A LINEAR EXTENSION THEOREM

BY
E. MicHAEL' AND A. Prrczyfskr®

1. Introduction

Let T be a topological space, S a closed subset of T, and C(S) and C(T)
the Banach spaces of bounded, continuous complex (or real) functions on S
and T, respectively. Let £ < C(8S) and H < C(T) be closed subspaces.
A continuous linear map u : E— H is called a linear extension if u(f) is an
extension of f for every f e E. The purpose of this paper is to study the exist-
ence of linear extensions of norm one.

If H = C(T), our problem was completely settled by Borsuk [3] for separable
metric T, and subsequently by Dugundji [6, Theorem 5] for all metric 7.}

TuaeoreM 1.1 (Borsuk-Dugundji). If T is metrizable, there exists a linear
extension u : C(8) — C(T) of norm one.

If H is a proper subspace of C(T'), the situation becomes more complicated,
and Example 9.2 shows that no linear extension « : C(S) — H need exist even
when every f e C(S) can be extended to some f' ¢ H. We therefore introduce
the following concept:

DerinttioN 1.2. The pair (E, H) has the bounded extension property if,
given any ¢ > 0, every f ¢ F has a bounded family of extensions

{few : W D S, Wopenin T} € H
such that | fo w(z) | < e wheneverze T — W.

Note that the pair (C(8), C(T)) has this property whenever T is normal,
The following result was proved by the second author in [13] and [14].*

TaroreEM 1.3. If T is compact metric, and if (C(S), H) has the bounded
extension property, then there exists a linear extension w : C(S) — H of norm
one.

Perhaps the most interesting application of Theorem 1.3 was to the case
where T is the unit circle in the complex plane, H < C(T) is the disc algebra
(i.e. H consists of boundary values of continuous functions on the unit dise
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3 Strictly speaking, Borsuk and Dugundji stated the theorem for real scalars, but
their proofs remain valid for complex scalars as well (which means, in particular, that »
is then complex-linear).

4 To be precise, [13] and [14] assume a property which is formally stronger than the
bounded extension property, but which (see Corollary 5.3) is actually equivalent to it.
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D which are analytic on D — T'), and 8 is a closed subset of T of Lebesgue
measure 0. Here (C(S), H) has the bounded extension property by
E. Bishop’s refinement [2] of the Rudin-Carleson extension theorem.’

The purpose of this paper is to give a new and simpler proof of Theorem 1.3,
while at the same time generalizing it in several directions. In particular, we
will show that C(S) can be replaced by any subspace E of C(S) satisfying
the following mild (and possibly superfluous) condition.

DeriniTiOoN 1.4. A separable Banach space E is a m-space if it has an
increasing sequence F; C F, C --- of finite-dimensional subspaces, whose
union is dense in E, such that there is a projection of norm one from E onto
each F,.* Such a sequence is called a m;-sequence for E.

Every finite-dimensional Banach space is obviously a m-space. More
generally, if S is compact metric, then ([11] or [12]) C(8) is a m-space. In
fact, all the standard separable Banach spaces are m-spaces (see, for instance,
[4]). However, an example constructed by V. Gurarii [8] shows that there
are separable Banach spaces which are not m-spaces.

TueoreM 1.5. Let T be any topological space. If E is a separable m-space,
and if (E, H) has the bounded extension property, then there exists a linear
extension w : E— H of norm one.

The proof of Theorem 1.5, which is given in Sections 2 and 3, is entirely
self-contained and elementary. Only when we want to deduce Theorem 1.3
from Theorem 1.5 do we need the fact, quoted above, that C(8) isa m-space
whenever S is compact metric.

In Sections 4-8 we obtain some refinements and extensions of Theorem
1.5. These sections are independent of each other, except that Corollary 5.3
is used in the proof of Lemma 8.3. Section 9 is devoted to examples.

Throughout the paper, T, S € T, E < C(8S) and H € C(T) will retain the
meaning they had in this introduction. If J < C(8) and K < C(T) are
linear subspaces, A(J, K) will denote the set of linear extensions » : J — K.

2. Preliminary results

Throughout this section, we tacitly assume that (E, H) has the bounded
extension property.

LemMa 2.1. Let G C E be a finite-dimensional subspace, and & > 0. Then
there exists a bounded family

fow : W DS, Wopenin T} C A(G, H)
such that | (vw g)(t) | < 8 whenever teT — Wand | g | < 1.

5 For a recent generalization of this theorem, see [9].

6 Such spaces were first considered by J. Lindenstrauss [10], who called them ‘‘spaces
with the 1-projective approximation property’’. The term ‘‘m-space’’ was introduced
by F. Browder and D. G. de Figueiredo [4].
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Proof. Letg', -+, g" be a base for G, so that each g ¢ G has a unique ex-
pansion g = D1 ci(g)g’. For each 4, let a; be the norm of the projection
map g — cdg)g’, leta = D ria.andlete = 8/a. Foreachsand open W D 8,
let g:,w be as in Definition 1.2, and let vw be the unique element of A(G, H)
such thatvw ¢' = ge.w (4 = 1, -+ ,n). These vy satisfy all our requirements.

ProrosiTioN 2.2 Let F, G be finite-dimensional subspaces of E, let
ueA(F, C(T)), and let v > 0. Then there exists a ve A(G, H) such that

lwf+ogll <14~
whenever fe F,ge@, || f+ g < L and |uf| < 1.
Proof. For each ve A(G, H), let

Ko={uf +vg:feF,geG [[f+gl <1, ufl <1},
and let

a,(t) = sup {|A(t) | : heK,} forteT.

Let us show that «, is continuous.
Observe, first, that K, € C(T) is compact: Let

P={(f,n) e FXG:|f+gl <1 <1}

Then P is a bounded, closed subset of F X @, and is thus compact. But
(f, 9) — uf + vg is a continuous map from P onto K, , so K, is also-.compact.

To see now that a, is continuous, define ¢ : T— C(K,) by (¢t)(h) = k().
Then ¢ is continuous (since K, is compact), and a,(t) = || ¢(¢) ||, so o, is
continuous.

Let the family {vy} be as in Lemma 2.1 with § = %v, and denote a,, by
aw . Since {vw} is bounded, there is an M > 0 such that || vw || < M for all
open WO S. Nowif | f+ g < Lland | uf| < 1,then | f|| < 1and hence
gl <2 Thus

aw(t) =1 if tes,
aw(t) K14+ 25 if teT — W,
aw(t) K14+ 2M if teT.
Let W1 = T, and then define open W, D S (n = 1, 2, --+) inductively by
Woia = Won {teT : aw,(t) < 1 4 28}.

Denote vw, by v. , and aw, by o, .

Our definitions imply that, if ¢ ¢ T, then o, (t) > 1 + 26 for at most one n:
In fact, if there are such n, let n, be the smallest one. Then ¢ ¢ W, for any
n >mo, and hence a,(¢) < 1 + 25 foralln > n,.

Pick an integer N > 0 such that (1 4+ 2M )N < 8. The preceding para-
graph implies that, if te 7, then
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N
52 an(t) < % (N(1+20) + (1 +2M)) < 1+ 38,
n=1 N
Now let

v=%nz=:lvn.
IffeF,ge@ || f+ gl <1,and | f[[ < 1, then, for allte T,
| (uf 4+ vg)(2) | = N ; (uf + vag)(2)
<Y+ |
S%ian(t)<1+36

Hence | uf + vg || < 1+ 386 < 1 4+ v, and that completes the proof.

COROLLARY 2.3. Let F C @ be finite-dimensional subspaces of E admitting
a linear projection = : G— F of norm 1, andlete > 0. Thenany uwe A(F,H),
with |u < 1 + &, can be extended to a u' ¢ A(G, H) with |4’ || < 1 + &.

Proof. Pick v > 0 so that
A+lul <1+e
Pick v e A(G, H) according to Proposition 2.2, and let
w'h = wu(wh) + v(h — 7h), heG.
Since u e A(F, H) and v e A(G, H), we have w' ¢ A(G, H). Let he@G with
I Al <1, and let us show that ||w'A| < 1 + e.

Sinee ||u | = 1, we may let k = /|| u||. It suffices to show that

lwk| <1+ 7.
Let f = wk and ¢ = k — =k, so that
Wk = uf + vg.
But
If+gl=1klI<rI<T,
and
lw | =llurk | < ullxlllEl=N=]R]<1,

so the choice of v implies that || w'k || < 1 + v. That completes the proof.

CoOROLLARY 2.4. If F is a finite-dimensional subspace of E, if ¢ > 0, and
ifue A(F,H) with || u || <1+ ¢, then there existsaw e A(F, H) with || w| =1
and |u —w| < e
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Proof. It will suffice to construct a wy e A(F, H) such that, for some posi-
tivey < 3¢, wehave | w1 || < 1+ yand || — wi || < € —v. Forwecould
then inductively repeat the process, obtaining a Cauchy sequence w, ¢ A(F, H)
whose limit w satisfies both our requirements.

Denote || » || by N, and pick a positive ¥ < e such that

A=1(1+7v)<e—1
Now pick v e A(F, H) according to Proposition 2.2 (with G = F), and let

wy = %u + )\——)\—1 .
Clearly w, e A(F, H).
To show that || wy || < 1 + v,let he F with || A || < 1, and let us show that
lwik| <14+ Letf=N'handg = (A — 1)A\7'A, so that

wy h = uf 4+ vg.
Then
[f+gl =2 A+0=1)r] <1,
and
lwfll <l Ifll=MTr] <1,

so the choice of v implies that || wih || < 1 4 7.
To show that |4 — wi || < &€ — v, pick he F with || 2| < 1, and let us
show that || (v — w1)h || < € — 4. Now note that

A—1

U — w = (uw — v).

Let f = N, g = —N"'h. It will suffice to show that

[wf +ogl <149,
because then
[ (w—w)h||=N=D]uf +og| <AN=1DA+7v) <e—r.
But
lf+gll =0,

luf | < HullIF=MWTh] <1,

so that the choice of v implies that || uf + vg| < 1 + 4. That completes
the proof.

and

3. Proof of Theorem 1.5

We begin with the following lemma, which will also be used in the next sec-
tion.

LemMma 3.1. Let F1 C Fy C - -+ be a m-sequence for E, let N > 1, and let
Vo € A(Fp , H), with || va || < N and va41 | Fo = v, for all n.  Then there exists a
(unique) w = A(E, H) such that | u || < Nand u | Fn = v, for all n.
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Proof. Let F = Us_, F,, and definev : F— H by v |F, = v,. Clearly
veA(F,H),and || v || < \. Since F is dense in E, v can be extended uniquely
to a continuous linear u : E— H, and || w || < N\. To see that u e A(E, H),
define rg : C(T)— C(8) by rs(f) = f|S. Since rs is continuous,

E = {feE:rs(uf) = f}

isclosed in E. But E® D F and F is dense in E, so E' = E. Hence
u e A(E, H), and that completes the proof.

Proof of Theorem 1.5. Let Fy C F, - -- be a m-sequence for E. Pick any
wi e A(F1, H) with || w1 || = 1; such a w, exists by Corollary 2.4. By Corol-
laries 2.3 and 2.4, we can now inductively pick a sequence w, e A(F,, H)
such that, foreachn > 1, || w, || = 1 and

[ Wnga | Fr — wn || < 27

Now for each fixed =, the sequence Wy, | Fr € A(Fn, H) (m =n,n + 1, --+)
is Cauchy, and thus has a limit v, e A(F,, H) with |jv,|| = 1. Clearly
Vg1 | Fn = v, for all n. Hence, by Lemma 3.1, there exists a u ¢ A(E, H)
with || < land u|F, = v, forall n. Since| | > 1 for any linear ex-
tension, that completes the proof.

4. Extending linear extensions

An interesting feature of the Borsuk-Dugundji theorem (Theorem 1.1) is
that the linear extension  can be chosen so that’ uls = 17. Does this remain
true for Theorem 1.3 if 1, e H? Curiously, the answer is “yes” for real
scalars (see Section 8), and “no” for complex scalars (Example 9.1). How-
ever, we will now prove a result which implies that it is “almost” true even
in the complex case. (It implies that because, if S is compact metric, then
C(8) always has a m-sequence F; C F, C -, with F; the one-dimensional
subspace spanned by 1g [11].)

Observe that part (a) of Theorem 4.1 actually sharpens Theorem 1.5.

TaeoreM 4.1. Suppose that T is any topological space, and that (E, H)
has the bounded extension property. Suppose also that E is a separable m-space

with m-sequence Fy C Fo C -+ | and that w : Fy— H s a linear extension of
norm one. Then, for any ¢ > 0:
(a) There exists a linear extension w : E— H, with ||| = 1, such that

lw—u|F| <Le
(b) There exists a linear extension v: E— H, with ||v| < 1+ ¢, such
thatw =v | Fy.

Proof. (a) The proof proceeds precisely as the proof of Theorem 1.5 in
Section 3, taking wy = w and replacing 27" by 27 "¢. The linear extension

7If A is a set, 14 denotes the function identically 1 on 4.
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v : E— H constructed in the proof of Theorem 1.5 will now satisfy all our
requirements.

(b) By Corollary 2.3, there exist linear extensions v, : F, — H such that
v =w,and || v || < 14 & and vu41 | Fu = v, for all n.  Our conclusion now
follows from Lemma 3.1.

5. Dominated convergence

Let Dr denote the set of all continuous bounded A : 7 — R with a positive
lower bound. If A e Dy, define A™ ¢ Dy by AT(t) = (A(t)™. If
AeDr, @ C T, and f ¢ C(Q), define Af ¢ C(Q) by (Af)(t) = A(Of(2);
if A C C(Q),let AA = {Af: fed}.

The following result refines Theorem 1.5.

THEOREM 5.1. Let T be a topological space, let A e Dr, and suppose that
(E, H) has the bounded extension property and that A™E is a separable m-space.
Then there exists a linear extension u : E— H suchthat,if fe Eand |f| < A S,
then | uf | < A.

Proof. The proof is almost shorter than the statement. First, it is easy to
check that (A™E, A™'H) also has the bounded extension property, so by
Theorem 1.5 there exists a linear extension» : A E —A™H of norm one. If
u : E— H is now defined by

w(f) = av(A™)),

then u satisfies all our requirements. That completes the proof.
When applying Theorem 5.1, note that each of the following conditions
implies that A™'E is a separable m-space.

(5.1.1) E is finite-dimensional,
(5.2.2) S is compact metric, and E = C(S),
(5.2.3) E is a separable m-space, and A(s) = 1 for seS.

DeriniTION 5.2. (a) The pair (E, H) has the dominated extension prop-
erty® if, for every A e Dz, any f ¢ E with [f(s) | < A(s) for seS can be ex-
tended to some f' ¢ H with | f'(t) | < A(t) for all t e T.

(b) The pair (E, H) has the strict dominated extension property if (a) is
satisfied with < everywhere replaced by <.

The following result now follows from Theorem 5.1, which is used to show
that (¢) — (a). There are more direct proofs of this implication, but they
all require a fair amount of work.

CoroLLARY 5.3. If T s mormal, then the following properties of a pair
(E, H) are equivalent:

8 This term was coined by Semadeni.
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(a) (E, H) has the dominated extension property.
(b) (E, H) has the strict dominated extension property.
(¢) (E, H) has the bounded extension property.

Proof. (a)—(b). Let AeDs and let fe E with |f(s) | < A(s) for all
seS. TUsing the normality of T, it is easy to construct a A¢e Dr such that
Ao(t) < A(t) for every teT, and |f(s) | < Ao(s) for all seS. By (a), f
can be extended to some f' ¢ H such that | f'(¢) | < Ao(t) < A(¢) forall teT.

(b) > (c). LetfeE ande > Obegiven. Let M = ||f|| + 1. For each
open W DO 8, pick a continuous Aw : T — [e, M] such that Ax(S) = M and
Aw(T — W) = ¢, and then use (b) to extend f to a continuous f.,w ¢ H such
that | fe,w(?) | < Aw(t) for every t e T. These fe,w satisfly the requirements of
Definition 1.2.

(e)— (a). Supposethat A eDr, feE, and|f(s) | < A(s) for every seS.
Let E; be the one-dimensional subspace of E spanned by f; then E; is a sepa-
rable m-space. Applying Theorem 5.1 to the pair (E;, H), we obtain an
extension of f to some f’ ¢ H such that | f'(¢) | < A(t) forall¢e T. That com-
pletes the proof.

If T is compact metric, then the bounded extension property is equivalent
to a remarkably weak condition:

Prorosition 5.4. If T is compact metric, then the following properties of a
pair (B, H) are equivalent.

(a) (E, H) has the bounded extension property.

(b) To every feE there corresponds a bounded sequence fn e H such that
o |8 € E for all n, fa(s) — f(s) if se8, and fu(t) > 04fteT — 8.

We omit the proof of Proposition 5.4. Note that it is not obvious from (b)
that f ¢ £ has any extension f’ ¢ H.

6. Banach space-valued functions

Let B be a Banach space, and let C(X, B) denote the Banach space of
bounded, continuous functions from X to B. It is a striking fact that, if E
and H are assumed to be subspaces of C(S, B) and C(T, B), respectively, and
if absolute values are suitably replaced by norms, then all our definitions remain
meaningful, and Theorem 1.5 and its refinements in Sections 4 and 5 remain
true with exactly the same proofs. In order to benefit from this observation,
however, we must know something about what subspaces E of C(S, B) are
separable m-spaces. In particular, when is C(S, B) itself a separable -
space? We can answer the latter question as follows:

Prorostrion 6.1. If S is compact metric, and if B is a separable m-space,
then C(8S, B) is a separable m-space.

Before proving this result, let us note that, in view of the observation in the
first paragraph of this section, Proposition 6.1 implies the following generaliza-
tion of Theorem 1.3.
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TarEOREM 6.2. If T s compact metric, B a separable m-space, H a closed
linear subspace of C(T, B), and if (C(S, B), H) has the bounded extension
property, then there exists a linear extension u : C(S, B) — H of norm one.

To prove Proposition 6.1, we will use the following result of Grothendieck
[7, p. 90], where A ® * B denotes the completion of the algebraic tensor product
A ® B in the norm given by

| i ® yill = sup {| i f(w)ga(ys) | = fie Sk, gieSh),

where 8% and S} are the unit spheres of the dual spaces of A and B, respec-
tively.

Lemma 6.2. [7]. If S is a compact Hausdorff space, and if B is a Banach
space, then C(S, B) s isometrically isomorphic to C(S) ® " B.

In view of Lemma 6.2, and the fact that C(S) is a separable m-space if S
is compact metric ([11] or [12]), Proposition 6.1 is a special case of the follow-
ing result.

ProrosiTioN 6.3. If A and B are separable m-spaces, sois A @ " B,

Proof. Let Ay € A, C --- be a m-sequence for 4, let B, € B, < ---
be a m-sequence for B, and let C, = 4, ® * B, foralln. By a result of Schat-
ten [16, Lemma 2.12], the norm on 4, ® * B, is the same as the one this space
inherits as a subspace of A ® * B, so that C, € 4 ® " B as anormed linear
space. AlsoC; c C, C ---,and U5, C,isdensein A ®* B. It remains to
find a projection of norm one from 4 ® * B onto each C, .

Let o, : A— A, and 8, : B— B, be projections of norm one. Define

%@Aﬂn:A®AB’—)An®ABn
by extending the algebraic tensor product
0, ®Br:A®B— A, ® B,

over the completion A ® * B. This is possible because, as is easily checked
from the definition of the norms, o, ® B, is bounded, with

on ®Bull < [lenll |8l = 1.

Hence also || an ®" 8. || £ 1, and o, ® * B is the required projection.

7. Two special cases

If the bounded extension property is eliminated from Theorems 1.3 and
1.5, then, as we shall show in Examples 9.2 and 9.5, there may exist no linear
extension u : E— H at all (even when every f ¢ E can be extended to some
f eH). There are, however, two special cases (which are, in a sense, dual
to each other) where the situation is different. We define v : H — C(S) by
rsf = f| 8, and isomorphic means linearly homeomorphic.
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Prorosition 7.1. If either of the following two conditions s satisfied,
there exists a linear extension u : B — H (although not necessarily of norm one).

(a) rsH D E, and E s isomorphic to [y .

(b) H is separable, rs H = E, and r5'(0) is isomorphic to co .

Proof. (a). LetH,=rs'(E),andlet 7= rs| H,. Sincerisa continuous
linear map from H, onto E, and F is isomorphie to ; , there exists a continuous
linearinverseu : E — H, for = (i.e. 7uf = fforallfe E) [5, p. 31 (12)]. But
that means that u is a linear extension.

(b) Let K = r5'(0). Since K is isomorphic to ¢, , a theorem of Sobczyk
[17] [15; Theorem 4] implies that there exists a projection p from H onto K.
Hence there is an isomorphism » from p~(0) onto the quotient space H/K,
defined by »(9) = g + K. Since rs maps H onto E, the open mapping
theorem implies that g is a quotient map, so there is an isomorphism w from
E onto H/K, defined by w(f) = r5'(f) + K. Thenu : E— p (0) € H,
defined by u = v ' o w, is a linear extension.

8. Linear extensions u with u(1s) = 1,

As observed in Section 4, the Borsuk-Dugundji theorem (Theorem 1.1)
always permits the linear extension u to be chosen so that u(1ls) = 1r.
The purpose of this section is to prove that this remains true for Theorem 1.3,
provided we either use real scalars, or use complex scalars and assume that
H c C(T) is self-adjoint (i.e. f ¢ H implies f ¢ H). (Example 9.1 shows that
this may be false with complex scalars if H is not self-adjoint.)

TuroreEM 8.1. Suppose that S is compact metric, that (C(S), H) has the
bounded extension property, and that 1re¢ H. Then:

(a) With real scalars, there exists a linear extension u : C(S) — H of norm
1 with u( l,s) = 11' .

(b) With complex scalars, and with H self-adjoint, there exists a linear
extension u : C(S)—> H of norm 1 withu(ls) = 1p. Moreover, uf = uf for
every f e C(8S).

Proof that 8.1(a) implies 8.1(b). Let C(8) and H be as in 8.1(b), and
let Cr(S) and Hz denote the spaces of real-valued functions in C(S) and H,
respectively. Then 17 e Hg, and it is easily checked that (Cz(S), Hg) has
the bounded extension property. Hence, by 8.1(a), there exists a real-linear
extension ug : Cr(S) = Hr of norm 1 with w(ls) = 1r. Now define
u: C(8S) —» Hby

uf = ug Re f + tug Im f.

It is easy to check that u is a complex-linear extension, that uls = ulr,
and that uf = uf for every fe C(S). It remains to verify that ||« | < 1.

Let fe C(8S) with || f|| < 1, let t¢ T, and let us show that | (uf)(¢) | < 1.
Pick a complex scalar o, with |a| = 1, so that (auf)(¢) is real. Letting
f' = dof, it follows that
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L)@ | = ()@ | = | (uzRef)(t) | < [ uzRef ||
=[Ref I <SS lI =1l <1

That completes the proof that 8.1(a) implies 8.1(b).

The remainder of this section will be devoted to proving Theorem 8.1(a).
We begin with several preliminary observations and results. The hypotheses
of Theorem 8.1(a) will always be tacitly assumed.

It was noted in the introduction that C(8) is a w1-space, but we can be more
precise: Call ® = {¢1, - -+ , du} & peaked partition of unity on S if it is a parti-
tion of unity and if, foreach ¢ = 1, .-+ ,n, there is an s;eS such that
¢i(s;) = 1. The linear space [®] spanned by such a ® is called a peaked par-
tition subspace of C(S), and the map = : C(S) — [®], defined by

(%) of = Dt f(8)i,

is a projection of norm 1 onto [®] (see [11]). It was proved in [11] that, for
compact metric S, the space C(8) always has a m-sequence F; C F, C - - - con-
sisting of peaked partition subspaces, and with F; = [14].

If F < C(8S) and w e A(F, H), let us say that w > 0 if uf > 0 whenever
f > 0. The following lemma follows from (x).

Lemma 82. If & = {¢1, -+, ¢u} s a peaked partition of unity on 8, if
weA([®], H), and if wp; > 0 for< =1, --- , m, then w > 0.

LeEmma 8.3. Let feC(8),f > 0,let e > 0, and let f’ ¢ H be an extension of
f with f > —e. Then f can be extended to some f* ¢ H with f* > 0 and
15 =7l < 4e.

Proof. Let g = inf (f,0). Theng|S = 0. Let
A = 2elr +g.

Then A ¢ Dr (see Section 5), and A |S = 2¢ls. Hence, by Corollary 5.3,
there is an extension of 2¢lg to some heH with |h| < A, and clearly
IR =Al = 2. If wenow let

f*=f + 21, — b,

then it is easy to verify that f* satisfies all our requirements. That completes
the proof.

CoroLLARY 8.4. Let G be a peaked partition subspace of C(S8). Let
veA(G, H), let ¢ > 0, and suppose that vg > —e whenever g e Gand0 < g < 1.
Then there exists we A(G, H) with w > 0 and ||w — v| < 4ne, where
n = dim G.

Proof. Let G = [®], where ® = {¢1, -, ¢.} is a peaked partition of
unity on 8. Then 0 < ¢, < 1fori =1, -+ ,n,s0vp; > — cforalls. By
Lemma 8.3, each ¢; can be extended to some éF e H with ¢F > 0 and
| vp: — &7 | < 4e. Let w be the unique element of A(G, H) such that
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we; = ¢ fori =1, -+, n. Then w > 0 by Lemma8.2,and | (v — w)¢; |
<d4efori=1,---,n Hence| v — w]| < 4neby (*), and that completes
the proof.

ProrosiTioN 8.5. Let F, G be peaked partition subspaces of C(8),
ueA(F, H), and 8 > 0. Then there exists w e A(G, H) such that w > 0 and

[uf +wgl <1+8
whenever fe F,ge@, || f+ g < 1,and || w] < 1.

Proof. Let us first observe that Proposition 2.2 remains true if we are
given finite-dimensional subspaces F; < C(8) (¢ = 1, -+, n), and
u, e A(F;, C(T)) for each 7, and require that v behave properly with respect
to each u; . The proof is the same, except that now K, and o, must be defined
with consideration for all the u,; .

Let us now apply the previous paragraph withn = 2, Fy = F, w3 = u,
Fy = [1g], us(N\ls) = M, and y = 8(1 + 8n) ", where n = dim @, yielding a
suitable v e A(G, H). This v satisfies the hypothesis of Corollary 8.4, with
¢ replace by v, forif geGand 0 < g < 1, then || 15 + (—g) | < 1 and
| us 15| = 1,80 || ua 1s+ v(—g) || <1 4+ v, whence || 1z —vg || < 1+ v,and
thus g > —v. By Corollary 8.4, there is thus a w e A(G, H) with w > 0
and |w — 0| < 4ny. Nowif feF,geG ||f+ gl < L and ||uf| < 1,
then || g || < 2, and hence

luf +wgll < Twf+ogll+llog—wgl <(I+7v)+8ny=1+8
That completes the proof.

CoROLLARY 8.6. If F is a peaked partition subspace of C(8), of ¢ > 0,
and if ue A(F, H) with || u || < 1 + €andu > 0, then there exists w e A(F, H)
with |w] =1L, w 20,and ||u —w| < e

Proof. This follows from Proposition 8.5 precisely as Corollary 2.4 fol-
lowed from Proposition 2.2. That completes the proof.
Let spe S be fixed. Then clearly any fe C(S) has a unique decomposition

f=f0+)\157

where fo(s0) = 0 and \ is real (in fact, N = f(so)).
The proof of the following lemma can be left to the reader.

Lemma 8.7. Suppose that F < C(8S), 1seF, 1reH, and weA(F, H).
Define v’ ¢ A(F, H) by
W (fo + Ns) = ufo + Ny

Ifu>0and || u| = 1,thenw’ > O0and || u' || = 1. Moreover,
[u—u|=[uls— 1z

LemMa 8.8. Let F C @ be peaked partition subspaces of C(8S), let w e A(F,H)
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with || w ] = 1and uls = 17, and let 6§ > 0. Then there exists a w' ¢ A(G, H),
with |w' ]| = 1 and w1y = 17, such that |u — v | F || < 4.

Proof. Since @ is a peaked partition subspace of C(S8), there exists a
projection = : G— F of norm 1. We can therefore apply Corollary 2.3, with
e = 8(2 + 16n)7", where n = dim G, to extend u to some v ¢ A(G, H) with
vl <14+ e NowifgeGand0 < g < 1,then|1ls —g| < 1,50

[1r —vg |l = o(1s =) | <1+ ¢

and hence vg > —e. We can therefore apply Corollary 8.4 to obtain
weA(G, H) withw > 0and || w—v || <4ne. Hencel|w| <14 (14 4n)e.

Next, we apply Corollary 8.6 to obtain w’ e A(G, H) with ||w'| = 1,
w > 0,and ||w — w’'|| < (1 + 4n)e. Finally, we apply Lemma 8.7 to find
u e A(G, H) with || v/ || = 1 and

fw —w | =[wls—1z]| = | (" —0)ls|| < 0 —v].
Hence ,
Ju—w|F|<[v—u||<llv—w| + v =]

<2fw = <2(fw —wl+w—vl)
< 2(1+ 8n)e = 6.
That completes the proof.

Proof of Theorem 8.1(a). Let F1 C Fy C --- be a m-sequence for C(8)
consisting of peaked partition subspaces, with F, = [15]. Definew, e A(Fy, H)
by wui(Alg) = MNlr. By Lemma 8.8 we can now inductively define
Un € A(Fp , H), with || u, || = 1 and u,1s = 17,50 that ||tnps | Fn — s || <27"
for all n. We now proceed exactly as the proof of Theorem 1.5 to obtain a
ueA(C(S), H) with ||« || = 1 and ulg = 1r, and that completes the proof.

9. Examples

Our first example shows that, for complex scalars, Theorem 1.3—and hence
also Theorem 1.5—cannot be strengthened by asserting that there exists a
linear extensionu : E — H of norm onesuchthat uls = ulr. (See, however,
Theorems 4.1 and 8.1.) (The disc algebra is defined in the remark following
Theorem 1.3.)

ExampLE 9.1. Let T be the unit circle, and let S C T contain at least two
points and have Lebesgue measure zero. Let E = C(8) and let H < C(T) be
the disc algebra. Then there is no linear extension u : C(8) — H of norm one
such that ulg = 1p.

Proof. Let s and s; be two different points in S. Choose f; in C(S8)
such that

1 =fi(s1) 2 f(s) 2 fi(s) =0 for se S,
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and let fz = 1lg — f1 . Then “fq, “ = fz(sz) =1 (7/ = 1, 2), fl + f2 = IS;
and fi(s;) = 0forj # ¢ (4,7 = 1,2). Hence, for arbitrary complex numbers
o and a, ,

larfy + aafe ||

maxis | ;| >
> maxie | (@ fi + a2 fe)(si) | = maxiqe|a;l.

Now let u : C(8S) — H be a linear extension of norm 1. Clearly u is a
linear isometry from C(S) into H. Therefore, for arbitrary complex numbers
a; and a, ,

larufy + asufe || = |arfi + 0afa || = maxias|a:l.
This implies (by taking a@; = (uf:)(t)) that
(1) | (W) (@) | + | (w)(1) | < 1 for teT.
Now if uls = 17, then uf; + ufs = 1r. Hence
(2) ufi(t) + ufe(t) =1 for teT.

It follows from (1) and (2) that uf; and uf; are non-negative—and hence real—
functions, and must therefore be constant because they belong to the disc
algebra. But this leads to a contradiction, because

ufi(s1) = fi(s1) # fi(s2) = ufi(se).

That completes the proof.

Our last three examples show how Theorems 1.3 and 1.5 can become false if
the bounded extension property is omitted from the hypotheses, or even if it
is weakened by omitting the word ‘‘bounded” in Definition 1.2.

The following example provides a converse to Proposition 7.1(a).

Exampie 9.2. Let S be any infinite, closed subset of the interval [—1, 0], and
le¢ T = Sull,2]. Let E = C(8) or, more generally, any infinite-dimensional
closed linear subspace of C(S) which is not tsomorphictoly . Then there is a sub-
space H of C(T) such that:

(a) EveryfeE has an extension f ¢ H.

(b) There is no linear extension u : E — H.

Proof. By [1, p. 111], the separable Banach space E is the image of [, under
a linear map « : Iy — E with || « || = 1. By [5, p. 93], there is a linear isometry
8 from I into C([1, 2]). Let us define an isometric isomorphism v from I
into C(T) by
(v@)(t) = (ax)(t) if tef,
(va)(t) = (Bx)(¢) if teT — 8,
and let H = ~1; .

Clearly (a) is satisfied, because aly = E. To prove (b), suppose there were
a linear extension w : £ — H. Then u(E) is infinite-dimensional and comple-
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plemented in H (with complement {fe H : f | S = 0}); hence, since H is iso-
morphic to &y, so is u(E) by [15, Theorem 1]. But u(E) is isomorphic to £
(since || f]| < [lufll < [lw] |l f] for every feE), so E is isomorphic to l; ,
contrary to our assumptions. That completes the proof.

Remark. In certain cases, such as when S is a convergent sequence e’md
E = C(8), it can be shown that 9.2(a) can be strengthened by choosing f* so
4
that | f || = | f].

The verification of the following simple example can be left to the reader.
Note that here there are linear extensions, but not of norm one.

ExampLe 9.3. Let T = [0, 2], S = [0, 1], and

2
H= {fe C(T):f0 F(t) dt = 0}.
Then
(a) If W D Sisopenin T, then every f ¢ E has an extension f' ¢ H such that
f(t) =O0whenteT — W.
(b) There is no linear extension u : C(S) — H of norm 1 (in fact, 15 has
no extensiton in H of norm 1).

In the proof of Example 9.5, we will need the following lemma, which seems
to be known among Banach space specialists, but for which we have found no
reference in the literature; the proof, which is somewhat complicated, is
omitted.

Lemma 94. Let L = (I X i X +++)e, be the Banach space of sequences
x = (), with T, ely for all n and || .|| — 0, and with || z || defined by
|z | = supmi |l z.||. Then L has no infinite-dimensional reflexive subspaces.

ExampLi 9.5. There exists a compact metric space T, closed 8 < T, and closed
subspaces E  C(8S) and H < C(T) such that:

(a) If W D Sisopen in T, then every f ¢ E has an extension f' e H such that
f(t) =0ifteT — W.

(b) There is no linear extension w : B — H.

Proof. Let S be the interval [—1, 0], let

In — [2—21;’ 2—2n+1]’
and let
T =S8u U:-l In .
Let
E = Cy(8) = {feC(8) : f(0) = 0}

or, more generally, any subspace of Co(S) which contains an infinite-dimen-
sional reflexive subspace.” By [1, p. 111], the separable Banach space E is the

% Since every separable Banach space is isomorphic to a subspace of Cy(S), E can
thus be chosen ‘“‘almost arbitrarily”.
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image of I; under a linear map « : [y — E with || « || = 1. By [5, p. 93], there
are linear isometries 8, : Iy — C(I,) (into) for all n. Let L be the space of
Lemma 9.4, and define the linear map v : L — C(T) by

(v2)(8) = (Baza)(2) if tel,,
(v2)(t) = 2_a=12 "(axa)(t) if teS.

It is easily checked that indeed vz ¢ C(T) forallze L. Let H = ~(L). To
verify (a), observe first that W O I, for some m; if f ¢ E, we pick = ¢ L such
that ax, = f and z, = 0 for n # m, and then take f’ = yx. It remains to
verify (b) and the fact that H is closed in C(T).

Suppose there were a linear extension v : £ — H. Then u is an isomorphism
from E into H (since || f|| < [[wf|| < ||u] || f] for all fe E), so H has an
infinite-dimensional reflexive subspace. By Lemma 9.4, we can now obtain a
contradiction by showing that v is an isometry; that will also prove that H is
closed in C(T).

Let x ¢ L. Then

Iz || 2 supret || Bn 2o || = supras [ @ || = [z .

To check that also || vz || < || ||, we will show that |(yz)(¢)| < || z || for every
teT. Iftel,, then

(@) ()] = [(Baza) (@) S [ Bull 2]l = [[2a |l < [
If te S, then
[(va) ()] £ 2 a2 e || £ 2 u=12" [z || = [|2].

That completes the proof.
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