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Let R be a ring with 1 (we assume this throughout) and let M be a left
R-module. Then M* HomR (M, R), the dual of M, becomes a right
R-module with a module operation defined by (fr)(x) f(x)r for eachf e M*,
reR, andxM. LetTbeasubmoduleofM*andS {kertJtT}. The
topology on M whose subbase for the neighborhood system of 0 is the set S is
called the T-topology on M. It is easy to see that the T-topology is the weak-
est (coarsest) topology on M such that every element of T is a continuous
homomorphism from M into R with the discrete topology (see Chase [1]). In
[7], L. E. T. Wu proved that a necessary and sufficient condition that R be left
self-iniective is that T is precisely the set of all con.tinuous homomorphisms
from M with the T-topology into R with the discrete topology for any left
R-module M and any submodule T of M* such that the T-topology is
Hausdorff.
Our aim here is to study R when M is restricted to be the left regular

R-module, RR. In this case, M* is the right regular R-module, RR and the
submodules of M* are right ideals in R. Since every element of M* is repre-
sented by right multiplication by an element of R, S is iust the set of left
nihilators of the elements of T. (If X is a non-empty subset of R, we define
Xz, the left-annihilator of X, to be {r R rx 0 for all x e X}. If X {a},
we write X (a) . The right annihilator, Xr, is defined analogously.)
Thus, if I is a right ideal in R, we define the Tz topology on R to be the topology
whose neighborhood system at 0 has as subbasis (a)l a e I}.

If I is a right ideal in R, we define Cz to be the set of all a e R such that the
mappingfa (R, Tz)-- (R, discrete) defined by fa(X) xa is continuous for
all xeR. We note here that xeC if and only if (x) [’1-1 (y.)z for some
positive integer n and for some yl, y2, yn in I. Hence, C

___
(I) and

if I is finitely generated, then Cz (IZ) r. In Section 1 we consider a generali-
zation of Wu’s result [7] in determining necessary and sufficient conditions for
I Cz. We also consider other implications of I Cz. In Section 2 we
consider implications of the Tz topology being compact and/or Hausdorff.

1. Implications of I C
We first prove the generalization of Wu’s result. Note that we obtain

weaker (but similar) condition than left-self iniectivity.

THEOREM 1.1. The following three conditions are equivalent:
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(i) If J is a finitely generated right deal in R, J (J)r.
(ii) If F is a finitely generated free left R-module and A is a cyclic submodule

of F then any R-homomorphism from A into R may be extended to an R-homo-
morphism of F into R.

(iii) I C1 for all right ideals I in R.

Proof. (i) implies (ii). Let f" A-- R be an R-homomorphism where
A Rm for some m e F. Then m (al, as) for some al, an
in R. Suppose f(m) b. Let L f’l%l (at) 1. Then L

___
(b) and

L _,.= a, R)I. Let I 2, a R. Then I is a finitely generated right
ideal in R so that I (It) and so

be ((b))
_
L (I) I.

Consequently, b al r -t- W an r. for some r, r, in R.
]" F-R by

](x Xn X r + + x, r,

Define

for any x, x in R. Then ] is an R-homomorphism from F into R and
](a) f(a) for any a e A.

(ii) implies (iii). Suppose I is a right ideal in R such that there is an a in
C such that a is not in I. Then there exists a finite number of elements
xl, xn, for some positive integer n, in I such that [’11 (x) (a) l. Let
F R 0) 0) R (n copies). Define a mappingf byf(rx, rx) ra
for all r R. Then f is an R-homomorphism from the cyclic submodule
R(x, xn) of F into R. If f were extended to an R-homomorphism
] F-- R, then

ra ](rx rx, ](rx O, O)

-{- ](0, rx, 0,..., O) -t- d- ](0,..., O, rXn).

In particular, if r 1 we have

a ](x, O, O) d- + ](0, O,

x](1, 0,..., O) + d- Xn?(O, O, 1),

so that a e I since x I, i 1, n and I is a right ideal in R. This contra-
diction confirms that I cannot be properly contained in C. (Note: I

_
C

always.)
(iii) implies (i). Let xl, x e R be such that J x R -t- - x R.

Then J l’ (x) and since J C we have (J)
_

J. Since J

_
(J)r

always, we have J (j)r.
That this theorem is a generalization of Wu’s result can be seen from the

following theorem and the fact that a regular ring is not necessarily left self-
injective (Utumi [5, Example 3]).

THEOREM 1.2.
I C.

If R is a regular ring with 1 and I is a right ideal of R, then
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Proof. Let J xl R -t- -- x R be a finitely generated right ideal in R.
By [6, Lemma 15], J eR for some idempotent e in R. Then

J (eR) R(1 e) and(j)r (R(1 e))r_eR

and so (J) J. By 1.1 we have I Cx for all right ideals I in R.
In general, (R, Tx) will not be a topological ring (of course, the additive

group, R+, of R will be a topological group with the Tx topology). We end
this section with a necessary and sufficient condition for (R, T) to be a topo-
logical ring.

THEOREM 1.3. If I Cx for a right ideal I in R, then (R, T) is a topo-
logical ring if and only if I is a two-sided ideal in R.

Proof. Assume (R, T) is a topological ring. Let u be in I and r be in R.
Since R is a topological ring, right multiplication by r is a continuous map from
(R, T) to (R, T). Since u is in I, right multiplication by u is a continuous
map from (R, T) to (R, discrete). The composition of these maps, which is
right multiplication by ru, is then a continuous map from (R, T) to (R, dis-
crete). Thus ru is in C I, and I is a left (hence two-sided) ideal of R.

Conversely, let I be a two-sided ideal in R. Then, if a R, i e I, (ai) is
open in Tx. We will show (x, a) -- xa is continuous in T Let

be an open set containing xa. Then x = (axe) is an open set aontaining
x and a % (x) is an open set containing a and

[x + N, (axe)’][a + N (x,)’]
xa + x[NZ= (x,)] + [n,% (axe)]a + [n% (ax,)][n,% (x,)]
xa + n (x,)

since n, (x,) is a left ideal in R and [n,% (axe)]a n,% (x,).
Thus, (x, a) xa is continuous and so (R, T) is a topological ring.

2. Implications of (R, Tz) being compact and/or Hausdorff
We now consider the implications of (R, T) being compact Hausdorff. It

is easy to see that (i) (R, Tz) is Hausdorff if and only if I (0) and that
(ii) if (R, T) is compact then R/(x) finite for all x in I. We shall use these
facts subsequently.

It is known that a compact Hausdorff topological group cannot be countably
infinite [2, 4.26, p. 31]. We first give two sufficient conditions that it be finite.

THEOREM 2.1. Let R+, T) be a compact topological group R+ is the additive
group of R) such that there is an x 0 in R with x)l open in T. If R is a
prime ring, then it is finite.

Proof. Since R/(x) is compact and discrete and Rx -- R/(x) , Rx is a
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finite left ideal in R. Hence, R is a primitive ring with a finite minimal left
ideal. By the Wedderburn Theorem [4, p. 445], R is finite.

COaOLLARY 2.2. If (R, Tz) is compact for some right ideal I 0 and R is:
prime, then R is finite.

2.2 is not true if we replace the hypothesis that R be a prime ring with the
hypothesis that R be a semi-prime ring" Let R be the complete direct product
of the rings Z/(p), p a positive prime, R IIZ/(p). Addition and multipli-
cation are component-wise. Let I be the direct sum ZZ/(p). (The subset
of IIZ/(p) where all but finitely many of the components are zero.) The
Tz topology is the product topology (Tichonoff) on IIZ/(p) where each
Z/(p) has the discrete topology. Thus (R, T+/-) is compact Hausdorff and R
is an infinite, semi-prime ring.
Denote by C the set of all a in R such that for each x in R and each open set
W containing xa there are open sets U, V containing x, a such that UV c__ W.

LEMMA 2.3. I C___ C -7
Proof. Let eI, xeR, and xt - 11 (y) an open set containing

xt(yeI). Let

U x -I- (t) V -i- N, (y,)
Then

UV xt + x[N l] [ ] n,= (y) + (t) + (t) n,_, (y) xt + (y)

since (t)t o and % (y) is a left ideal in R. Thus I Cz.
LetteC. IfxeI,[t+ (x)]nCzo. LetfeCzsuchthatf= tWsfor

CIsome s e (x) Then fx tx. Since f e there is an open set U containing
0 such that Uf (x) . Consequently, Ut (x) so that

u[t + (x) ] ut + v(x) (x) .
Thus, e CZ..
THEOREM 2.4. Let (R, Tz) be compact Hausdorfffor some right ideal I in R.

If I is a prime ring, R is finite.
Proof. Let x e I, x 0. (Since the space is Hausdorff, I (0).) For

each e there are open sets Ut, Vt containing 0, t, respectively, such that
Ut Vt (x) by 2.3. Since i is compact in the subspace topology, finitely
many of the Vt cover I. Let U, U be the corresponding Ut’s and let
U U. ThenUi (x)andso UIx (0). If there were y 0
in U n I, then yIx O, x, y I, x 0 y, contradicting the hypothesis that I
be a prime ring. Thus U n I (0) and so I is discrete in the subspace
topology. By [2, Th. 5.10, p. 35], I is closed and consequently must be com-
pact and is thus finite. Let I {x, x}. Then (0) I N% (xi)
so that (0) is an open set. Hence, T is discrete.
The next theorem is an analogue of a theorem of Kaplansky [3, Cor. 1, p.

162]. We first prove the following lemma.
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LEMMA 2.5. If (R, T) is Hausdorff and a e R, (a) i8 closed in Tx.

Proof. Suppose there is a e’(a)r, t (a)r. Then at O.
at 1 (y) be an open set containing at and not containing 0.

However,
a[t + (y,)l]

_
at + N, (y,)1.

[ + (y,)] n (a) 0.

So there is a b in - (y,) such that b (a) r. Consequently,

0 ab at - n,’.. (y)1,

Let
Then

a contradiction. Thus, (a)r is closed.

THEOREM 2.6. Let (R, Tr) be compact Hausdorff for some right ideal I.
R has no proper closed two-sided ideals, then R is a finite prime ring.

Proof. Suppose x e R, x 0. Then xR 0 and so xR is a non-zero right
ideal of R. Since (xR) is the intersection of all sets of the form (t) ’, xR,
by 2.5 we have that (xR)" is closed in Tx. By hypothesis, (xR) (0).
Consequently, xRt (0) if 0. Thus R is a prime ring so by 2.1, R is
finite.

Finally, we give two theorems which are concerned with the structure of
rings which are compact Hausdorff in a T topology. The first involves semi-
prime rings. In the second we remove this restriction.

THEOREM 2.7. Let R be a semi-prime ring and (R, Tr) compact Hausdorfffor
some maximal right ideal I in R. Then, either R/I is a division ring, or R is
isomorphic to a subdirect sum of finite simple rings.

Proof. Since R is a semi-prime ring, n,, P, (0), where {P,}, is the
set of all prime ideals in R. If I P, for some a A, R/I is a division ring.
If R/I is not a division ring, I P, for any a e A. Let Q(Tr) be the quotient
space topology induced on RIP, by T (see [2, p. 36]). If (x) -k P, R
for allxIthenl-- tpforsomet(x)andpP.. Hence, x txWpx

px and I

_
P,. Thus Q(T) is not indiscrete. Since (RIP., Q(T))

is compact and there is x in R not I such that

(x + P.) ((x) +
by Theorem 2.1, RIP, is a finite prime ring. Let h. "R -- RIP, be the
canonical mapping and define f from R onto $,, RIP,, the subdirect sum
of the R/P,, by

f(r) (h(r), h.(r), ...).

Then f is an isomorphism.

THEOREM 2.8. If (R, Tr) is compact Hausdorff for some right ideal I in R,
then there is a mapping f from R onto a subdirect sum of rings, , S, such
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that
()
(ii)

(iii)

Proof.

f is a ring isomorphism
f is a homeomorphism from (R, Tx) onto (,,,a S, Product Topology)
Characteristic (S,) O.

If Characteristic (R) 0, the theorem follows. Suppose Charac-
teristic (R) 0. Then for each x, I, x, O, R/(x) is finite and has more
than one coset. Let n, be the number of cosets in R/(x) . Since
R/(x)

_
Rx., Rx,, has n, elements and so n, x, 0. Thus, n. 1 is in

(x,) l. Note that n,. 1 0 since Ch (R) 0. Define a mapping

g: (R, Tx) -- (R, T)

by g(r) n, r. Then g is an R-homomorphism from R into R and, further-
more, g is continuous. Thus, g(R) n, R is compact and, hence, is a closed
subgroup of R in T. In the quotient space topology R/n R is Hausdorff
[2, Th. 5.26, p. 40]. Let S, R/n R and let h R -- S be the canonical
mapping. Define f by

f(r) (hi(r), h,(r), ...).

Then f satisfies (i) and (ii) by [2, Th. 5.29, p. 42] and Ch (S,)

_
n so that

Ch (S,) 0.

Acknowledgment. The authors are indebted to the referee for many helpful
suggestions. In particular, a simpler proof of the "only if" part of Theorem
1.3 should be entirely credited to him.
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