ALGEBRAICALLY TRIVIAL DECOMPOSITIONS OF HOMOTOPY
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BY
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Every compact 3-manifold M* without boundary possesses a cell-decomposi-
tion ¥ that contains just one vertex, say O, (see for instance [3, Sec. 5]). From
¥ we may read by a well-known procedure (see [7, §62]) a ‘“‘corresponding”
presentation

B¥) = ({ga, "‘:ga}:{rls "'31‘5})

of the fundamental group m(M®) where the generators g;, -+ , ga are in 1-1
correspondence with the (oriented) 1-dimensional elements Ei, ---, E; of
¥ and the relators 11, - - - , 13 are in 1-1 correspondence with the 2-dimensional
elements Ei , --- , B} of ¥, i.e., r; is a word in the g:.-ﬂ’s obtained by running
once around the boundary of E. In this way the relators t; are uniquely de-
fined up to cyclic permutations and inversions, i.e., if we denote by (r;) the
set of all cyclic permutations of t; and of t7' then the (r;)’s are uniquely de-
fined.

In the special case that M* is a homotopy 3-sphere, B(¥) is a presentation
of the trivial group. However, it is—in general—an unsolved problem to
recognize whether or not a given presentation B(¥) presents the trivial group;
this problem seems to be extremely difficult and it may be unsolvaable, since
the triviality problem of group theory is unsolvable (see [1], [6]). One might
expect that these group theoretic difficulties are also the reason for the diffi-
culties of the Poincaré problem. But the result of this paper shows that this
is not so: We shall prove that every homotopy 3-sphere M® possesses a cell-
decomposition ¥ such that the corresponding presentation

B¥) = ({ga, "':ga}a{tly "',I‘b})

is obviously trivial, i.e., such that P(¥) can be transformed by simple cancella-
tion operations (without changing the generators g; and the number b of rela-
tors) into the “standard trivial presentation’

O = ({gls v ’ga}’{g]-’ *** 90,y *b—a})
where *® means that O contains b — @ times the empty relator (i.e., the re-
lations of O are’g; = 1, --+, g, = 1, and b — a times the trivial relation

1 =1). To make this precise we say that a presentation B” is obtained from
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2 Here the equality sign means that both sides of the equation represent the same
group element; but in general, if not stated otherwise, we call two words equal if and
only if they read, letter by letter, in the same way.
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a presentation B’ = ({g1, -, gd}, {11, -, r;',}) by a cancellation operation
of Type 1 or 2, respectively, if the following holds:

Type 1. (Cancelling a syllable g;*¢g:.) Forsome ¢, j (£ = 1, ---, a3
j=1,---,b) thereis a word t” such that g7 g; t” ¢ (r§) and P” is obtained
by replacing t; by t”. (Note that this operation does not in general allow
cancelling a syllable g; gi".)

Type 2. (Cancelling a syllable which is itself a relator.) For some j, k
(j,k =1, -+, b;j5 k) there are words 13", t” such that 15 € (r5), Ti't” ¢
(7, and P” is obtained by replacing t; by t”; the length I of 1 is called the
length of the cancellation operation.

We shall prove the following

TarEorREM. If M®is a homotopy 3-sphere then there exists a cell-decomposition
Y of M, containing just one vertex O, such that a corresponding presentation

SB(\I/) = ({gly '”)ga}’{rl’ tee ,rb})

of the fundamental group m(M®) with generators g and relators t can be trans-
formed into the standard trivial presentation

O = ({91: "',ga}’gl, ”’sgu:*b—a})

by means of a finite sequence of cancellation operations of Type 1 and a subse-
quent finite sequence of cancellation operations of Type 2 with lengths not exceed-
ing 3.

One might call a cell-decomposition ¥ with the above properties “algebrai-
cally trivial”. 1 hope that the above theorem will be useful for deriving a proof
of the Poincaré conjecture. However, this remains a difficult problem. A
reason for the difficulty is the lack of correspondence between Tietze trans-
formations of the group presentation B(¥) and transformations of the cell-
decomposition ¥. If a presentation Q is derived from P(¥) by a Tietze
transformation then we may ask the question: does there exist a cell-decompo-
sition @ of M® such thatQ corresponds to @7 Let us call the Tietze transfor-
mation good if the answer to the question is “yes”, and bad if the answer is
“no”. TUnfortunately, most Tietze transformations are bad from this point
of view. The only large class of good and simple Tietze transformations I
know are the eliminations: If B(¥) = ({g1, +++, ga}, {11, *++ , T} ) contains
a relator, say 1, such that for some kg ™" € (r;) where is a word in the
g7s not containing ¢i', and if Q is obtained from B(¥) by deleting g and 1
and replacing in all relators t; (j 5 [) the letter gi* by the word w*', then
the Tietze transformation B(¥) — QO is good. Moreover, I would like to
remark without proof: If it were possible to restrict the lengths of the cancel-
lation operations in our theorem to 2 instead of 3 then the sequence of cancella-
tion operations could be changed into a sequence of good Tietze transform-
ations. This would mean a proof of the Poincaré conjecture since it is easy
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to show that M?® is a 3-sphere if it possesses a cell-decomposition @ such that
the standard trivial presentation O corresponds to Q.

Proof of the theorem

1. Preliminaries. Let M3 be a homotopy 3-sphere, i.e., a compact, simply
connected 3-manifold without boundary.

We choose the semilinear standpoint as described in [4, Sec. 3]; i.e., we as-
sume that all point sets, denoted by capital roman letters, are piecewise recti-
linear polyhedral point sets in a euclidean space € of sufficiently large dimen-
sion n, ete. We denote the closure, boundary, and interior of a point set X by
X, X, "X, respectively.

2. The idea of the proof. First we consider (as in [3], [5]) a cell-decomposi-
tion T of M*® into one vertex E°, 7 open arcs E; , r open disks E} , and one open
3-cell, and a singular fan V? corresponding to T' (i.e., a wedge of r singular disks
Vi with 'V = E; where the V¥s may intersect themselves and each other in
double arcs; for details see [3, Sec. 5, 6]). Let T° be a small neighborhood of
"V*in M®. Now we consider the “middle parts,” A%;, of the double arcs
Ay (j =1, .-+, s) of V* that lie outside of "T° (see Fig. 1) and the “middle
part” V3 of V* obtained from V* by removing its boundary “V* and the open
annuli that lie in the Vi n T%s between 'V: and Vi n "T®. Since T’ is a
Heegaard-handlebody in M® we can “project” the A%;’s into "T° (in the same
way we projected the arcs B in [5, Sec. 3]) so that we obtain a projection cylin-
der K3 for each arc A%;. Now we “thicken” V% and we obtain by this a 3-
dimensional polyhedron Vi where Vi 4+ T® is obviously a handlebody with s
handles corresponding to the Aks. Moreover, one can show that V& + T°
is a Heegaard-handlebody in M?, and that those parts, say Kis (b = 1, - -+, b),
of the projection cylinders K7 that lie outside of (V& 4+ T*) contain a complete
system of meridian disks of M® — (V&% + T*).

Now one may expect to obtain an especially simple Heegaard-diagram of
M?® (and a corresponding cell-decomposition ¥; compare [5, Sec. 8]) from the
bandlebody V% + T° and the outer meridian disks K%,. It remains to select
inner meridian disks X3 (j = 1, - -+, s) of V& + T°in a suitable way. This
can be done as indicated in Fig. 1: The polyehdron X ;in Fig. 1 consists of two
disks in T®, parallel to the disk Vi.; € Vi n T°, and one arc outside of *T*
joining these disks in Vi (encircling A%; and the disk V%.; € V& + T%). If
V% is thickened to V% then the joining are of X; may be thickened to a disk
which (together with the two disks in T°) yieldsa meridian disk X3 of V& + T°.

First let us discuss the pleasant case that the ares A%, are unknotted and
unlinked over ‘T® i.e., that there can be found projection cylinders K} which
are nonsingular and pairwise disjoint. In this case we obtain a Heegaard-
diagram® which is so simple that it is fairly easy to show that M® is a 3-sphere:

8 Here we admit the case that the number of ‘‘outer’’ meridian circles ‘K%, is greater
than the genus s of the Heegaard-surface " (V3 + T%).
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FIG.1

The “prOJectlon arc” ‘K3 n "T® of A%; (see Fig. 2) intersects the meridian
circle "X in a point near the point “A%; n "V%-; ; it may have further intersec-
tions with the circles Vi, Vin (k = 1, -+, s) and with "Vi where the
intersections with the “Vi’s and "Vik»’s lie close to intersections of K with
the Xz’s. (In Fig. 2 it is assumed that the projection are, from left to right,
intersects the circles Virp, Viis, Vi, Vi, Virm, Virg.) Wemay easily
achieve that no connected component of Vi n °K7 is a closed curve but that
all these connected components are open arcs with end points in * ('K} n "T*).
Now, (K3 — V%) contains at least one “inner” component, say Kii, that
borders on just one connected component of Vi n K. (In Fig. 2 the com-
ponents K%; and K& are inner ones.) This disk K% corresponds to a relator
11 of the group presentation P corresponding to our Heegaard-diagram (the
generators g; corresponding to the oriented meridian* circles "X;) where the

4 By this we mean that the generator g; may be represented by an oriented simple
closed curve in (Ta + V‘) that plerces X’,‘; in Jzust one point, in the positive sense, and
is disjoint from " X3, - Xk-l, ‘X441, +++ , "Xs. Eachintersection point in ‘K3, () "X}
corresponds to a letter gk in the word 11 .
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length of 1; is at most 2. Moreover, if K3 5 (K} — V%), then there is
another connected component, say Kk , of (K7 — V%) that corresponds to a
relator 1, which contains t; as a syllable. That means that we can simplify
P by a cancellation operation of Type 2 whose length is not greater than 2.
Then, if

Ki + Kk = (K} — V),

we can carry out another cancellation operation of that type, and so on, until
we obtain a relator equal to g; . This can be done forallj = 1, - -+, s, yield-
ing a standard trivial presentation . Now it is not difficult to show that this
sequence of cancellation operations can be replaced by a sequence of good
Tietze transformations since no cancellation operation is of length greater than
2. (A cancellation operation of length 2 can be replaced by an elimination
such that in all relators a certain generator gy is replaced by another generator
g, and by certain subsequent operations which can be arranged to be good
Tietze transformations; the essential point is that the lengths of the relators
do not increase under these eliminations.) Hence there is a cell-decomposition
¥, of M* that is obviously a cell-decomposition of a 3-sphere.

Of course, one may try to find T and V? so that the A% s are unknotted and
unlinked over 'T°. This would prove the Poincaré conjecture. But my at-
tempts in this direction failed. (It was possible to achieve the unknotted-
ness but not the unlinkedness.)

Now we are left with the general case, namely that the arcs A%; may be
knotted and linked over 'T°. We may apply a cheap trick: We consider the
double arcs, say Ci, -+, C% , of the projection cylinder K* = Uj; Kj (com-
pare Fig. 5, Case 2, in Sec. 4) and we add small neighborhoods C} , -- -, C%
of them (in M* — "T%) to T®, obtaining an expanded handlebody T° . Now
we have enforced that those pieces, say A}, of the A%s that lie outside of
°T% are unknotted and unlinked over "T* , where we simply take K* — "T°
for the projection cylinder. Then the connected components of the projec-
tion cylinder (i.e., the projection cylinders of the Aj’s into "T%) yield dia-
grams very similar to Fig. 2. But the essential difference is that the handle-
body V& + T has more handles than V% + T° (corresponding to the con-
nected components of the C3, n V¥’s); therefore we need additional meridian
disks in V% 4 T% (which we shall construct in detail in Sec. 7). These addi-
tional meridian disks intersect the projection cylinder, with the result that the
“inner disks” correspond to relators which may contain “cancellation sylla-
bles” ¢i' g and which may remain of length 3 even after the cancellation
syllables are deleted. That is the reason why this attempt yields a proof of
our theorem but not a proof of the Poincaré conjecture.

3. Projecting the 1-skeleton of a cell-decomposition A of the singular fan
V% into the Heegaard-surface ‘T°. We consider a cell-decomposition T' of
M® that contains just one vertex E°, just r elements Ei , -+, Er, Ei, -+ -,
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E}, of each dimension 1 and 2 (r 5 0), and just one 3-dimensional element
E® (see [3, Sec. 5]). Further we consider a singular fan V?, defined by a map
¢:V? — M (asin [3, Sec. 6]), such that the only singularities of V* are
double arcs A , --- , A% (s 5 0) with inverse images A7, A7* (=1, .-+ ,s)
as in Fig. 3, and such that 'V’ = Ui, B}, where V”* cons1sts of dlSkS Ve
(i =1, -+, r) with just one common vertex E’® in their boundaries and with
¢CV?) + E. We choose a small neighborhood T° of Ui, B} in M® (as in
[5, Sec. 2]) which is a Heegaard-handlebody in M®.

Notation. (See F1g 3.) We denote the connected components of
VT by V- Vx,,Vx»j(J =1, ---,8) such that Vg, Ve, Ve
are neighborhoods of VAR TV A”1 n V", respectively, in V" Fur—
ther we denote

(V- V), ‘<V’2 - '2>, ‘[A? — (V' + V),
7= (VT + VR )
by Vi V*z , Ay 5 Ay, respectwely We denote the images under ¢ by omatting
upper pmmes ie., §(VT), c(Vid), t(Ady) = (A§Y), ete., are denoted by
VR, Vxi, Ak;, ete., respectlvely Finally we denote Uj—; A%; by 4% .

We choose a coherent orientation wy of M*® and an orientation wy of Vi that
is carried over by ¢ from a coherent orientation wy of Vf.?; now, if an oriented
arc O' intersects Vi in a piercing point, not in A% , then we call this intersec-
tion positive or negative according to whether the corresponding intersection
number (see [7, §73]) is positive or negative.

We choose a cell-decomposition T'g of M® which is dual to T' (compare [5,
Sec. 3]) such that the 1-skeleton Gy of T'y is disjoint from 7° 4+ A% , such that
the vertex of I'y does not lie in V% , and such that the 1-dimensional elements
of Ty intersect Vi at most in isolated piercing points. Then we choose a
small neighborhood T% of Gy in M® and we denote the “handle-shell”
M? — °(T* 4+ T%) by F* and Vi n F* by Vi .

Now we can project VF “nicely” into the handle-surface "7T°:

Our main objective is, of course, to nicely project the double ares A% of
V% . But the double arcs of the projection cylinders, corresponding to the
overcrossings® of A% , will pierce Vi in points that do not lie in 4% . These
piercing points will correspond to certain handles of the Heegaard-handlebody
we shall construct. Therefore we shall also need arcs in Vi which join the
piercing points to points in "V, and we shall have to consider projection
cylinders of these arcs; the additional projection eylinders so obtained will
contain additional double arcs, yielding additional piercing points with V% ,
and so on. For this reason it seems convenient to consider a cell-decomposi-
tion A of V% and to demand that all its elements project in a nice way:

Lemma 1. F® can be represented as cartesian product "T° X Iy , where Iy
4

8 We use the expressions ‘‘over’’- and ‘‘under-crossingpoint’’, “projection cylinder’’,
ete., as in [5].
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means a unit interval 0 < zp < 1, such that p X 0 = p for all p € 'T°, and such
that there exists a cell-decomposition A of Vi with the following properties:
(1) A projects normally into "T*, i.e.,

(1a) if N is an element of A and if p e T° then p X It intersects N in ot
most one point;

(1b) 4f Ny, N, are elements of A and if D is the union of all points p e T°
such that p X Ik intersects both N1 and Ny then D is a cell or is empty;

(Le) if n (1b) the dimensions of N1, N: are dy , do , respectively, and if D is
not empty then the dimension of D is dy + dy — 2 ;

(1d) 4f pe T® then p X In intersects the 1-skeleton of A in at most two
points;

(le) #f p X Iy (p e T°) intersects two edges N3, N3 of A in the points
p X a1, p X ay, respectively, (0 < a, < a1 < 1) then N1 overcrosses N3 (i.e.,
N7 pierces the projection cylinder® of Ny in p X as, see [5, Sec. 3);if az = 0 then
N3 pierces the projection arc of Ny in "T*).

(2) A s sufficiently fine, i.e.,

(2a) if qis avertex of Athat lies in Vi — Ak then q can be joined to a point
goin Vi — Ak by an arc Q' that lies in the 1-skeleton of A so that °Q" lies in
°VE — Ak ;

(2b) if N' is an edge of A then N* overcrosses A% + Vi at most once.

(3) V% isnot folded and not twisted along A% , i.e., there exists a small neighbor-
hood U’ of A% in F® such that the following holds:

if O" is an oriented interval in Uy , in the xs-direction (i.e., an arc in U that
projects into one point in "T® and that is oriented in the direction of increasing xx)
then {7 (0" n V%) consists of at most two points and all piercings of O through
Vi — Ak are positive.

Proof. I. Let €** be a euclidean 4-space and let us denote one of its co-
ordinates by zr and the unit interval of the zy-axis by Ir. We choose a
(semilinear) homeomorphism nr of T® into the 3-dimensional subspace zx = 0
of "* and we denote 7re(T?) by T ¥3, We denote the handle shell ‘T¥* X Ix
by F** and we associate with any point ¢ € F*® the coordinates (p, a) so that p
is the projection of ¢ into "T* in the zp-direction and a is the zp-coordinate
of . We can extend nr to a (semilinear) homeomorphism 5 of T* + F* onto
T + F*®. We denote 7(Vs) by Vy* and n(4%) by A¥i. We choose a
rectilinear triangulation Ar of “T"® and a corresponding “prismatical” decom-
position A of F¥*: For the elements of A we take W X 0, W X I, and
W X1 for all WeAr.

II. We can transform Vy* by a “small isotopic deformation” into a poly-
hedron V31 such that the transform Ax' of A¥: projects normally into “T"?
and is in “normal position” with respect to A; by this we mean: There exists
a self-homeomorphism 9 of F¥® which is the identity outside of a small neigh-
borhood of A¥1 in F¥® such that 9;('F*®) = "F*?, and such that with the nota-
tion 91(VY?) = ViP, 91(Axf) = Ax' the following holds: (ILi) if p e "T"®
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then p X It intersects Ax' in at most two points; (ILii) if p ¢ ‘Ax" then
(p X I¥) n A5* is empty; (ILiii) if p X I intersects 45" in two points
pXa,pXa(peT? 0<a <a <1) then p lies in an open triangle
of Ar and there are small neighborhoods N3, N3 of p X a1, p X @, respec-
tively, in A" which are straight line segments such that N} overcrosses Ng;
(ILiv) Ax'is disjoint from the 1-skeleton of A, and "Ax" intersects the 2-dimen-
sional elements of A at most in isolated piercing points.

III. We choose a small neighborhood U% of Ax' in F¥?, and we can find a
small neighborhood U® of Ax" in U% such that (see Fig. 4) the following holds:
(0) if 0! is an interval in Uk , in the zp-direction, then O' n U® is connected
(or empty) and 0" n "U® consists of at most two points.

To obtain U? we may choose a rectilinear triangulation = of Ax' which
contains all intersection points of A5 with 2-elements of A as vertices, but

FiIG.4 (Cross section)
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does not contain any over- or under-crossing point of Ax' as a vertex. Then
we can find a rectilinear sub-triangulation A} of A and a corresponding
prismatical subdivision A* of A such that every vertex of & lies in a 2-element
of A* and such that A* A’ have the properties (ILiii) and (ILiv). We
denote the open, rectilinear intervals in which A4’ intersects the 3-elements
of A* by Di, -+, D%, such that the Di’s lie in the order of the enumeration
in A", and we assume that the neighborhood U% is small with respect to A*;
further we denote the 3-element of A* that contains D} by Pi. Now we can
find small, eylindrical neighborhoods U, -+, Us, of Di, ---, Dy, , respec-
tively, in Usxn P}, -+, Uk n P5,, respectively, that have the property (0)
such that "U? n "U?_, is either empty (if D}_, and D} are “end pieces” of con-
nected components of Ax") or is a connected component of “Ut n "P? and also
a connected component of "Ui_yn Pi_; (and such that USn U? is empty
whenever | — 7| > 1). Then U® = U{~ U? has the demanded properties.
Now we can ‘isotopically smooth out” Vii® in the neighborhood U® of A’
and “wind it about A% so that it is pierced by the intervals 0*" in the de-
manded way. By this we mean: We can find a self-homeomorphism &y of
F*®with 83 (U?) = U?and 8u:(P?) = P} (foralls = 1, --- , w) which is the
identity on ~(F*® — U%) and on A X' such that the image V113 of Vir* under
11 has the following properties: (IT1.i) if U: is a connected component of U®
then Vit: n Us consists of two disks D3 , D} , piercing each other in 4x'n U3,
such that every interval 0¥' C Uj in zg-direction intersects each disk D3 ,
D} in at most one point; (IILii) if an interval 0" in zy-direction pierces Dj
or Dj then the intersection number is positive when 0" is oriented in the
direction of increasing zz and D} , D3, F¥® are oriented according to wv , o ,
respectively, carried over by du 917 ; (IILiii) there exists a rectilinear tri-
angulation Ay of Vy1y such that no vertex of Ay is an over- or under-crossing
point of 4.

To obtain ¢11 we first deform V¥ n U3 in a suitable way, i.e. we can find
a self-homeomorphism 9 of F*? with %,(P}) = P} which is the identity out-
side of a small neighborhood of Us in F*® and on Ax" such that the conditions
(II14, ii, iii) hold with U® replaced by Ui and Vi1 replaced by &:(Vir).
Then we can find, step by step, self-homeomorphisms &, -++, ¥, of F*?
with 9:;(P?) = P? such that ¢ is the identity on Ax', on U:_;, and outside
of a small neighborhood of Ut , and such that (IILi, ii, iii) hold with U’ re-
placed by Ui + -+ + U? and Vyi} replaced by ¢ 9y - -+ $1(Vr). Then
we may take ¥, + -+« % for 9.

Vit and Ay fulfill the conditions corresponding to (3) and (1a), (1b).
Moreover, each connected component of Vyiz— A%’ contains in its boundary
arcs of d¢; 91 1( Vi — "A%). Soif Ay is a regular subdivision of Ay (obtained
by starring each edge and each triangle of Ag) then each vertex ¢ of Arr can
be joined to a vertex in dy #1 n( Vi — "A%) by an edge path in the 1-skeleton
of Artr whose interior liesin "V — Ax’, i.e., the condition corresponding to
(2a) is fulfilled by Vy1s and Ay;r . We choose A so that it fulfills condition
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(ITLiii) (i.e., none of the starring points is an over- or under-crossing point
of AxY).

IV. Now we can deform Vyi; and Afi by a small isotopic deformation,
leaving Ax' pointwise fixed, into a polyhedron V** and a triangulation Ay of
V2, respectively, such that the rectilinearity of the triangulation may be
destroyed, but (IV.i) the conditions (1a), (1b), (3) are preserved, and (IV.ii)
the conditions corresponding to (lc, d, e) are also fulfilled. We denote the
corresponding self-homeomorphism of F*° by ¢ .

V. We can subdivide the edges of A;v by new vertices in such a way that
the condition corresponding to (2b) is fulfilled and such that all the other con-
ditions are preserved. We call the cell-decomposition so obtained AY.

VI. Now we carry over the product representation of F*® and the de-
composition AY from F*®* to F® by means of the homeomorphism
(n | F*) 79705901 : F¥® — F°, denoted by x. In other words, we associate
with each point ¢ ¢ F* the coordinates («x(p"), a) where (p", a) are the co-
ordinates of ¥ '(¢) in F*?; by this we define the product representation
F* = 'T® X It of F*; further we denote by A the cell-decomposition of
V% = k(V"?) whose elements are the images under « of the elements of A",
Then all conditions of Lemma, 1 are fulfilled (where we choose for Uj a small
neighborhood of A% in x(U®)). This proves Lemma 1.

4. Expanding the handlebody 7% into 7°. . By A('V%) we mean the set of
those elements of A that lie in 'V . We consider the set {py, - -+ , p} of
all points that are either vertices of A('V%) or undercrossing points® of the
1-skeleton of A('VE). Let Ci,:--,C% be the projection intervals of
P1, -, Du, Yespectively (i.e., the ares in F’, in xgp-direction, joining the
p’s to points in "T°). Then we choose small, pairwise disjoint neighborhoods
cy, -, C%of Ci, -+, Cu, respectively, in F* (see Fig. 5 which shows the
two most complicated cases) and we denote the handlebody T° + Ui, C}
by T%. We choose the C¥’s so that each interval p X It with p e Cin 'T®
intersects ~('C% — 'T%) in just one point (which is a piercing point if
pe (Cin'TY).

Notation. (See Fig. 6.) We choose an orientation w, of A% such that the
arc Ax;(j =1, ---,s) is oriented from its boundary point in Vi ; to its
boundary point in ‘Vi»;. We arrange the enumeration of the points
D1, , Pu 80 that py, -+, py, lie in A% and that puy1, -+, pu do
not lie in A% ; moreover, if a point p runs through A%, , - -+ , A%, in the order
of the enumeration and in the direction of w, then we assume that p meets
the points p1, « -+ , pu, in the order of the enumeration. For convenience we
denote the points p; , - -, pu, also by

pll’...’pltl,pZI’...,pth’...,psl’...’psts
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As.
Vai @\, p' ®
(compare V. in Fig.3) ® g ® ®
' ®
21 @
® ® P® o ®
® A ®
Al:u 1 Prs Ple P e V,:/Z pﬂl" l?;/ p"
(for detail @;' B
see below) ® ® ® . ® Aus
 [Regecw ®
. ® ® ® &

[u

FIG.6 The arrows correspond to w,;
the arcs and intervals map into the 1-skeleton of A;
the points o map into Uy«"Ce O Vi;
I:'(U}'ﬂcinvf ) is indicated by hatching,

E"‘('B: NV,) by double hatching.
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so that pa, -+, pj; lie in A%; in the order of the second mdex, between

Vi jand Viej (usy = > % 1t;). We denote the points in Ui~ "C} n VF by
Duti, *** , Ps. The inverse unages ; (pi) of p,k (7 = 1 <, 8
E=1,.--,t;) are denoted by p,k and pj so that p,k € A*, and pjr e AZQ ;
the pomt ;‘ (pm) (m = us + 1, ,v) is denoted by p, . Further we
denote that connected component of g‘ (Uz=1 Cin VF) thatis a neighborhood
of p?k’ pﬂc ’ pm ’ respectlvely, (.7 = 1 y S k= 1 s i
m = u, + 1, ,0) by Ve, Vyn,k , Vz,,,, respectlvely, and we denote
§‘(V jk); f(V gk), f(V ) by Vyr]k, VY'/]k, VZm, respectlvely Fmally
we denote the connected components of A%; — Uiy Ci by Ak, -+, A} Jtj41

so that the A%’s lie in A%, in the order of the index k (in the sense of the
onentatlon wA), and we denote the connected components of {(4%) by
k and Ay % S0 that A% i C A*, and A”1 ”1

. Treesin V%. Theintersections V% (I = ua + 1, - -+ ,v) of Uiy Cs with
V% correspond to certain handles of the handlebody H® composed of T% and
a polyhedron Vi obtained from Vi by thickening. We shall need disks in
M? with boundaries in "H® that correspond to these handles in the following
way: The boundary of the first disk, say K%,+1 , runs just once over the handle
corresponding to sz“.u (under proper notation) and over no other handles
that correspond to V3’s. The boundary of the (m — uy)™ disk
(us < m < v), K%, runs just once over the handle corresponding to V.
but not over handles that correspond to V%’s with I > m. We can find such
disks K2, in a convenient way in the projection cylinder of some polyhedron
J* (see Fig. 7) in the 1-skeleton of A that contains all the points pu,41, -« - , Pu
and that consists of trees each of which contains just one point in Vi — "Ak .

Lemma 2. In the 1-skeleton of A there exists a 1-dimensional polyhedron J*
with the following properties:
(i) every conmected component of J' is a tree (i.e., simply connected) that
contains just one point in Vi — "AX , the so-called base point, and otherwise
liesin Ve — A% ;

(ii) J* contains all the points Puys1, =+ » Pus
(iii) of p is an end point of J* (i.e., a point in "J* 0 Vi from which just one
edge of J* originates) then p is one of the Poinis Pust1, *** » Pu -

Proof. Let p; be an arbitrary point with u, < I £ w. Then, because of
property (2a) of A (in Lemma 1), there is an arc, say Q3 , that lies in the
1-skeleton of A so that Qi € Vi — A%, and ‘Q} = p; + ¢ where ¢; is a
point in Vi — "A%.

Now we consider the following sequence Jiyy , -+ - , J %u_m of 1-dimensional
polyhedra: J%l) = Qf,ﬁl If puA+h+1 € J}h) (1 = h <u — uy,) then we take
Jan = Ty . If puysnss ¢ Jow then Qu A4h41 contains an are, say Q- , such
that Q.. = Pup+nt1 T ¢~ Where e~ € Jy or g~ = Quatht1 (in which case
QL = Q% ,+n+1) andsuch that Q% n Jiy = @; then we take J(h+1) =Jw + Q.
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VIZ

*i

(compare Fig.6)

FIG.7  The heavy segments mean £(J'+A,),
the dotted segments mean £ ([V® N'K]);
the heavy dotted segments mean Q"(J;).

Each J{, has properties (i) and (iii) ; the last element, Jty—v,), has all three
properties demanded for J* which proves Lemma 2.

Notation. We denote the projection cylinder® of J' + A by K*. (We
assume that the neighborhoods C? of Sec. 4 are small also with respect to K°.)
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LemMa 2¢. In ~(Vin'K®) there ewists a 1-dimensional polyhedron Jy
(see Fig. 7) with the following properties:

(ix) every conmected component of Jy is a tree that contains just one point
in the 1-skeleton of A, the “base point” (it follows that a base point of J % is either
one of the points py, -+ , P, or liesin Ve n 'T° — "A%);

(iig) Jx contains all the points Puss, -+ , Pv ;
(iiig) 4f p 3s an end point of Tk (p € "Jx ; p is not a base point) then p is one
of the points puyta1, *++ , Po -

Proof. Let pn be an arbitrary point with v < m: £ v. Then p lies in a
2-dimensional element, say N, , of A (see Fig. 8); moreover, p,, lies under a
point Duemy With uy < p(m) = u. Now let J; be that connected component
of J* that contains pum and let g, be its base pomt Then ¢, does not lie over
orin N7, , and hence the projection cylinder K3 of J; 4 intersects N in a 1-dimen-
sional polyhedron that contains an arc, say Q, so that QL c NZ and
‘Qh = Pm + gm where ¢ is a point in "Na, (see Fig. 8). Now we may con-
tinue as in the second paragraph of the proof of Lemma 2 (replacing ! by m,
Jiy by Jkam , u by v, and u, by w). This proves Lemma 2y .

Notation. We arrange the enumeration of the points pu, 41, ** -+ , po s0 that
foreach m = u, + 1, -+, v J* 4 Jy contains an arc, denoted by Jr , that
joins p, either to a point in (‘Van T° — "A%) + "AX or to a point pam with
us < Mm) < m so that "Jy does not contain any point p; (I = 1, -++, v).

6. A pnsmatlcal neighborhood V% of Vi : We “thicken” V. First we
choose a “prismatic neighborhood” Vi of Vi, ie., a polyhedron containing
+ (and consisting of 7 pairwise disj omt 3- cells, d1s3 oint from M®) that can be
represented as cartesian product Ve X Iy s Where I% means an interval
-1 = Ty, g + 1, with p X 0 = p for all p’ e V. Then we extend the
map ¢ | Vi toamap £: Vi — M such that the following holds:

Notation. Vi means ViZ X I%; V&, Vi mean F(V¥), E(Vi), respec-
tively.

(1) V% — °T® is a small neighborhood of Vi — "T® in M® — "T*.

Notation. (See Fig. 9. ) Let K} by the projection cylinder of

,k(j—l e, 85k=1, - t,+1)orofJ (m—uA—I—l <+, v), and
let K% be that connected component of (K} — Uiu C;) n V% that contains
Al or ~(J5, — Uiy €F), respectively; then we denote ™ [(KJr — Ui 03) — K3
by K% or Kb, , respectively.® Further we denote K# n 'K}, Kin K2 by
K%, Kym, respectively, and ‘K% — Ky, K& — Kym by Ktit, Kim,
respectively.

6Tt is essentlal to remark that K’% is a neighborhood of Ajw or ~(Jm — UisCh), re-
spectlvely, in (Ki Ui-10%), and that consequently the Ki's and Ky’s are disks. This
holds since none of those 2-elements of A that are incident to Ajs or J», respectively,
intersects K'r [because of (1a) in Lemma 1].
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q,€T

FIG. 8

(2) Ta, Ti , Fa, .Vz, QV'21‘, K?k - K]‘.’jk, and Kfn - K%/m (.7 = 17 PR
k=1, ,t;+1;m=mus+1,---,0) intersect Vi prismatically with
respect to Tv , §; i.e.,

A (T aVi) = (T eV X Iy
and correspondingly for T% , F?, etc.
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(3) The singularities of V% are orthogonal with respect to zv , {; by this we
mean the following (see Fig. 10):

(3.1) The set of all singular points of V% with respect to { is a neighbor-
hood, denoted by A%, of A% in M* — "T® which is small with respect to V%
and intersects V% prismatically with respect to zv , f.

(32) Let A% and Axs(j=1,---,s8) be connected components of
F(A4%) such that Ay C A and A%; € A}, then F| 4%, F| 4%, and
Fl Ve — F'(4%)] are homeomorphisms.

(3.3) Let p be an arbitrary point of A% and let p’, p” be the two points
of §7(p), P =p1iXa,p” =p Xar(pt, ps V5 ar, amel—1,1]);
denote {(p1), ¢(ps) by p1, 2, respectively; now let py | p; be that point of
F(p1), F(ps), respectively, that is different from p;, ps , respectively.
Then there is a point ¢ € A% with {™(¢) = ¢’ + ¢” such that pi = ¢” X a2
andp; = ¢ X o .

(4) If p’ € Vi such that {(p) ¢ A%, and if (see Fig. 11) the interval
¢(p' X Iy) is oriented according to increasing zv , then the intersection of

F(p' X Iy) and Vi is positive (with respect to the orientations wy and wwm
introduced in Sec. 3).

(5) (See Fig.11.) Let A% (=1, ---,s8;k=1,---,t; + 1) be that
connected component of (A% — Uj; C}) that contains A} ; then K¥j, lies
in A% so that

FIG.11 (Cross section)
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FUKY) C Vi X —1.
Further
(T KYm) € TR X £l
(forallm = u, + 1, ---,0).

/N otation. We denote the connected components of § (" Vin °T’i]) by
VI?’: ’ VQ"J ’ V Y/ ik V Y7 ik o Vzm so that

=V X Iy, oo, Vi = Vi X Iy ;

correspondingly we denote ;(Vx,j), e (Ve by Vi, oo, Vim, Te-
spectively. Let A%, A%, A%, A% be as introduced in (3.1), (3.2), (5),
respectively, and correspondingly
Aj =A%) nAY, AR = F(4%) n 447,

further we denote Aff’,- n V AR n V ete., by A*, , AT, ete. Finally we
denote Vx: >< +1, Vx: >< —-1 by V+xf i V-x: i respectlvely, and corre-
spondmgly VX” X +1, Ve % X =1, ete., by Vixaj , V:j:yl &, etc., and
F(Vi: ), ete., by Vix:;, ete.

7. Constructing meridian disks X}, Y5, Z5 in H3 = T% + Vi. We
denote the handlebody T% + V& by H’. For the following construction see
Fig. 12.

We choose pairwise dls;|01nt small neighborhoods UA, (j=1,---,8) of
A;?; + V + Uk-l VY',k m V*

(UL — Vi) is an are, denoted by XY, with boundary points in Vi,
(We denote Xv; X I%, ¢(Xv), 8(X X IY) by X, Xy;, X%, respec-
tively.)

Then we choose pairwise disjoint disks X?t;, X}; which are topologically
parallel to V2g»;, Vixs;, respectively, in T°, such that

(X% + X5 n Vi = Xy T

and such that the parallelism is with respect to V2, V% , ‘K%, T% (as defined in
(4, Sec. 3]).

Now we denote the disks X¥; + X%, + X3; by X5.

Each —(ng’jk - Ai) and —(ng"jk - Ai) =1 ,85k=1—--,18)
consists of two connected components Vi-k, Vin i and Virgr, Vina,
respectively; we arrange the notation so that Vi, Vi« intersect V24
(in one arc each) and that Vi, , V¥~ intersect Vi (in one arc each).

We choose pairwise disjoint ares BY:x , By , Bynis, Bum (=1, -+ ,8;
k=1,---,t;;m=us+ 1, ---,v)in Vi — (4% + 'T%) that join points
in Ve, Viri, Vini, Vim, respectively, to points in V%, such that
the following holds (Fig. 12 shows the inverse images of the B’s marked by
upper primes) :
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(1) By and By, lie in the boundary of a small neighborhood, say

Ui/ ik s of
Afps + Vo + - + A?t,- + ng'jcj + Agtj+1

in ]‘l3 (Wlth U,syjk C oUirjk_.l if k> 1),

(2) Bynj lies in the boundary of a small neighborhood, say Ui~ 5 Of

AL+ Va4 o 4+ Aha + Vi + A%

in M® (with Usrji © Ulvin if & < ¢);

(3) BY is disjoint from "K* and from the X¥'s; ‘Byn, is disjoint from T ;
B intersects K* at most in isolated piercing points.

We denote §(: ™ (By) X Iv) by By ; ete.
We choose pairwise disjoint meridian disks T% ik, Txni, Txnik, Tgm Of
T® which are disjoint from Uj—; X3 such that

(a) T%{/(,’k n V?k = .TZY'(jk n Vi = 'Bzy'(jk n 'Ts, etc.,
Tom 0 Vi = Tonn Vi = Bynn T

(d) T%k, Txrik, Tini are topologically parallel to Vigr;, Vigr;,
Vix:j, respectively, in T°, with respect to V?, ‘K2, T% ;

(¢) "Thm is disjoint from the C¥s (ie., Thm © [T°n T%]) and inter-
sects 'K* n "T® at most in isolated piercing points;

(d) T%m intersects "V* in just one point, different from E°, and intersects
V* in just one arc which is a piercing arc.

Now we choose pairwise disjoint, small neighborhoods U%s# and Ul of
V%!'jk + Via + BYx + B¥ni + Byni + Txir + Tinie + Tyna
and
Vo + Bom + Tom,

respectively, in M*, which intersect V% prismatically with respect7 to zv, §.
Then we denote the disks " U¥j n H®, "U%n n H by Y% , Z% , respectively.

We have ‘X5, Y5, Z% < H®and "X3, Y, Z2 < "H®; hence the disks
X%, Y%, Z2 are meridian disks of H®.

Thickening the meridian disks. Let X3, Y3, Z3, be pairwise disjoint, small
neighborhoods of X%, Y%, Z2 , respectively, in H® which intersect V pris-
matically with respect’ to Ty , £; we can represent them as cartesian products
XX Iy,Y% X Iy, 2% X I, respectively, where Iz isaninterval —1 < 25 <
+1, such that the following holds:

() pXO0=pforallpeX;, Yh,Z%;
(B) the top and bottom disks

XiX £1, Yi X %1, Z%L X +1,

7 This is possible because of the orthogonality condition (3) in Sec. 6.
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denoted by X%;, Yin, Zin , respectively, are the connected components of
“(Xin'HY, “(Yhwna'HY, ~(Z),n'HY,

respectively; (these disks are not indicated in Fig. 12, but the zz-direction is
indicated by small arrows);

(v) ¢(X%;n V%) separates { (X%, n Vi) from Vi; in Vi,
Y2Zxn Vi  separates Yijgn Vi from Vi j 4+ Ve in Vi,
Zr.n Vi separates Zin, n Vi from Vim in Vi ;

) T, V?, A%, K® intersect X5, Y , Z, prismatically with respect to
Tz ;

(¢) theintersections X3 n Vi, Y% n V%, Z% n Vi are orthogonal with re-
spect to x5 , Tv , §, i.e., the following condition is fulfilled which is completely
analogous to (3.3) in Sec. 6 (compare Fig. 10):

Let p be an arb1trary point of X n Vi, Y,k n Vi , or Z5 n Vi and let p”
be a point in F*(p) where p = p1 Xz a1 and p” = p; Xy az (we use the sym-
bols Xz and Xy to distinguish the product representatlon of the X3 ) Y,
Z%s from that of V) ; denote {(ps) by p.; now, if p ¢ A%, let p1 = & (p1),
and if p e A% let p; be that point in §*(p,) that lies in the same connected
component of F'(4%) as p”. Then thereis a point ¢ in X3 n Vi, Y% n Vi,
or Z. n Vi, respectively, and there is a point ¢” in ¢ '(q) such that p; =

"Xvaand p: = ¢ Xz a1

8. H3 is a Heegaard-handlebody in M3 We denote the connected com-

ponents of K> — "H* by K%, +-+ , Kxs. Note that these are disks (because
of (1) in Lemma 1).

LemMa 3. H'isa H eegaard-homdlebody in M®, and more in detail we have:
(a) TH® — (Ui X5 + Uiy k + U, uA+1Z )] is a 3-cell, say W°,
i.e., H® is a handlebody, the disks X2, Y%, Z2 form a complete system of meridian
dzsks of H®, and the genus a of H® is equal to
s+ Liati + (v —wa) = v+ 5
(b) the conmected components of M° — (H® 4+ K*) are open 3-cells, i.e.,
M?® — "H®is a handlebody, the disks K5, , - - -, Kk contain a complete system of
meridian disks of M* — "H®, and b = a.
Proof of (a). Let T'? be a handlebody of genus r, disjoint from M?, such
that
TiaV?E="T!nVe="Vd XI5,
such that T3 4+ V3 is a 3-cell, denoted by H”®, and such that there is a map
£ H " >H J of H' onto H® with £ | Vi = ¢ and with £ | YN a homeomorphism
of T"2 onto T

The connected components of

[ E_l( UJ=1 .1 k—l YJk + U” =up+1 Z )]
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are 3-cells; we may denote them by H HY sy, He o, Hyvir, Hom (5 = 1,
-,8k=1, - t,,l—l t,+1m—uA+1 v)suchthat

(compare Flg 12) HAIN n A*, is an arc in Aﬂ , Hyl]k contams Vy/,k , Hw,k
contains Vi &, and HZ zm contains V2. . The restrictions

t 3
£\ HS, | Ui HY o, &) Uil Hyva,

‘é l (U:::::l-l A’Jl + U:n=uA+1 H,Zam
are homeomorphlsms
Now £(Hv i) + z}(Hyﬂ,k) (j=1,---,8 k=1, ---,1t;) are pairwise
disjoint 3-cells, say H¥s , and

EHS) + Ui §(H 1) + Uneupis £(H 2m
is a 3-cell, say Hpo, where
HyonHYpn = Vi + Vi .
Now Heo + Uiy Hy i is a 3-cell and is equal to
TH? — (Ui X3+ Uiy Y + Upmupta Z)]
which proves (a).

Proof of (b). First we prove that the first homology group 3¢;(H® 4 K*) is
trivial: We denote by 6x;, Gyjx, Ozm (7 =1, --- , 83k =1, -+, t;;m =
uy + 1 -++, v) those elements of 3¢;(H’) which correspond to piercings of
X%, Y%, Za , respectively (i.e., ax; may be represented by an oriented simple
closed curve in H® that intersects X} in just one prismatical arc with induced
orientation in the direction of increasing 2, and that is disjoint from X3,

, X%, and from the Y%’s and Z5’s; ete.). The o’sform a basis of 5¢,(H®).
Let o be the inclusion map H® < H® + K and let

¢ 3 (H®) — se,(H® + K*)

be induced by «, then the ax(a)’s form a basis of 5¢,(H® + K*). Now the
properly oriented boundary K77 of K (Sec 6) belongs to ayi, further
‘K72 belongs to ayjx — @y for all k = , t;, and finally ‘K77 i be-
longs to ax; + ayj:;; (compare the more detalled discussion of the ‘K%’s in
Sec. 10.1) ; hence

ax(ayn) = -+ = ax(0yj;) = ax(0xi) =0

where o means the zero-element of 3¢;(H® 4+ K*). Similarly, ‘K;? (m =
us + 1, ---, v) belongs (compare Fig. 9) either to azm — aznm (Where
us < N(m) < m, see Sec. 5) or to az» + b with ax(b) = 0; hence

ax(0zupt1) = -+ = ax(0z) =0,

ie., :;cl(H3 + K?) is trivial, Q.E.D.
Let K%, -+, K% be pairwise disjoint, small neighborhoods of K, -+~ ,
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K, respectively, in M* — "H®. Then H® + U, K%, is a 3-manifold with
trivial first homology group (since H® 4+ Uj_; K3; collapses to H® + K?),
hence "(H® + Ul_; K%;) consists of 2-spheres only (see [7, §64]); but these
2-spheres lie in the handlebody M® — “T*, and therefore, as a consequence of
the Alexander theorem [2], bound 3-cells in M® — °T°. Therefore
M? — (H® + Ul K%:) consists of open 3-cells, and hence M® — (H® 4+ K%)
consists of open 3-cells. This proves (b).

9. Constructing the cell-decomposition ¥ of M3 We take for ¥ a cell-
decomposition of M?, corresponding to the Heegaard-handlebody H® with the
two systems

{X?; Jk ) an}’ {th}

of meridian disks (compare [5, Sec. 8]):

For the only vertex of ¥ we choose a point O in ‘W*. For the 1- dunensmnal
elements of ¥ we choose pairwise d1s;|omt open ares Ex;, Evi, Evmin H*
with common boundary 0 such that H® is a neighborhood of the l-skeleton
G* of ¥, and such that E%; intersects X in just one pnsmatlcal arc and is dis-
joint from X3, -+, X531, X541, - -+ , X, from the Y¥s, and from the Z%s;
etec. For the 2- dlmensional elements of ¥ we choose pairwise disjoint, open
disks EY, - -+ | Ey* in M® — G™ such that

Efn (M- "H’) = K\, EFfc@",

and such that E}* n "H® is an open annulus, say En; which intersects X3,
Y%, , Z%, prismatically with respect to x5 so that X5, Y% , Z5, are intersected
(at most) in open arcs each of which joins G** to "H®. For the 3-dimensional
elements of ¥ we take the connected components of M* — U, EP.

We choose a coherent orlentatlon of G* so that in Bx%; n X5, Exen Y,
E¥' n Z2 the direction of E%j , E%i , E'ow , respectively, comcldes with the di-
rection of increasing z; ; then we associate generators gx;, gvir, gzm Of
m(M®) with the so oriented 1-spheres Hx;, B, Esn , respectively, (with
base point O). Now we may read relators 11, : -+, 1 from the 2-elements
EY?, ..., B, respectively, and we denote the presentation

({9xi, gvin 5 gzm}, {13})
of m(M®) by B(¥).

10. Relator-diagrams corresponding to the presentation B(¥) of m(M?).
We map the disks K5 , Ko (=1, -+ ,8;k =1, -+ ,ti;m=us+ 1, -+
v; see Sec. 5 and Fig. 9) onto pairwise disjoint disks R% , Rk, respectively,
(see Fig. 13 which corresponds to Fig. 9 if one assumes that m > u, pi, = ps2,
and t; = 2, compare Fig. 12), by means of maps

. 2 2 . W2 2
){jk.Kjk—>Rjk, %m‘Km’_"Rm:
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respectively’, such that:

(i) the restrictions of x , xm to the open disks K5; (¢ = 1, -+, b) are
homeomorphisms;

(ii) %, %m map each connected component of K n W?, K% n W*, re-
spectively, into a single point;

(iii) if L is a connected component of the intersection of K% or K, with
Xy — W, Y5 — W or Zy — W, then xj, or xn , respectively, maps L onto
an open arc in such a way that all points with the same zz-coordinate have the
same image point (but points with different zz-coordinates map always into
different points).

If L as in (iii) then we orientate the image »;(L) or x,(L), respectively,
according to the direction of increasing x5 , and we associate it with the gener-
ator gxu , gvir , 9zq , YesSpectively.

We consider the cell-decompositions 0, O, of R%, R., respectively,
into the connected components of the images of K% n Kx;, K% n W*,
K% n (X — ‘W), ete., ete. From each 2-dimensional element of ® or
©®., we may read the relator t; that is associated with the inverse image disk
K%;:. We call the decomposition @ or ©,, , together with the association of
its oriented edges to the generators g and of its 2-elements to the relators t
(see Fig. 13) a relator-diagram corresponding to B(¥) and we denote it by
R or N, respectively. From the boundary of R} or Ra, we may read a
word ¥, or t¥ | respectively, in the generators g (where all members of the
cyclic class (t%) or (¢¥), respectively, are equivalent). Now the relator-
diagram R, shows that’ t% = 1 is a true relation in the group = (M?); ete.
Diagrams like these have been used by E. R. Van Kampen and other auth-
ors; see for instance [8].

For the proof of the theorem we shall need some special properties of our
relator-diagrams R:

(10.1) By inspection of the curves ‘K% and 'K}, we see that we can write
forallj=1,---,8;m =us+ 1, ---, v (compare Fig. 12):

r?l = gy i
th = gvaguraen (forallk =2, .-+, t)
1~”§§‘t,»+1 = gxj Cjt;+1 Jvjt; e’ft,.ﬂ
tho = gimen if J% joins pa to Vi
(%) = Gzm €h G5 tm if J2, joins pm to Vi,
= Gam Ch Gxin tn if J5, joins py, to Vi,

—1 —1 . 1 . .
Jzm el IXin Pk J¥inkn 6m  if Ju jOINS P t0 Pjk, and meets

172
Y’ fmbm

8 These maps are not semilinear, but can be taken piecewise algebraic.
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= Gam € G} iom €m if J7, joins pm t0 Pj,k, and meets
Vi

= Gzm h gzAm) En if J2, joins pm t0 prcm (case of Fig.
13),

where the ¢’s are words in the g’s that are either empty or cancel to the empty
word by repeated deleting of syllables g* g, (where the subscript v stands
for X¢, Yed,orZe;e =1, -+ ,8;d =1, -+ Jt,;e=us+ 1, -+ ,0).

More in detail: The ¢’s are products of syllables of
Type a.

gxh Gvin Gun * + + Gty Gnty G Thts Jxhty © * * G Jyn Jxn
which occur in ¢~ (~ stands for a pair of indices jk or a single index m),
corresponding to the intersections K1~ n Vs (compare Fig. 12) and of

Typeb. ¢ g.,but not gxs gx. forany ¢ = 1, - -+, s, which oceur in e_,
e, e*¥ corresponding to the intersections K1~ n "T% and K¥. n ‘B> (where
T%e ; B¥ea stand for

T% e + Txnea + Tinea s BY1(a + By + B¥na,
respectively).

We always have

# -1 —1
Cit;+1 = Gvje; Jvie; *°* Jyingya
and

g -1 —1
Cm = OYiml 9Yinl *** GYimkm—1 IYimkm—1

The relations’ ¥ = 1 show obviously that m(M®) is the trivial group.
(10.2) It is essential that the decompositions @_ are especially simple:

The 1-skeleton of ©._ intersects RZ in pairwise disjoint open arcs with bound-
aries in ‘RZ (see Fig. 13); we denote these open arcs (in all the ‘RZ’s) by

Qi, - ,Qn;the@ys (f =1, ---, w) are the images of the connected com-
ponents of ‘K% n Vi under »_ (where these components are open arcs, say
Pi, ---, P, with boundaries in K} such that either

51 5l 51 Bl
Pfl = sz or le n Py, = @

iffi,foef{l, -+, w}). We denote the words corresponding to Qi, --- , Qv
by a1, -+, qu, respectively. In detail, we have the following five types of
words g, (corresponding to six types of ares P} ;f =1, -+, w):

(Typel) a5 = gz eqs gum if P}joins ' V% to Vi (m 5= 1)
(Type2) 95 = gxjtar gzm if P}joins Vi to Vi
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(Type3) a7 = ¢as Gzm if P}joins " Vie; to " Vim (for some j = 1,
-,8)
or if Pijoins Vi to Vim
(Type4) a5 = gvik ear Jzm if P}joins "V to ' Vim(Pi, Piin Fig. 13)

(Type 5) a7 = gy ehs gxi tas gzm if Pjoins ‘Vivz to 'Vim(P3, Psin Fig. 13)
where eqs and ek are products of syllables g* g, which correspond to the inter-
sections of P} with BY,. We do not have more than these six types of arcs
P} since it follows from the property (2b) of A (Lemma 1, Sec. 3) that at
least one boundary point of P} lies in the boundary of a disk V%,. Itis
remarkable that the word q; cancels down to a word of length either 1 (Type
3),or2 (Types 1, 2, 4), or 3 (Type 5).

(10.3) If there are two (or three) edges of ©_ in "RZ that do not corre-
spond to parts of e_, ¥, or e** in ( %) then (any two of) these edges are not
separated by the ‘Qfs in 'R%. Similarly, if two edges in ‘R correspond to a
syllable 3" g. of Type bin e., ¢, or ¢** then these edges are not separated
by the ‘Qfs in ‘R% .

(10.4) Another essential property of the relator-diagrams R. is the fol-
lowing: if ¢ is a fixed integer, 1 < ¢ =< b, then the decompositions O , 6,
(j=1,---,8k=1,---,t;+1;1=wus+ 1, ---, u) contain all together
just one 2-dimensional element that is associated with® the relator v;. How-
ever, the decompositions Gy, - -+ , @, may contain some more 2-dimensional
elements associated with v; ; but in this case, if @. (where . stands for two
fixed indices joko or for one fixed index lp with uy, < Iy < u) and O,.(u < m < v)
each contain an element associated with t; , then ©,, is isomorphie to a “part”
of @, i.e., we have K, < K2 and there exists a homeomorphism

am : Ry — RL
of RZ into R such that {xn = am (x| K%), where a,, carries elements of ©,,

onto elements of @, , preserving the association of these elements to the ¢’s
and t’s. Moreover, a,('R),) intersects ‘R in just one of the open arcs Q} .

11. Conclusion. It remains to show that the presentation PB(¥) can be
transformed into ({g.}, {g. , ¥}) by cancellation operations as asserted in
the theorem. Guided by the relator-diagrams we first transform B(¥) into a
presentation whose relators are derived from the r*’s by deleting all the can-
cellation words e, e¥, ¢*¥, The rest is obvious.

Step i.  Removing the cancellation syllables of Type a from the t™’s (see Fig.

¢ Of course, there may be other 2-elements associated with relators, say Tij, Tiy, o<+,
such that T, = ¥, = -+« = T; (letter by letter), but then 4, , %2, -+ , ¢ are pairwise dis-

tinct.
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14). We transform the relator-diagrams R in the following way:

Let P} be an open arc in K% n Vi [~ stands, asin (10.4), for joko or o ;
Jo=1,--- ,s;lco =1, .- ,t,-o-l- 1;0 = us + 1, ,u]thatjoinsa,point,
say p, in ‘Vk»; to a point in VZe . Then ».(P}) is an are Q; in R%, corre-
sponding to a word gz = eqa gzs of Type 3 as considered in (10.2). From
%~(p) there originate two arcs, say N>, N1, in ‘R%, that correspond (if ori-
ented towards x.(p)) to the same word

N = gx;gvngya - gy, gyt
where nn™" is a syllable of Typea in e.. as discussed in (10.1)). Now we re-
place R% by a disk RX? corresponding to an identification of N3 to N1, i.e.,
so that there is a map B. of R. onto RX which is one-to-one on

2, — (N + NY),on N%, and on N, which maps N and N* onto the same
arc N', and which maps the elements of ©. onto elements of a cell-decomposi-
tion @% of RX (where R is disjoint from M® and from the R”s). We replace
R~ by the relator-diagram R% (consisting of ®% and the association of its
1- and 2-elements to the g’s and t’s as carried over by f~). We denote the
open arc [8~(Qi) + N'] by Qi" and 8~(Q}) by QF" for all Q; € RL (f =

-+, w;f # d); then to Q7" there corresponds the word
G = M0z = gx} gyngya ** Gyie; Gxit; €aa §ze
let us call this “of Type 3 . To 'R%’ there corresponds a word r2¥ that is
obtained from tZ by deleting a syllable nn™". We remark that RZ is a re-
lator-diagram corresponding to B(¥) and that RE has also the properties
stated for R_ in (10.3).

We carry out the above procedure for all those disks K», that contain the
open arc Pj ; (these disks K2 lie in K% , and m > u). We denote the corre-
sponding maps by 8. : Ra — R, and the relator-diagrams and decomposi-
tions so obtained by % and @}, , respectively. If K2 [~ stands for jk or m as
in Sec. 10] does not contain Pj then we simply denote the identity map on
R2 by 8., and R, RZ, O_ by R%, R*?, OX, respectively; etc. Now the
relator-diagrams %™ have again the property stated in (10.4): We obtain the

required homeomorphisms oy, (m = u 4+ 1, - -+ , v) by taking
am = an if K KL
= B.onpPn if KnC KL (see Fig. 14),

where we assume that 8, has been chosen in such a way that if two points p ,
pe of ‘RZ have the same image point under 8. then o, (p1) and a,,'(p;) have
the same image point under 8., .

We carry out the procedure described in the above two paragraphs for all
PYs of the type considered and we obtain in this way rela,tor-dlagrams R
corresponding to P(¥). (We use the notation RZ, OL, QF, r~ , am , ete.,
for the disks, decompositions, etc., of the R1’s.) The words ¥ are still of
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the form ( # ), but we have the following essential simplification: all the can-
cellation words e~ , e*¥, ¢”*¥ are products of syllables g.' g, of Typeb in such
a way that both edges in "RY that correspond to such a syllable lie in the
boundary of the same 2-dimensional element of ®~ (since all syllables of Type
a have been deleted, but (10.3) hasbeen preserved). The R~’s have also the
property (10.2), modified by admitting q’s of Type 3%, and the properties
(10.3) and (10.4).

Step ii. “Outer” cancellations (see Fig. 15). We consider an are, say L',
in "RZ (. stands again for joko or ly) that corresponds to a syllable g3t g, of
Typebin & , e=*, or eL**. Becauseof (10.3) all of L' lies in the boundary of
just one 2-dimensional element of ®% corresponding to a relator, say 1,
(%=1, ---,b). So we may cancel the corresponding syllable ¢3'g, in t;,
(cancellation operation of Type 1) which yields a new relator, say ti, and a
new presentation

B = ({gxi, gvin , gam}, {13'})
where 7% = v, if ¢ # 4.

Now we replace RY by a disk R corresponding to shrinking L' to one
point, i.e., so that there is a map B2 of RZ onto R~ which!® is one-to-one on
RY — L', which maps L' into one point, and which maps the elements of ©*
onto elements of a cell-decomposition @5 of RZ?. Now RL* (consisting of
O and the association of its 1- and 2-elements to the ¢’s and t™s as induced
by BY) is a relator-diagram corresponding to $™ (since by (10.4) 1, oceurs
just once in ®L). In the same way we replace all those relator-diagrams %,
whose decompositions @}, contain a 2-element associated with t;, by relator-
diagrams R (defined by maps 85" : R — RL¥ that map the ares () (L)
into single points). For the remaining R~’s we take 8~* to be the identity on
RZ, and we take R~ = KL, etc. Then the R™s are relator-diagrams cor-
responding to P™ and possess the properties (10.1), (10.2, modified by ad-
mitting ¢™’s of Type 3%), (10.3), and (10.4).

We carry out the above procedure for all arcs of the considered type, and
we obtain in this way (by cancellation operations of Type 1) a presentation

‘Bn = ({gXJ' y §Yik 5 me}; {rfl})
and corresponding relator-diagrams R™. (We use the notation Q7, =%,
ol etc., in the obvious way.) Now the cancellation words eZ, e=¥, Z#¥
are empty, except, may be, if ~ stands for m with m > u. Furthermore, the
boundaries of all those open arcs QF that lie in some RX? are equal to just

one point in "R=* (compare Fig. 16).

Step iii. “Inner” cancellations. Now we consider those arcs L' in the
Qf™s that lie in disks R™* and that correspond to syllables g7'g, . As in
Step ii we cancel, step by step, all the corresponding syllables in the ;s
(cancellation operations of Type 1), and we obtain in this way a presentation

%IH = ({ng s ik me}’ {r?l} )'

10 These maps are not semilinear, but can be taken piecewise algebraic.
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FIG, 16

Then, again as in Step ii, we construct relator-diagrams %" and R " that
correspond to P by shrinking arcs to points. (Note that the arcs
(™ (L') may lie in 'Ry as well as in ‘Ri(m > u).) The %™™s possess
again the properties (10.1), (10.2, modified), (10.3), (10.4).

The words t= ¥ read from the "R"*s are of the form

I 1 —1
¥ =gvi; th* = gvinguma (b =2, -+, ¢);

ITIH .
Tyjt; 11 = gxiJvit; 5
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(III%)  tH™ = either gzm , OF Gzm G%7n » OF G2m GXim I imbm »
OT Gzm ¥ smitm » OF Gzm zacmy , N(m) < m,

and the words ¢/ (f = 1, - -+, w) read from the Qf"™s are of the form
o/t = either gz gzm , OF gX; gzm » OT Gzm » OF Gk I zm » OF J¥ b x Jzm -

Step iv. Deleting Q"s (see Fig. 16). Provided that w 5 0 there exists a
disk R™™ that contains at least one of the open ares Q7*". Then there is at
least one open are, say Qi'" that lies in RZ™ in such a way that Q3" is the
boundary of a 2-dimensional element, say C*, of ®2. There is just one other
element, say D?, of @' whose boundary contains @3'". Let 13" and rm
(h # zo) be the relators associated with C* and D?, respectively; then g3’
equal to a member of (t3™), and some member of (xis)) can be Wntten as
(qm)i’tlo (where 1}y is some word in the g’s). Now we replace i, by ti,
(cancellation operation of Type 2 and of length 1, 2, or 3) and we obtain in
this way a presentation B*¥ from B

Then we construct relator-diagrams R~ that correspond to P as follows:
First we delete from ®X" those elements that lie in Q3*", and we reglace the
elements C?, D* by the open disk C* + Q'™ + D?; this y1e1ds 0L (where
RIW = le and the new 2-dimensional element of OL is associated with
tiv). If the relator ti," is associated with a 2-dimensional element, say Dj,
of a decomposition @},°, different from OL', then [by (10.4)] m > u, and

ofI(RI™) contains Qi™ in its interior (since otherwise the closed curve

Q3™ would lie in o *( RE™), but would not be equal to am ('Rm ") in contra-
diction to the fact that oif*(RE™) is a disk). Hence Rn™ contains
(e IH)”I(QI]”[I) which is one of the Qf™™s, say Qi™, and On" possesses an
element C§ = (an™)™(C*) that is associated with t3'*. Then we delete from
OF* those elements that lie in Q™™ and we replace the elements C§ and Dj
by C3 4+ Q™ 4 D} (which we associate with tiy). This yields ©5'. For
the remalmng i)‘tin’s we take BT = R We write ti° = 1777 if ¢ 5 4.

Now the R"’s have again the properties (10.1), (10.2, modified), (10.3),
(10.4), and t2"¥ = 2™ but the number w'" of open ares Q5" (f =1, ---,

w"") is smaller than w.

Step v. Deleting all Q”s. We repeat the procedure of Step iv as often as
possible and ﬁnally obtam in this way (after at most w steps) a presentation
BY = ({g.}, {r)}) and corresponding relator-diagrams R such that each de-
composition O possesses Just one 2-dimensional element. That means that
each of the v + s words t°* = 1t [see (III # )] is at the same time a member
of a class, say (r)), where we may assume that the notation is 80 arranged that
1 =i =v+4 s;(wedonot speclfy the remaining relators rv+.+1 s 1Y),
Further we may assume that t2# is a cyclic permutation of ty. and not one of
(r1.)7"; (this can be arranged by proper choice of the direction in which r,. is
read when the last open arc Q' is removed in "RZ™),
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Step vi. Obviously we can transform BY by a sequence of cancellation
operations of Type 2 and length 1 (a relator out of {gyj gvs—) is repla,ced
by a relator gyj: where another relator is equal to gy, &k = 2, , b s
etc.) into a presentation

SBVI = ({gV}, {gv ) rvv-il-a+l: Tty rb })

where 1}° = 1) fori =v+ s+ 1, ---,b. Now we can transform B** by a

sequence of cancellation operations of Type 2 and length 1 (a relator g%'t” is

replaced by t” where another relator is equal to ¢g.) into the presentation
({g.}, {gv , ¥~ "}). This finishes the proof of the theorem.
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