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The object of this note is to extend some recent work of J. Thompson and of
G. Glauberman to nilpotent groups with maximum condition on subgroups.
Our results derive from a slight simplification of the proofs as given in [1].
We are indebted to D. Hertzig and M. Suzuki for some corrections and im-
provements and to G. Glauberman for a preprnt of his work.
We shall first consider a finitely generated nilpotent group S. Such a

group has a finite normal series with cyclic factors of either prime or infinite
order. We shall let a0(S) be the family of self-centralizing abelian subgroups
of maximum torsion-free rank of S and will let a(S) be the subfamily con-
sisting of those members whose torsion subgroups have maximal orders. We
let J(S) denote the subgroup of S generated by the members of a(S).
In general Z(H), C(H), and N(H) will denote center, centralizer, and

normalizer, respectively of H. C(H) will mean C(H) n K and N(H)
will mean N(H) n K. The commutator [a, b] will mean a-lb-lab a-l
and [A, B] will denote the subgroup generated by all [a, b] with a e A, b e B;
[A, B, C] will mean [[A, B], C], A will denote [A, A] and A will denote
[A-1, A]. It will be convenient to let [A, 1B] [A, B] and then to let [A, nB]
mean [A, (n- 1)B, B].
Our first theorem includes the replacement Theorems 3.1 and 4.1 of [1].

THEOREM 1. Let S be a finitely generated nilpotent group and let B be a
normal subgroup of S with B central in BJ(S). Let A be in a(S) with
[B, A, A] 1, and further so that if B has an involution then either B is abelian
or [B, A, A, A] 1 Then there is an A*e ((S) so that

A n B < A* B and [A*,A,A]= 1.

Proof. Without loss of generality we may assume that S AB. Then
since B is central in BJ(S) (and consequently in S) and A is self-centralizing,
B < A and A B is normal in S (for any subgroup of B containing B is
normal in B).

If we use bars to denote elements and subgroups mod A n B, then is
the semi-direct product [/]. Now we let BI Ca(A) (therefore
B A B) and inductively let B be the set of b e B so that [b, A] -< B,_I.
Since [B, A, A] 1, B > B. Now/ is nilpotent of class at most 2 and
therefore for any fixed x e B, the map defined by a [, g] for a e A is a
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homomorphism from A onto [4, A] whose kernel C is the complete inverse
image of the centralizer Cz().
We first show that we may always pick an x e Bs, x B so that [x, A] is

abelian. If B is abelian, this is the case for all x e Bs, x B since [x, A] <- B.
If [B, 3A] 1, we may without loss of generality take S (which is BA) to be
BA so that [B, 4A] 1. Then IS, S3] <- S (BA). But [BA, BA]
<= B2[B, A], and inductively we get that

(BA <= B[B, 4A] B

thus (BA) 1 since B is central. It follows that S and hence [S, 2A]
is abelian. Since [B, 3A] 1, IS, 3A] 1 and hence IS, 2A] $ B1,
[S, A] $ B. Thus when [B, 3A] 1, those x in [B, A] not in [B3, A] B.
have the property that Ix, A] is abelian.
The last case to consider is when [B, 3A] 1 and B (= B) has no involu-

tion. We proceed as follows. In general we have

Ix, ac] Ix, c][x, a] [x, c][x, a][x, a, c]

and similarly [x, ca] [x, a][x, c][x, c, a]. Then if a and c commute and
[x, a] and Ix, c] commute,

(1) Ix, a, c] Ix, c, a].

We use (1) in S modulo B: with x e B, a, c e A, since for x e B, Ix, A] is abelian
modulo B; furthermore, since B is central in S we get for x, y in B, a, c e A
that

(2) Ix, a, c, y] Ix, c, a, y].

Then since B is central in B we see that

Ix, a, c, y]-I Ix, a, c, y-l] [Ix, a, c]-, y];

and since x e B Bs, we see from [x, a, cc-1] 1 that

Ix, a, c]- Ix, a, c-].
Together we have

(3) Ix, a, c, y] Ix, a, c-, y-l].

By the Hall identity (Lemma 4.1 (b) of [1]),

Ix, a, c-, x-][[c, x], Ix, a]]- Ix-, Ix, a]-, c] I’l 1,

which simplifies (since B is central) to

(4) Ix, a, c-, x-1][[c, x], Ix, a]] 1.

Then from (3) and (4) and the fact that B is central,

Ix, a, c, x] [Ix, c], [x, a]];
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and by symmetry, [x, c, a, x] [[x, a], [x, c]]. Thus from (2) it follows that
[[x, a], [x, c]] is its own inverse and is therefore 1 since B has no involution.
Thus in all cases there is an x B3, x B., so that [x, A] is abelian as we wished
to show.
From (1) it now follows that Ix, A, C] 1 and then, if A* denotes [x, A]C,

that A* is abelian. Since B has class at most 2, A n B C n B and con-
sequently A/C A*/C; for

A/C / ._ [x, A](A B)/(A B) Ix, A](B n C)/(B C)_
Ix, A]/([x, A] a C) - Ix, A]C/C A*/C.

It follows that A* has the same torsion-free rank as A. Furthermore, since
a nilpotent group has a normal torsion subgroup, by restricting consideration
to the torsion subgroup we deduce (sence [x, a] is periodic when a is) that the
torsion subgroup of A* has the same order as that of A and hence that
A*e((S). Since xB2; A* n B > A n B; and since Ix, A] =< B and
[B., A, A] 1, it follows that [A*, A, A] 1 and the theorem is proved.

COROLLERY 1. Suppose B is abelian or has no involution with B central in
BJ(S). If A is chosen in ((S) so that for no A1 e a(S) is A B < AI B,
then [B A, A] 1.

We now introduce a notion of stability in terms of which we can formulate
our next theorem. This "stability" includes, as can readily be checked, the
notion of p-stability as given in [1]. Suppose that a group G has a finitely
generated nilpotent subgroup S such that for each normal subgroup K of
G, S K is intravariant in K and let T be any characteristic subgroup of G
maximal in that S T 1. We shall say that G is S-stable if when S and T
are as above and if for arbitrary P -<_ S such that PT < G, x e N(P) with
[P, x, x] 1 implies that x’e SC(P) for all n e N(P). This means in par-
ticular that for P a normal subgroup of an S-stable group G with P -_< S,
[P, x, x] 1 implies that x e SC(P).
Our next results include Theorem 4.3 and Theorem A as well as Corollaries

3.2 and 3.5 ()f [1].
THEOREM 2. Let G be an S-stable group and let B be a normal subgroup of G

contained in S; suppose further that B is abelian if S contains an involution.
Then Z (J S) B is normal in G.

Proof. We first assume that B is central in BJ(S) (and of course that
BI).

Let C denote Z(J (S)) B and let V be the normal closure of C in G. We
must show float C V. First we pick an A a(S) so that for no A a(S)
is V a A contained properly in V A. By Corollary 1, this implies that
IV, A, A] 1. If L denotes aSC(V), then L <1 G and since G is S-stable,
A -< L. Hence Z(J(S)) <= X with X denoting Z(J(S L)). By the Frat-
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tini argument, G L(N(S n L)). Since X is characteristic in S n L,
G LN(X).

If Z(J(S)) X, there is anAea(S)A $ L so that for no Alea(S)
with A1 $ L, is V n A properly contained in V n A. Since A $ L, S-sta-
bility implies that [V, A, A] 1, and Theorem 1 implies that there is an A*
withVnA* > V n A and [A *, A, A] 1. By themaximalityofVnA
in the choice of A, A* __< L and hence A* __> X. Since C <:l L and C

_
X,

it follows that V -<_ X. We then have (since V -<_ X

_
A*) the contradiction

1 [V,A,A] < [X,A,A] < [A* A A] 1

We conclude that Z(J(S)) X and hence that C (which is then X B) is
normal in G LN(X). This proves the theorem for the case that B is
central in BJ S)

If B is not central in BJ(S) we can assume inductively (on the class of B)
that Z(J(S) B < G. But

C Z(J(S)) B Z(J(S)) V

and hence (since V is the normal closure of C and [C, V] =< C n B a normal
subgroup of G) IV, V]

_
C a B

_
C. Thus V is central in V(J(S)), and

by the first part of the proof with V in place of B it follows that

C Z(J(S)) r V <:l G

and hence C V as was to be shown.

COROLLARY 2. Let G be an S-stable group, let B gea S, and suppose
that B >- C(B); suppose further that B is abelian if S contains an involution.
Then

1. the center Z of J(S) is a characteristic subgroup of G;
2. if B is abelian then B is the only element of
3. G C(Z(S) )N(J(S) ).

Proof of 1. Since Z is an abelian normal subgroup of S, [B, Z, Z] 1.
The S-stability then implies that Z <= SC(B) for all g e G. Consequently
Z =< B. Since S is intravariant, B is normal in the holomorph H of G, and
consequently by the theorem, Z <:1 H or Z is characteristic in G as was to be
shown.

Proof of 2. If a(S) has an element other than B, choose an A e a(S),
A B, so that A a B is maximal. If [B, A, A] 1, then by Theorem 1 there
is an A* with

A nB < A*nB and [A*,A,A] 1.

By the maximality of A B, A* B.
implies that A <__ B as in the proof of 1.
as was to be shown.

Then [B, A, A] 1 and S-stability
Thus B is the only element of a(S)
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Proof of 3. SinceB

_
S, Z(S) <- C(B)

_
B. ThenZ(S) <= Z(B).

Since B < G, Z(B) < G, and by Theorem 2, if Z denotes Z(B) Z(J(S) ),
then Z <:l G (and consequently C(Z) <l G). By the Frattini argument,

G C(Z)N(S n C(Z)).

Since J(S) centralizes Z, S n C(Z)

_
J(S) so that J(S n C(Z)) J(S),

and N(S C(Z)

_
N(J(S) ). Thus G C(Z)N(J(S) ). Since Z(S) <- Z,

C(Z(S)

_
C(Z), and G C(Z(S) )N(J(S) as was to be shown.
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