-
nomial ad-homotopy from h0 to h it now follows that f is polynomially ad-
homotopic to g and the lemma is proved.

2.7. Notati. a (1 n) an n-tuple of non-negative integers.

X" X X...X.
If A is a ring and , c, X" P e A[X, X], then

X"
Pi ca

2.8. LEMM. If A is a ring and P h[X Xn] then

P P(O) + XP
2.9. LEMMA. Let Y be a compact Hausdorff space and let

fl Y X R-- R

be an admissible polynomial map with 2 < degree fl.
sible polynomial map

f. Y R+R+

Then there is an admis-

such that 2 _<_ degree f2 < degree fl and f is polynomially ad-homotopic to fnO.
Proof. Let (P, P), PeR(Y)[XI, X] be the /-tuple deter-

mined by f. Let A be the n matrix with entries in R(Y) [X, Xn]
given by Ai Pl Consider each a e to be u 1 X n matrix and form the



matrix product a.A (y, a). Then by Lemma 2.8 fl(y, a) a. A (y, a) for all
(y,a) eY R. Fork 1, 2, n let Ak be the n X matrix whose
(i, j) entry is Aik. Then A A(0) - =1Xk A.
Let B be the n X nl matrix

Choose a positive real number k such that whenever (y, a) Y R has
fl(y, a) 0 and a < 1 then a[I + k-. a.B(y, a)]] < 1. Let I denote
the X identity matrix and let C be the nl X matrix

Set

A(0) B

D= C

Let fl T R+’’ -, R’+’ be f(y, a) a.D(y, a).
map and degree f. < degree fl.
be the nl X nl matrix

A(0) A

Thenf is a polynomial
To see that f. is admissible let Et, R,

$XI I

E--- XI I

and letf Y X R+’ -- R+ bef(y, a) a.D(y, a).E(a).
R, E,(a) is a non-singular matrix so fl(0) ffl(0)

For all a e R,
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So f3(y, a) 0 if and only iffa(y, aa, an) 0 and

(aa, an).B(y, al an) -4- (Nan+a, Xan+n,) O.

By the choice of X this implies that f3 is admissible, and therefore f2 is ad-
missible.

Y X [0, 1] X Rn+n- R

by (y, t, a) ---> a.D(y, a).Et(a) is an ad-homotopy from f2 to f.
(1 t)f -k- tf

is an ad-homotopy from fa to f"). This proves the lemma.

Proof of 2.4. Let Y be a compact Hausdorff space and let f Y -+ M be a
continuous map. For some integers n, with n =/,f maps Y into Mn_.,.
Let f0" Y X R" - R be the admissible map so obtained from f. By the
Stone-Weierstrass approximation theorem there exists an admissible poly-
nomial map fa Y R -- R such that fa approximates f0 on Y X S"-. f0
and fa are ad-homotopic. An ad-homotopy is given by (1 t)fo + tfa,
0 -< _-< 1. Suppose degreef > 2. Then by 2.9 there is an admissible map
f" Y X R"+" - R+" such that 2 -< degreef < degree fa and f is poly-
nomially ad-homotopic tof’. Thus the map of Y intoM determined by f. is
homotopic to f and 2 _-< degreef < degree f. Hence by repeated applica-
tions of 2.9 a quadratic map is obtained so [Y, Q] - [Y, M] is surjective.

gNow let g, Y -* Q be two continuous maps which are homotopic as
maps into M. Then by 2.7 there exist integers n, with n /c and an
admissible polynomial map ha Y X [0, 1] X R" -- R such that g is given by

h,o h Y 0 X R
and g’ is given by

haa ha lYX 1X

Suppose that degree ha > 2. Let (Pa, P) be the /-tuple determined
by ha.

P eR(Y [0, 1])[Xa, ..., X,].

Let be the n matrix with entries in R( Y [0, 1])[Xa, Xn] given
by /)i For/ 1, 2, n let be the n matrix whose (i, j)



entry is Ai.k. Let/ be the n nl mtrix

Choose a positive real number X such that whenever

(y,t,a) eY)< [0,1] X R

hs h(y, t, a) 0 nd a < 1, then

a + X- a. B(, t, a)II <
Let I denote identity mtrix nd let

X(o) B

--XX,,I

Let h2 Y X [0, 1] X Rn+n* -- Rz+n* be h2(y, t, a) a. D(y, t, a). Then s
bove h is an dmissible polynomial mp nd degree h. < degree h. Let

h,o h Y X 0 X R.
h(nl)Then s in the proof of 2.9 h,0 is d-homotopic to ,.0 Moreover the d-

homotopy obtained s in the proof of 2.9 is given by n dmissible quadratic
mp

q: Y X [0,1] XR+R+z.
Similarly for h, h Y X 1 X R and h,. Hence a polynomial ad-
homotopy

h’" Y X [0, 1] X R+ R+

from -L0() to .() is obtained nd 2 =< degree h < degree h. By iteration it
follows that there exists n integer i nd n dmissible quadratic mp

" YX[0,1]XR+R+

’-() ’-( a) Thussuch that (y, 0, a) m.0 (y, a) and (y, 1, a) , (y,

[Y, Q] [Y, M]
is injective and 2.4 is proved.

2.10. DnFNTO. An admissible map f R" R- represents w e r if
the stable homotopy class of Sn- S-- by a f(a)/l! f(a)[l is .
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2.11. COROLLARY. (i) For all ] every w e can be represented by an ad-
missible quadratic map q R -- R-k.

(ii) Two admissible quadratic maps

q R Rn-k and qt R, R,_

represent the same w e - if and only if there exists a positive integer i and an ad-
missible quadratic map

h" [0, 1] X R+i-- R

such that h O X R"+ q(i) and h 1 X Rn+i q,(n-m+i).

Proof. In 2.4 take Y to be point.

3. Problems
Problem 1. Can every w be represented by quadratic map

q R
_
R-such that q-(0) 0?

Problem 2. Can every w e k be represented by u quadratic mup

q. R __/n--k

such that q(0) 0 and q(S-1) S--17
It can be proved that
(i) For any w e r, w + w can be represented by a quadratic map

q. R
__
R-with q-l(0) 0.

(ii) If
q. R

__
R-k

is a quadratic map with q(0) 0 and q(S-1) c S--1 then q-l(0) 0.
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