ON LIMIT-PRESERVING FUNCTORS

BY
J. F. KENNISON

Following Lambek [2] we shall use the suggestive term “infimum’’ for the
generalized inverse limit of Kan. “Supremum” is defined dually. In [1],
the infimum (supremum ) is known as a “left root” (“right root”’). The terms
“inf-complete” and “inf-preserving” are used in the obvious way.

If @ is a small category then [@, Ens] shall denote the category of all (co-
variant) functors from @ to the category Ens of sets. [@, Enslin¢ shall be the
full subcategory of inf-preserving functors.

The theorem below answers an open question raised in the introduction to
[2]. As Lambek points out this result implies that [@, Ens)in¢ is sup-complete
and can be regarded as a nicely behaved completion of @°, the dual or opposite
category of Q.

TaEOREM. Let @ be a small category. Then (@, Ensint s o reflective sub-
category of [@, Ens].

Notation. In what follows, “I'”’ shall always be used to denote a functor
whose domain is a small category, I. We shall also always use A; = T'(%)
forzel.

If T': I — @ has an inf we shall denote it by (4, ) = inf ' where u =
{u; : A — A, | 7 el} is the required natural transformation from the constant
functor to T'.

If I': I — Ens then inf I' = (4, u) always exists and we may assume that
A C J] A: and that each u; is the restriction of the projection function
pi: 1 4: — A;. Tt then follows that z e 4 iff 2 ¢ [[ A; and h(pi(z)) =
pi(x) whenever h ¢ I'(Hom (4, j)).

Lemma 1. Let G : @ — Ens be an inf-preserving functor whose action on
morphisms is denoted by G(f) = f. Let F be a function from the class of objects
of @ to the class of sets. Assume F(A) € G(A) for all A ¢ ®. Then F can be
regarded, in the natural way, as an inf-preserving functor iff

(1) for each morphism f : B — A 1t s true that

f(F(B)) C F(A);
(2) whenever (A, u) = inf T, for T : I — @, then
F(A) 2 N (F(Ay)).

Proof. Clearly (1) is equivalent to the statement that F is functorial in
the natural way. Notice that (1) and (2) imply F(4) = M@ (F(4;)).
It suffices to show that inf (FT') = Na;*(F(4;)).
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Since G is inf-preserving, one can regard G(4) = inf (GT') < [ G(45).
The functions {#;} can be regarded as the restrictions of the projection maps
{pd. It then follows that G(A) is the set of all x ¢ [JG(A4:) for which
h(pi(z)) = pj(x) for all k e T'(Hom (¢, j)).

Similarly z einf (FT') if z ¢ [[ F(4:) and h(pi(x)) = p;(x) for all suitable
h. It follows that

inf (FT) = G(A)n [[ F(4;) = Na (F(A)).

Important Remark. Weshallsay that T': I — Gand IV : I’ — @ are similar
ifinf ' = (4, ) and inf IV = (A4, %) both exist and the unindexed sets of
morphisms {u;} and {u} are the same. Observe that if condition (2) of the
above lemma is satisfied for I' then the condition is also satisfied for all IV
which are similar to I'. Moreover, since @ is a small category, there clearly
exists a representative set of functors such that whenever inf I' exists, I is
similar to a functor in the representative set. From here on, we shall assume
that a fixed representative set of this type has been chosen.

DEeriNiTION. Let G and F be as in the above lemma. In what follows we
let T vary over the fixed representative set of functors mentioned above. We
then define functions F* and F* (mapping the objects of @ into sets) by

F*(A) = U{f(F(B))|f: B— A}
F*(A) = U{Na; (F(A:)) | (4, u) = inf T}.
Moreover, for each ordinal, o, we shall define the function F, by Fo = F and

Fo= (Fuu)®™ if a—1 exists
and

Fo(A) = U{Fs(A)|B < a} if a0 and a — 1 does not exist.

LevmMa 2. Let F and G be as above. Let m be an infinite cardinal for which

(1) card (F(A)) < mforall A e@,

(2) the set of all morphisms of @ has cardinal less than m,

(3) m exceeds the cardinal of the fized representative set of functors,
{r:I— a},

(4) whenever T : I — @ 1s in the fized representative set then card I < m.
It follows that card (F¥(A4)) < m and card (F*(4)) < m™ for all A €Q.

Proof. Straightforward. Notice that F*(4) € U{T] F(4.:)}.

LeMMA 3. Let v be the smallest ordinal whose cardinal exceeds the cardinal of
the set of all morphisms of @. Let G and F be as in Lemma 1. Then F., is the
smallest inf-preserving subfunctor of @ for which F(A) S F,(A) S G(A) for all
A €Q.

Proof. It clearly suffices to show that F, satisfies the conditions of Lemma
1. To verify (1),let f: B— A be given and let z ¢ F,(B). Then x ¢ Fg(B)
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for some 8 > v and so )
J(z) eFpa(A) S Fy(4).

As for (2),let (4, u) = inf T and let & ¢ Ma; (F4(4:)). Then for each i,
there exists 8; < v such that @;(x) e Fg,(A;). Moreover, we can choose
Bi = Bjif u; = u;. Hence the set of distinet 8;’s has no more elements than

the set of morphisms of @ Clearly there exists 8 < v such that 8; < 8 for
all 2. It follows that

z e Ny (Fa(A:)) S Fan(A) C Fo(4).

DEF_INITION. Let F and @ be as in Lemma 1. For convenience we shall
use “F” to denote the smallest inf-preserving functor “between F and G”

(ie. F = F,).

More generally, let n: E — G be a natural transformation for which
G ¢[@, Ens)ias . We shall then use “E” to denote the smallest inf-preserving
subfunctor of G through which. 5 factors. Clearly E = F. where F(A) is the
set-theoretic range of (4 ).

We define n : E — @ to be dense if G ¢[®, Enslin; and E = G. Observe
that every 5: E — @G factors through a dense transformation (viz.
E > E— @),if G e[@®, Enslin -

Lemma 4. Letq : E— Gand \, p 2 G — H be natural transformations where
G and H are inf-preserving. If n is dense then My = un implies X = u.

Proof. Let ¢ : F — G be the difference kernel (or equalizer) of N and u
in the category [@, Ens] (see [2, p. 8] for the existence of o). It follows from
the construction of difference kernels that F may be regarded as a subfunctor
of G and that 5 factors through F. Moreover F is inf-preserving in view of
[2, pp. 19-21]. But 7 is dense, hence F = G and so N = pu.

Proof of the theorem. Let E ¢[@, Ens] be given. Let {;: E — G} be a
representative class of dense transformations such that every other dense
transformation from E is equivalent to exactly one 5;. By applying Lemma
2, one can obtain an upper bound for card G;(A) which is independent of ¢
and A. Thisimplies that the class {5, : E — G} is a set.

Let n : E — ]| G: be determined by p; n = #; for all 7, where p; : 16—
G; is a projection transformation. In view of [2, pp. 19-21}, we see that
1 Gi¢l@, Enslins. We shall factor n through a dense transformation,
E E — E composed with p : B — ] G: which injects E as a subfunctor of

G;.

We claim that 7 : E — E reflects E into [®@, Enslin¢. Forif N\: E — H
is given with H € [@®, Ens]ins , we can factor A through a dense transformation.
Since {5; : E — G} is representative we can assume N = 67, for suitable ¢
and 8. Thisimplies N = (6p; u)n. Moreover, (0p; u) is uniquely determined
in view of Lemma 4.
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