APPLICATIONS OF A FUNCTION TOPOLOGY ON RINGS
WITH UNIT
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Let R be a ring with 1 (we assume this throughout) and let M be a left
R-module. Then M* = Homg (M, R), the dual of M, becomes a right
R-module with a module operation defined by (fr)(z) = f(z)r for each f ¢ M *,
reR,and z e M. Let T be a submodule of M* and 8 = {kert|teT}. The
topology on M whose subbase for the neighborhood system of 0 is the set S is
called the T-topology on M. It is easy to see that the T-topology is the weak-
est (coarsest) topology on M such that every element of T is a continuous
homomorphism from M into R with the discrete topology (see Chase [1]). In
[7], L. E. T. Wu proved that a necessary and sufficient condition that R be left
self-injective is that T is precisely the set of all continuous homomorphisms
from M with the T-topology into R with the discrete topology for any left
R-module M and any submodule T of M* such that the T-topology is
Hausdorff.

Our aim here is to study B when M is restricted to be the left regular
R-module, zR. In this case, M* is the right regular R-module, R and the
submodules of M* are right ideals in R. Since every element of M * is repre-
sented by right multiplication by an element of R, S is just the set of left an-
nihilators of the elements of 7. (If X is a non-empty subset of B, we define
X', the left-annihilator of X, tobe {reR |rx = O forallz e X}. If X = {a},
we write X' = (a)’. The right annihilator, X", is defined analogously.)
Thus, if I is a right ideal in R, we define the T'; topology on R to be the topology
whose neighborhood system at 0 has as subbasis {(a)’ | a ¢ I}.

If I is a right ideal in R, we define C; to be the set of all @ ¢ R such that the
mapping f, : (R, Tr) — (R, discrete) defined by f.(x) = za is continuous for
all z e B. We note here that z e C; if and only if (z)' 2 N (y:)’ for some
positive integer n and for some y1 , %2, - , ¥» in I. Hence, C; € (I')" and
if 1 is finitely generated, then C; = (I')". In Section 1 we consider a generali-
zation of Wu'’s result [7] in determining necessary and sufficient conditions for
I = C;. We also consider other implications of I = C;. In Section 2 we
consider implications of the T'; topology being compact and/or Hausdorff.

1. Implications of I = C;

We first prove the generalization of Wu’s result. Note that we obtain a
weaker (but similar) condition than left-self injectivity.

TueoreM 1.1.  The following three conditions are equivalent:
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(1) If J is a finitely generated right deal in R, J = (J*)".

(ii) If F 1s a finitely generated free left R-module and A is a cyclic submodule
of F then any R-homomorphism from A inio R may be extended to an R-homo-
morphism of F into R.

(iii) I = C; for all right ideals I in R.

Proof. (i) implies (ii). Let f: A— R be an R-homomorphism where
A = Rm for some meF. Thenm = (a1, -, a,) for some ay, ---, an
in R. Suppose f(m) = b. Let L = Ny (a;)’. Then L C (b)' and
L= (2"a:R). LetI= D> ya:R. ThenI is a finitely generated right
ideal in R so that I = (I')" and so

be (W)Y CL = TYHY =1.

Qonsequently, b=arn + -+ a7, for some r,, -+, r, in B. Define
fi:F—-Rby )

J(oy, o 20) =mr+ -0+ Tata
for any 2y, - -+ , 2, in R. 'Then f is an R-homomorphism from F into R and

f(a) = f(a) for any a ¢ A.
(ii) implies (iii). Suppose I is a right ideal in R such that there is an a in
C; such that a is not in I. Then there exists a finite number of elements

&y, -+ &, for some positive integer n, in I such that Ni=; (2:)' € (a)’. Let
F=R® - -- ®R (ncopies). Define a mapping f by f(rz,, --- , r2,) = ra
for all re R. Then f is an R-homomorphism from the cyclic submodule
R(xy,---, x,) of F into R. If f were extended to an R-homomorphism
f: F— R, then

ra =f(1'x1, 7Tx") =f(7'$1,0, e 70)

+ 70, 72,0, -+ ,0) + «-- + (0, - -+, 0, r2,).
In particular, if r = 1 we have
a=f(x,0,---,0) 4+ - +F0,---,0,z,)
=xf(1,0,---,0) + - 4+ 2. f(0, .-+, 0, 1),

sothataelIsincex;el,z =1, --- ,nand I isaright idealin B. This contra-
diction confirms that I cannot be properly contained in C;. (Note: I C C;
always.)

(iii) implies (i). Letz;, - ,z, e Rbesuchthat = x; R + --- + z,. R.
Then J' = N} (z;)" and since J = C, we have (J')" € J. Since J C (J')"
always, we have J = (J')".

That this theorem is a generalization of Wu’s result can be seen from the
following theorem and the fact that a regular ring is not necessarily left self-
injective (Utumi [5, Example 3]).

TuaroreM 1.2. If R is a regular ring with 1 and I is a right ideal of R, then
I = 01 .
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Proof. LetJ = 21 R + --- + x, R be a finitely generated right ideal in R.
By [6, Lemma 15], J = ¢R for some idempotent ¢ in . Then

J'=(eR)' = R(1 —e) and (JY)" = (R(1 —e))" C eR

and so (JY)" = J. By 1.1 we have I = C; for all right ideals I in R.

In general, (R, T;) will not be a topological ring (of course, the additive
group, R, of R will be a topological group with the T topology). We end
this section with a necessary and sufficient condition for (R, T;) to be a topo-
logical ring.

Turorem 1.3. If I = C; for a right ideal I in R, then (R, T';) is a topo-
logical ring if and only if I is a two-sided ideal in R.

Proof. Assume (R, T) is a topological ring. Let » be in I and r be in R.
Since R is a topological ring, right multiplication by r is a continuous map from
(R, T;) to (R, T;). Since  is in I, right multiplication by w is a continuous
map from (R, T;) to (R, discrete). The composition of these maps, which is
right multiplication by ru, is then a continuous map from (R, T';) to (R, dis-
crete). Thus ru isin C; = I, and I is a left (hence two-sided) ideal of R.

Conversely, let I be a two-sided ideal in R. Then, if a ¢ R, s¢1, (ai)’ is
open in T;. We will show (z, a) — za is continuous in T';. Let

za + Nie (2:)*

be an open set containing za. Then z + N (ax;)'is an open set containing
z and @ + N (z;)" is an open set containing a and

[z + Ni (az0)lle + Nie (2]
= za + 2[Nim (2)"] + [Ni=1 (aw:)']a + [Nia (a2:) 1[N (22)]
C za + Niey (@)’
since N7 (z:)" is a left ideal in R and [N}~ (az:)'e S N7y (2:)"
Thus, (z, @) — za is continuous and so (R, T';) is a topological ring.
2. Implications of (R, T;) being compact and/or Hausdorff

We now consider the implications of (R, T';) being compact Hausdorff. It
is easy to see that (i) (R, T;) is Hausdorff if and only if I' = (0) and that
(ii) if (R, T;) is compact then R/(x)" finite for all z in I.  We shall use these
facts subsequently.

It is known that a compact Hausdorff topological group cannot be countably
infinite [2, 4.26, p. 31]. We first give two sufficient conditions that it be finite.

TueoreM 2.1. Let (RY, T) be a compact topological group (R™ is the additive
group of R) such that there s an x # 0 in R with () openin T. IfRisa
prime ring, then it is finite.

Proof. Since R/(z)' is compact and discrete and Rz =~ R/(x)’, Rz is a
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finite left ideal in R. Hence, R is a primitive ring with a finite minimal left
ideal. By the Wedderburn Theorem [4, p. 445], R is finite.

CoroLrLARY 2.2. If (R, T:) is compact for some right ideal I = 0 and R s
prime, then R is finite.

2.2 is not true if we replace the hypothesis that R be a prime ring with the
hypothesis that R be a semi-prime ring: Let R be the complete direct product
of the rings Z/(p), p a positive prime, B = IIZ/(p). Addition and multipli-
cation are component-wise. Let I be the direct sum =Z/(p). (The subset
of IIZ/(p) where all but finitely many of the components are zero.) The
T;: topology is the product topology (Tichonoff) on IZ/(p) where each
Z/(p) has the discrete topology. Thus (R, T';) is compact Hausdorff and R
is an infinite, semi-prime ring.

Denote by C” the set of all @ in R such that for each z in R and each open set
W containing xa there are open sets U, V containing z, @ such that UV C W,

LemMa 23. I CC' =t

Proof. Let tel, zeR, and «t + Ni— (y:)'! an open set containing
xt (yiel). Let

U=z+ ), V=t+ Nk(y)
Then

UV = at + [N (90 + (Ot + )'1N ()Y € ot + Ny (y0)°

since (¢)%t = 0 and N (¥:)' is a left ideal in R. Thus I < C".

LetteCl. Ifzel,[t+ (2)]nC" # @. LetfeC' suchthatf = ¢ + sfor
some se (x)". Then fr = tx. Since f e C” there is an open set U containing
0 such that Uf € (z)'. Consequently, Ut C (x)" so that

Ult + (2)Y] = Ut + U(x)' C (=)~
Thus, te C'.

Tueorem 2.4. Let (R, T';) be compact Hausdorff for some right ideal I in R.
If I is a prime ring, R s finite.

Proof. Let zel, x £ 0. (Since the space is Hausdorff, I == (0).) For
each t ¢ I there are open sets U,, V, containing 0, ¢, respectively, such that
U, V. C (2)' by 2.3. Since I is compact in the subspace topology, finitely
many of the V, cover I. Let Uy, ---, U, be the corresponding U,’s and let
U=NyU;. Then UI C (x)l and so UIz = (0). If there werea y 5 0
inUnlI, then ylx = 0,2,y eI,z # 0 5 y, contradicting the hypothesis that I
be a prime ring. Thus UnlI = (0) and so I is discrete in the subspace
topology. By [2, Th. 5.10, p. 35], I is closed and consequently must be com-
pact and is thus finite. Let I = {ay, --- ,x,}. Then (0) = I' = Ny (2:)°
so that (0) is an open set. Hence, T is discrete.

The next theorem is an analogue of a theorem of Kaplansky [3, Cor. 1, p.
162]. We first prove the following lemma.
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Lemma 2.5. If (R, T;) is Hausdorff and a ¢ R, (a)" is closed in T .

Proof. Suppose there is a te(a),, t¢(a)’. Then at = 0. Let
at + N7 (y:)" be an open set containing at and not containing 0. Then

alt + Ni=1 ()1 S at + Ni= (y)~
However,

[t + Nia (y:)'1n (a)" 5 0.
So there is a b in ¢ 4+ N?~ (y:)" such that b e (a)". Consequently,
0 = abeat + Ny (95)
a contradiction. Thus, (a)" is closed.

TuEOREM 2.6. Let (R, T1) be compact Hausdorff for some right ideal I. If
R has no proper closed two-sided ideals, then R is a finite prime ring.

Proof. SupposezeR,z # 0. Then zR # 0 and so zR is a non-zero right
ideal of R. Since (zR)" is the intersection of all sets of the form (¢)", t ¢ 2R,
by 2.5 we have that (zR) is closed in T;. By hypothesis, (zR)" = (0).
Consequently, xRt = (0) if ¢t > 0. Thus R is a prime ring so by 2.1, R is
finite.

Finally, we give two theorems which are concerned with the structure of
rings which are compact Hausdorff in a T'; topology. The first involves semi-
prime rings. In the second we remove this restriction.

TuroreMm 2.7. Let R be a semi-prime ring and (R, T';) compact Hausdorff for
some maximal right ideal I in R. Then, either R/I is a division ring, or R s
1somorphic to a subdirect sum of finite simple rings.

Proof. Since R is a semi-prime ring, Naes Pe = (0), where {Po}aca is the
set of all prime ideals in B. If I = P, for some a ¢ A, R/I is a division ring.
If R/I is not a division ring, / $ P, forany ae A. Let Q(Tr) be the quotient
space topology induced on R/P. by Tr (see [2, p. 36]). If (x)' + P. =R
forallzelthenl = ¢t 4 p forsomete () and p e P,. Hence, 2 = tx + px
= pr and I € P,. Thus Q(T;) is not indiscrete. Since (R/P., Q(T:))
is compact and there is z in R not I such that

(z 4+ Pa)' 2 ((2)" + Pa)/Pa,

by Theorem 2.1, R/P, is a finite prime ring. Let hy : R — R/P, be the
canonical mapping and define f from R onto Saes B/P., the subdirect sum
of the R/P, , by

f(r) = (ha(r), -+, ha(r), -+ ).

Then f is an isomorphism.

Turorem 2.8. If (R, Tr) is compact Hausdorff for some right ideal I in R,
then there is a mapping f from R onto a subdirect sum of rings, Saea Se , such
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that
(i) f s a ring isomorphism
(i1) f 4s a homeomorphism from (R, T1) onto (Saea S« , Product Topology)
(iii) Characteristic (S,) #= 0.

Proof. 1If Characteristic (R) = 0, the theorem follows. Suppose Charac-
teristic (R) = 0. Then for each 24 € I, T, # 0, R/(&,)" is finite and has more
than one coset. Let n, be the number of cosets in R/(x.)’. Since
R/(#4)' = Rxo, Rx, has n, elements and so Nz, = 0. Thus, n.-1 is in
(2.)'. Note that ne-1 5 0 since Ch (R) = 0. Define a mapping

g9: (R, T:)— (R, Tr)

by g(r) = nar. Then g is an BR-homomorphism from zR into R and, further-
more, g is continuous. Thus, g(R) = n. R is compact and, hence, is a closed
subgroup of R in T;. In the quotient space topology R/n. R is Hausdorff
[2, Th. 5.26, p. 40]. Let S, = R/n. R and let hy : B — S, be the canonical
mapping. Define f by

f(T) = (hl(r)’ ) hd(r)’ "')'

Then f satisfies (i) and (ii) by [2, Th. 5.29, p. 42] and Ch (8S.) < 7. so that
Ch (S.) = 0.

Acknowledgment. The authors are indebted to the referee for many helpful
suggestions. In particular, a simpler proof of the “only if”’ part of Theorem
1.3 should be entirely credited to him.
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