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The objective of this paper is to give a proof of the following result"

THEOREM A. Let G be a finite simple group which contains an involution
such that the following conditions are satisfied:

(I) The centralizer Co(t) of in G is a splitting extension of an elementary
abelian normal 2-subgroup of order at most 16 by S, the symmetric group of
degree four;

(II) the centre of a Sylow 2-subgroup of Ca(t) is cyclic.
Then G is isomorphic to one of the following groups As, Ag Alo or M... Here

A, denotes the alternating group of degree n, and M is the Mathieu simple
group on 22 letters.

This result is a consequence of the following

THEOREM B. Let ro be an involution contained in the centre of a Sylow 2-sub-
group ofAlo Denote by Ho the centralizer of ro in Alo

Let G be afinite group with the following two properties:
(a) G has no subgroups of index 2, and
(b) G possesses an involution r such that the centralizer Ca() of r in G is

isomorphic to Ho.
Then G is isomorphic to Alo
Remar]c. Let G be a group satisfying the assumptions of Theorem A.

Then Ca(t) contains un elementary ubeliu normal 2-subgroup M of order at
most 16 such that Ca(t) is a splitting extension of M by S. Hence MI
is equal to 8 or 16. It is straightforward to check, that, if [M[ 8, then
Ca(t) is uniquely determined. Application of the result in [8] yields that G
is isomorphic to As or A if MI 8. However, if MI 16, there re
precisely two possibilities for Ca(t) s has been observed in [10]. One of these
possibilities is that Ca(t) is isomorphic to the centralizer H1 of an involution
of M., the other possibility is that Ca(t) is isomorphic to the centralizer of
n involution of A0. The theorem in [10] states that if Ca(t) is isomorphic
to H1 then G is isomorphic to M. Hence, in order to prove Theorem A,
it suffices to prove Theorem B.

1. Some properties of H0

The group H0 is isomorphic to group H generated by the elements r, #,
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,’, r, r’, p, X, subject to the following relations"

We put

D (r,/a, g’, r, r’, X, ), M S (, , ,
L1 <Tr, #, k, #’’} and L= @, it, rX, }.

M, S, L1 and L2 are the only elementary abelian subgroups of D of order 16.
The groups M, S, L1 and L2 are all contained in S(**’, } which is equal to
Cn(g) and S(g’, 1i) is the only maximal subgroup of D with centre of order 4.
The eentres of all other maximal subgroups of D are equal to @). We have
that the elementary abelian subgroups of D of order 16 are self-centraliz-
ing in H. Further, Nn(M) H, Nn(S) D, Nn(L1) S(g’, },
NH(L=) S(t*’, } and L[’ L2.
The group H is a semi-direct product of its normal subgroup M and its

subgroup (r, r’}(p}(k} which is isomorphic to $4. There are eight classes of
conjugate involutions of H with the representatives r, it, r, X, rk, , r and
rk. The orders of the centralizers of these involutions in H are 273, 26, 25,
25 25 253, 253, 24 respectively.
The groups M, S, and L,. split into D-conjugate classes in the following

way"

S" 1; r; , 7r/; r, rr, r, 7r/r; X,/X, rX, rrX; rX, rX, rrX, rX.

L2 1; rr; , rr/,; rX, rr/rX; rrX,/rX; ,/,; rr, r/; rX, rr/rX, IrXP,, rrXP,.

The main problem in this paper is the fusion of the conjugate classes of
involutions. Some properties of the alternating groups of low degree are
needed for our proof; the character tables of [11] seem to be of some help.

In the whole paper, G denotes a group with properties (a) and (b) of the
theorem. Thus we assume that H is embedded in G and that Co(r) H.
The notation x y means that x is conjugate to y. All other notation is
standard.
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2. Conjugacy classes of involutions of G

(2.1) LEMMA. The involution r is contained in the centre of a Sylow 2-sub-
group of G.

Proof. Let R be Sylow 2-subgroup of G containing D. ThenH n R D.
Wehaver eD R, andify eZ(R), then [y, r] 1. Itfollowsy eRn D.
Hence Z(R) Z(D) (} and so Z(R) (.

(2.2) LEMMA. Each involution of G is conjugate to an involution of S.

Proof. Put (, , ’, r, r’, p, h} and D S(’, r’}. It is a consequence
of [16; p. 361] that every conjugacy class of involutions of fl intersects S non-
trivially. Application of lemma ia [14] yields that each involution of G is
conjugate to some involution iu D.

(2.3) LEMMA. The involution is conjugate in G to an involution e H with
tv.

Proof. If were not conjugate to an involution e H with , then
would not be conjugate to any involution of D different from v. Application
of [5; Corollary 1, p. 404] would yield v e Z(G mod O(G)), and the Frattini-
argument of [1; Lemma 1, p. 117] would give G HO(G) against the assump-
tion that G has no subgroups of index 2.

(2,4) LEMMA. The involutions , and do not lie in the same conjate
class of G.

Proof. Assume the lemmu to be false. We hve

Z(S(’)) (, , ) and Co((, , k)) S(’}.
Call this group W. Denote by D a group of order 64 contained in Co(k)
which contains S(g’). Define Dx silarly. It is W’ (r) and therefore
Z(D) (X, ) and Z(Dx) (X, ). Put N (W(), D, Dx). Ob-
viously, () Z(N). N cannot be a 2-group because otherwise [N[ 2
but D contains precisely one subgroup of order 64 with centre of order 4.
Since N/W is isomorphic to a subgroup of PSL(2, 7) we get that 3 vides
[N/W[ but 7 does not. Hence wg is centralized by an element x of order 3
in N. We know thatS W() D Dx and so since Z(D)[ Z(Dx)[

4 we must have S (N, D). The group S is elementary abelian of order
16. Hence 8 o(S)/S is isomorpc to a subgroup of As. The involu-
tion v of S cannot be conjugate to under o(S) since [x, vg] 1 and
H o(S). It follows that 3.5, 3.7 and 5.7 do not divide [8 [. But we
know that 3 divides $ [. Therefore, for 8[ one obtaines the possibilities
8.3 and 8.3.

If N/W is of order 4.3 then N/W A, and a Sylow 2-subgroup of G would
be normalized by an element of order 3 which however is not the case. Hence
N/W S. Nowassume [8[ 8.3. InthiscaseN(S) andso
(r) Z(o(S)). But then we would have which is not possible.
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It remains to consider 181 8.32. A Sylow 2-subgroup of $ is dihedral of
order 8. [6; Theorem 1, p. 553] implies that has a subgroup of index 2.
Hence is isomorphic either to a Sylow 3-normalizer of As or to the group
(<y> X A)<z> where z y 1, <y, z} S, A --- A and A<z> --- S. Suppose
the second case holds. Let Tx be a Sylow 2-subgroup of I(S) containing
D. Z(Tx) is equal either to <}, <t)> or <t}. Clearly Z(Tx) <} is
not possible because in this case we would have = rt in No(S). If Z(Tx)
<mA}, then note that =t*A under D, and we get D n Tx 32. On the
other hand, contains a normal 2-subgroup of order 4 which yields D n Tx
64 and gives a contradiction. If Z(Tx) <> one argues similarly.

Finally, we have to consider the case that $ is isomorphic to a Sylow 3-nor-
malizer of As. The four-group <’, r’}S/S acts on where by 9 we denote
0(8). Put al t’S, a2 r’S, as t’r’S. A result due to R. Brauer
[15; p. 146] yields

i.[
It is 191 9 and for i 1, 2, 3 the integer C(al)l is a divisor of 3. It
follows that

and [C(ai)l C(a’)i 3

for certain two different involutions ai and a. in <al, a2>.
we have that

or

or

Therefore, in No(S),

(I) S<t’> and

(2) S<t’> and

(3) S<r’> and S<t’r’>
are normalized by elements of order 3. It is Z(S<’>) <r, >, Z(S(r’>)
(=, r} and Z(S(’r’}) <, r>. The first two cases cannot happen because

" =t in No(S) and H No(S). In the third case conjugates of r in
No(S) are 7, r, vr, r, rtr. Denote by Tx a Sylow 2-subgroup of Na(S)
withD c Tx. The group <> cannot be the centre of Tx. Hence Z(Tx) is
either <} or <=>. Consequently we get that is conjugate to X or to X in
No(S). If Ne(L)I 23, then = would have 18 conjugates in L2 under
N(L) against [L. 16. If N(M)I 23, then would have precisely
3 conjugates in M under No(M) which is not possible. We have proved that
S is not conjugate to M and not conjugate to L2 in G. If Z(Tx) <>, then
T n C(r) 64 and so t) is conjugate to in No(S). If Z(Tx)

(rA>, then Tx n C(},)[ 64 and is conjugate to t in No(S). In any case
we obtain t ’ in G. Denote by D, a Sylow 2-subgroup of Ca(t,) which
contains S<’, >. Since all the elementary abelian subgroups of D and D, are
contained in S<t’, > we get S <3 <D, D,>. It follows = - t, t in No(S),
a contradiction. The lemma is proved.
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(2.5) :LEMMA. Interchanging and rh if necessary we may and shall assume
that r is not conjugate to in G.

(2.6) LEMMA. The involutions - and are not conjugate in G.

Proof. By way of contradiction assume in G. Suppose first that
neither r, v, , nor rh is conjugate to in G. Each of the groups S and
L contains only 3 involutions conjugate to in G whereas M contains 7 in-
volutions conjugate to r. It follows that M is not conjugate to L and not
conjugate to S. If D denotes a Sylow 2-subgroup of Ca() which contains
S(t’, ), then all the elementary abelian subgroups of order 16 of D, are con-
tained in S(t’, ). It follows M <:l (H, D) and (r, t <:l (D, D,). Clearly,
(D, D,) is not a 2-group and therefore (D, D) contains an element v of order
3 with , . Hence has precisely 7 conjugates in M under
N(M). It follows Na(M)i 2. 3.7. Na(M)/M acts faithfully on
(, , t’) and so Ne(M)/M PSL(2, 7). The involution possesses 4 or 8
conjugates under Na(M). Since C.()I 2.3 we obtain C() a Na(M)

2.3.7. Denote by , an element of order 7 in C() Na(M). / acts
transitively on {, ’, r’, r, rt, ’, ’}. Hence possesses precisely
8 conjugates under N(M) against C() Na(M)I 2.3.7.

We have shown that at least one of the involutions r, h, , r and rh is
conjugate to in G.
Suppose that r or r -- }, holds in G. Assume first r in G. De-

note by D a group of order 64 with S(r’} D Ca(r). Then S <3 (D, D)
since S char S(r’}. Further, (D, D} is not a 2-group because C.(r)I 32.
Since }, v in G we get the following possibilities for Na(S)I 2" 3, 2. 7,
2. 5, 2. 3. The case Nq(S)! 2" 7 or 2. 5 cannot happen because As has
no subgroups of order 2.7 or 2.5 with dihedral Sylow 2-subgroups. If
N(S)I 2’3, then , t and r are the only conjugates of under Na(S).
Denote by X a Sylow 2-subgroup of Ne(S) with D X. It follows that
Z(X) is equal to ( or to (}. It is X C(r)I 64 and so r t in N(S)
since and are the only elements of D such that their centralizers intersect
D in a group of order 64. This contradicts the fact that , and v are the
only conjugates of under Na(S). We are in the case Na(S)/S 2a3
and so r r}, under Na(S). --Assume now rh in G. Denote by
Dx a group of order 64 with S(t’} Dx Ca(},). It is Z(Dx)

Dx}. Further, (D,(, t} and so S <:I (D, Dx} is not a 2-group.
is equal to either 23 or 23. If ]Na(S)/S] 23, denote by X a Sylow
2-subgroup of Ne(S) which contains Dx. Z(X) is equal to
and X Dx 64. We obtain X t in Na(S) which is a contradiction.
Hence N(S)/S] 23 and -- r - vX in N(S) also in this case. So, if

r or v ), in G, then the conjugate class of in N(S) consists of
and because h and the fact that both r and X have 4 conjugates
under D. It follows that 3 divides C() Na(S)! against v in G.
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We have proved so far that at least one of the involutions , r and rh is
conjugate to r in G and that neither r nor , are conjugate to r in G. Denote
by D, a Sylow 2-subgroup of Ce() which contains S(’, }. Then I(D, D}I
273 since (, } <3 (D, D,), and S(t’, } contains all elementary abelian sub-
groups of order 16 of D,. Since M and L contain at least 4 conjugates of r in
G and S contains only 3 conjugates of r, we conclude that S is normal in
(D, D}. The element ), has at least 4 conjugates under (D, Dr}. If 3 divides
C(,) n (D, Dr}[ then denote by v an element of order 3 in C(X) n (D, D}.
We may choose v so that * , * r. It follows () r, and so,
would have more than 4 conjugates in (D, Dr). This is a contradiction since

253 divides C(,) n (D, D,) in this case. Hence 3 does not divide C() n
(D, D)[. Because of r we have that ), has precisely 12 conjugates in
(D, D,). Therefore r in (D, D) and so S(’) would be conjugate to
S(r’) against [Z(S(r’))i 4 and ]Z(S(’))I 8. This contradiction
proves the lemma.

(2.7) LEMMA. The involutions -, and r do not lie in the same conjugate
class of G.

Proof. Assume that r in G. Denote by D a group of order 64
with L<’> c D c Ca(}). Since Z(D) <}, > we have M <:l <H, D> and
H c (H, D>. The involution r has 5 or 9 conjugates in M under la(M).
Since Ia(M)/M is isomorphic to a subgroup of As, it follows that r has
precisely 5 conjugates in M under la(M). An element of order 5 ia lla(M)
must operate fixed-point-free on M, and so, either v} or } since has
6 conjugates in M under H. This contradicts (2.6).

(2.8) LEMMA. Interchanging and - if necessary, we may and shall as-
sume that - is not conjugate to in G.

(2.9). LEMMA. The involution r is conjugate to r or to r) in G.

Proof. Assume by way of contradiction that the lemma is false. By (2.3),
(2.5), (2.6) and (2.8) follows that v} or r rh} in G and [la(S):D] 1

Suppose first that r - } in G. Denote by D} a group of order 64 with
L.<’> D Ca(). Since Z(D) (, r), we get L

V. Clearly, V is not a 2-group and V normalizes (r, , ) since Z(L,())
(r, , ). Not all involutions of (v, , ) lie in the same conjugate class of G.
Hence V contains an element x of order 3 such that r r, (v) r, *, (#) and [x, ] 1. From a lemma in [14] we conclude that rk is
conjugate to an involution of M(r, r’)(p). It follows that vX is conjugate to
or r in G. Assume that r), in G. Denote by T,x a Sylow 2-subgroup

of Ca(,) which contains S. Clearly, S < (D, Tx) and (D,
2-group. It follows [IIa(S)"D] > I which is not possible. Now assume that
rh -- r in G. Then 64 divides Ca(X)l since S(’) and S(r) are not iso-
morphic. Denote by Tx a subgroup of Ca(rX) of order 64 which contains
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S(’). Since Z(Tx) (rk, r) we have S<:I (D, Tx) and [Na(S):D] > 1
which again cannot happen. We have shown that r is not coniugate to
and that r must be coniugate to
Denote by Dlx a group of order 64 with centre of order 4 and L

Ca(rk) Then L2 <:1 (S{’, }, D,x} V. Clearly, V is not a 2-group. It
follows INn(L2):S(’, }] 5. An element of order 5 in Na(L,) must act
fixed-point-free on L. Hence, # rk or rrk in G. If
in G. Denote by Tx a Sylow 2-subgroup of Ca(k) which contains S. Then
S <:l (D, Tx} and [Na(S):D] > 1 which is not possible. If - rk then

rk in G and again one gets a contradiction. The lemma is proved.

(2.10) LEMMA. Na(S)/S is isomorphic to a Sylow 3-normalizer in As.
Further r rk r in Na(S).

Proof. From (2.9) we conclude that r rk or r r in G. Assume first
r rk in G. Denote by Dx a subgroup of order 64 of Ca(rk) with S(’}
Dx. Since Z(Dx) {rk, r} we get S <l {D, D}. Hencen [Na(S)’D]
is equal to 5 or to 9. Since Na(S)/S is isomorphic to a subgroup of As, we
obtain n 9 and so r rk r in Na(S). Assume now that r r in G.
Denote by D a subgroup of order 64 of Ca(r) with S(r’} D,. Since
S char S{r’}, we get S <:l (D, D}. Hence [Na(S)"D] 9 and r r rk in
Na(S). In any case Na(S)/S 239 and r r rk in Na(S). A Sylow
2-subgroup of Na(S)/S $ is dihedral of order 8. From [6; Theorem 1.
p. 553] we conclude that $ must have a subgroup of index 2. If $ has no
normal subgroups of index 4, then $ ({x} X A)(y} where x y" 1,
A A, {x, y} __’ $8 and A(y} ._ S Then either S(r’, ’} <1 Na(S) r,

S{’, } < Na(S). In the first case an element of order 3 in Na(S) would
normalize Z( S(r’, ’}) against H N(S) and in the second case we would get
r in Na(S) which is not possible because of (2.6). We have proved
that $ must have a normal subgroup of index 4. The lemma is proved.

(2.11) LEMMA. There is an element u of order 3 in Na(S) with r" r,
r r. Further, C(t) n Na(S)I 64.3 and t is conjugate to
G has precisely two conjugacy classes of involutions.

Proof. Denote by D a subgroup of order 64 of Ca(r) a Nq(S) which con-
tains S(r’}. It is (r, r} <1 (S(’, r}, D} X. Suppose X is a 2-group.
Then XI 2 and Z(X)

_
{r, r}. It is S{’, r’} <:1 X and so Z(X)

against C,(r)I 32. Hence X is not a 2-group. If follows the existence
of an element u of order 3 in X with r r and r rr since u e Na(S) and
H Na(S). Assume that 9 divides C() n Ne(S)I. Then {, r} is the
conjugate class of in Na(S). Since C()nNa(S)<:INa(S) it follows
u e C(). Then (r)" r yields a contradiction. Hence C() n Na(S)I

64.3 and ), in Na(S). Since by (2.2) each involution of G is conjugate
to an involution in S, we get that G has precisely two conjugate classes of
involutions.
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(2.12) LEMMA. The involution r is conjugate to r in Na(M).

Proof. It is a consequence of (2.8), (2 6) and (2.11) that in G.
Denote by T a Sylow 2-subgroup of Ca() which contains M(r),). It follows
M <:l (H, T} and T H since C()I 23. Hence [Na(M)’H] > 1 and
must be conjugate to under Na(M).

(2.13) LEMMA. Let T be a Sylow 2-subgroup of Ca() with L(’} T.
Put L (S(’, }, T}. Then IL 23. There exists an element
order 3 such that r r, (r) r, , () and [a, r] 1.
Na(L)! is equal to 23 or 23. Z(L) (} and L Na(L.).

Proof. We know that in G from (2.11) and (2.9). Denote by T
a Sylow 2-subgroup of C() which contains L(’}. Since (L(’))’
one gets Z(T) (, ). Also Z(L.(’)) (, , } and L. < T. Put
(S(’, ), T) L. We have (, , )<:] L and () Z(L). Clearly, L is
not a 2-group since . L/L:(’) is isomorphic to a subgroup of PSL(2,
7). Because ofeZ(L) we get ILl 23. SinceHnL S(’, ), no
element conjugate to v under L can be centralized by an element of order 3 of
L. Considering the elements of (, , ) one gets the existence of an element
a of order 3 in L such that r, () u$, , () and
[, a] 1. For [N(L.)’S(’, )] we get the following possibilities: 3, 5,
3, 7. If Na(L.)] 25 or 27, then Na(L) (S(’ $), T) which is not
possible. The lemma is proved.

(2.14) LEMMA. The involution r is conjugate to r in G.

Proof. Assume the lemma to be false. Then rX in G. Denote by
T,x a Sylow 2-subgroup of C(r) which contains L,. Because of Z(T,)
(rX, x) is a four-group we get L <:l (S(’, ), Tx) X. Clearly, X cannot
be a 2-group since S(’, ) T,x. Application of (2.13) yields Na(L) X
andXisof order23. ThusX L. We may putx . Obviously,
(, ) is conjugate to (r, ) in L, and so v -r in L. But (r)#’
r against our assumption. The proof is complete.

(2.15) LEMMA. We have [a, r] 1.

Proof. There are nine elements in L which are conjugate to in G. From
(2.13) follows that a acts transitively on {, , }. Also [a, ] 1. There
remain the elements r), and rr, which a must centralize.

3. Simplicity,,of G
(3.1) LEMMA. G is a simple group.

Proof. Since 0(H) 1 and - r rr in G we get from [15; p. 146] that
0(G) 1. The fact that N(D) D together with [1; Lemma 1, p. 117]
yields that G possesses no non-trivial odd order factor group. If G were not
a simple group then G has a normal subgroup Y with 1 Y G. Since
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Y[ 0 (mod 2) and [G/Y 0 (mod 2) we get that 7 or D is contained
in Y because G has precisely two classes of involutions. Hence, (7, D)

_
Y

and since D is generated by involutions, we get D Y against [G/Yi -0 (mod 2). The lemma is proved.

4. The centralizer of in G

(4.1) LEMMA. C(#) n No(S) is generated by the elements 7, tt, r, , tt’, , ,
subjec .o he following relations" 1, [, ] [, ] [, ] 1,

--1

Proof. We are going to use the results of (2.10) and (2.11). It is C(D) n
No(S)[ 64.3. Let g be an element of order 3 in C(D) n No(S). Denote
by/V the subgroup of No(S) of order 64.9 which has S(T’, t’) as a Sylow
2.-subgroup. We consider N f n C(D). Clearly, e N. Since the con-
jugate class of D in No(S) consists of 6 elements, since H No(S) and since
r - 7k -- r in No(S) we get [v, k] 1. It follows Cs(v) (u, k) and no
element in S \ (D, k) normalizes (v). The case N((v)) n hr C(v) n hr is
not possible since otherwise S(D’) would be normal in N against 7 t and
H No(S). N contains precisely three Sylow 2-subgroups which one ob-
tains from S(D’) by transforming with v and v-1. Hence a Sylow 2-subgroup
of N((v)) n N is contained in S(t’) and so an element in S(’) \ S must invert
v. Elements in S(D’) \ S are the four elements of order 4 with square equal
to 7 which cannot invert v since [7, v] # 1, the four elements with square
equal to m which cannot invert v since [zt, v] [7, v] # 1, the sets of elements
K1 {tt’, DD’, 7DD’, 7#’} and Ks {D’X, DD’X, 7Dg’k, 7g’X}. If x e K1 with

-1 then by conjugating with an element in S we obtain an element

’ of order 3 in (S(D’), ) with D’’D’ ,-1. The same can be done if an
element in K inverts because [},, ] 1. Hence we may assume that

--1’’D’ Considering the conjugate class of g in N o(S) and noting that
Cs(g)[ 4, we get (7t) trX or rX. Interchanging and - if necessary
we may and shall assume that 7 7TX and r 7D},.

Finally, we consider the subgroup of No(S) of order 32.9 with Sylow
2-subgroup S(D’). Put U C(D)n . Clearly, U (S(t’), ,). From
[17; Theorem 4, p. 169] we conclude that v is inverted by an element in U
Since (S(D’))’ (Tt) and [Tt, ] 1. Such an element can be found in
S(D’) \ S. All elements of order 4 in S(D’)\ S have square equal to
and so, they cannot invert . There remain the eight involutions of
S(D’} \ S D’, rD’, D’, 7D’, k’, 7kD’, tk’, 7kt’. Since [,
[, h] 1 we have that either t’ or 7D’ inverts . If 7t’ inverts then

r centralizes and so (7) 7},r 7. It follows rX against (2.14)
and (2.8). We have proved that t’ inverts and therefore [, ] 1. The
proof is complete.

(4.2) LEMMA. Co(g) ((D, ) X A )(D’), where A --- A6 A(u’) S and
v’ --i(rt, T, ,, t’, a A. Further, [u, r’] 1, t },, D and ’u#’ u
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Proof. tirst we shall consider the normalizer of (r, r) in N(S). It is
C((r, r)) S(r’). Hence, by (2.11), Na((, r)) S(r’(u, ’) X and

If 3 divides Cx(), then {, } is the conjugate class of in X. Denote by
v an element of order 3 in C(). Since no element of order 3 in Na(S)
centralizes , we get (v) r or vr which is not possible. It follows
C()] 32. In a silar way one proves C(r) 32, because r is not

in the centre of a Sylow 2-subgroup of X. It follows that in X and
r in X. The conjugate class of in X is {, , h, uh, rh, vr}.
Since C() S(’, r’), we have either C(X) (S(’, ’) or C(h)
(S(’, r’)) -1. For the action of u on S one gets r, r, ".
We know that (r’) is equal to one of the four elements in S(r’) the squares

of which are equal to r. These elements are hr, rr’, Xr’, vrXr’. We know
that . It follows that (r’) is equal to r, rr’, r’, or rr. The se

r’, rr’, vr’, rr’} is u-invariant. Hence u centralizes an element in .
The group (, ) operates transitively on , and so, transforming u by an
element in (, ), we may and shall assume tha ur’ ru.
We consider now u’. We have u’ e C(X) C(r), and so

Further,
--1

(u,’) s(,’) .
(uu) (v, r) snce otherwise u e (v, r)(’) against uClearly, "- 1. Con-

sidering the possibilities for u’, we get that (u’)- ’ or (u’)- vr’.
If the last possibility holds then u’ ’ru-. Put u and note that
the order of vu is 3 and that has all the properties of u required so far.
Compute (’) u’vu urvu- 1. It follows that’ a- or
equivalently (g’) a- ,. Hence we may and shall assume that ’u’ u-.
We turn now to the deternation of Ca(). Put Ca() and

/() @. In the epimorphism @ put p, r t, k l, ’ m,
z,nanda a.

It is C(p) (1, z)X (p, t)(m) , where @, t)(m) is dihedral of or-
derS, Z() (1, z,p) andS’ ). is a Sylow 2-subgroup of @ and
N() . Application of [17; Lemma, p. 169] yields that no two f-
ferent elements of Z() are conjugate in @.
Assume p in @. Then there exists and x e such thatx r or

r. We have [C(r) Ca()] ]C(v) Ca(k)] 32 against [C()
Ca() 64. Henceptin@. Further, pm,plm, pzt, pzlt
because (v)" vrk[ and therefore (pz) ptlz and (zlt) ptlz. Cer-
tainly, one has p ptl and p pmz. Whether p zlm in or not has
not been decided so far.

Application of [17; Theorem 5, p. 170] yields that the transfer of @ into
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is isomorphic to Ig/(p, lt, zm} if p ,’/-, zlm in @, or to /(p, t, l, zm} if p zlm
in @.
Assume by way of contradiction that @ has no normal subgroup of index 4.

Then @ has a normal subgroup !gt with [@" !gt] 2. Since @’

_
!gt we get

Ig’ and so (p, t, l, zm}

_
!Yr. Since p zm zmp zlm zlmp in

and z e ![12 we get that these five elements are conjugate in 9)l. We have

C(p) (1} X (p, t}(zm} .
Because of ’ (p} we get N() and so l, p and lp lie ia three different
conjugate classes of !Ft. Consider

C(p) n C(zm) C(p) n C(zpm) Cn(p) n C(zlm)

C(p) a C(zplm) (1} X (p, zm} .
’ is an elementary abelian group of order 8 and is normalized by Sylow 2-sub-
groups of !I2 the commutator groups of which are (p}, (zm}, (zpm}, (zlm},
(zlpm}. It follows [N()’] >_ 5 and so 7 must divide IN()/I from
which would follow that all involutions of are conjugate against p
We have shown that @ has a normal subgroup 93l of index 4 and that p ,-/-, zlm
in @.
We prove nexg ghag @ has no non4rival normal subgroup of odd order.

We have
C(r) n 1 64, C(r) n 1 32

and
[C(rr) n l [C(r) nC(X)l 32.

Using [15; p. 146], we get from the action of @, r} on 0() that 0(i) is
trivial. It follows from [17; Theorem 4, p. 169] that 0(@) 1.
The 2-group (p, lt, zm} is dihedral of order 8 and is a Sylow 2-subgroup of

Further, C(p) (,p, lt, zm), 0(!gt) 1 and (n, a)

__
!Yr. Assume that

has a subgroup of index 2. If 9t is the intersection of all subgroups of index 2
of !I), then 2 __< [!gt" 91] _< 4, and so (p} and (p, lt, zm} which is not possible.
Hence does not possess subgroups of index 2. We are in the situation to
apply [6; Theorem 1, p. 553] and get that

__
A or

__
PSL(2, 7).

Denote by J the counter image of !gt in . A Sylow 2-subgroup of is
(t} X (rt, rX}(t’}. From a result in [3] we get (t} X A where A is
isomorphic to A or PSL(2, 7). Since A char we get A <l . Clearly,
(u, a ) A, and since (rt, rX)@ is isomorphic to A, also (rt, rX)@

_
A.

Because of (rt)’’"’ rt, it follows ’ cA. Hence (r, rX}(t’(} is a
Sylow 2-subgroup of A.
We shall consider now A(’} X. Assume that Cx(A) (y} is of order 2

for some y e A. Then [y, t] [y, r] I and -t y-t,y. Since (y) 1
we have y 1. Since

C(rt) (r#, rX)(} and @t, rX)()(’}
_
S,
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we obtain y ’. We must have [y’, r’ar’] [, r’ar’] 1.
quently,

1 r’a-lr’r’ar r’a-l’ar = r’(a-’a)r’,
and so

Collse-

which is not possible. It follows that Cx(A) 1 and A{u’} is isomorphic to
an automorphism group of A. Since a Sylow 2-subgroup of A{u’} has no
elements of order 8, we get A . A6 and A(’} - $6.
We have 1 8. A I, and /C(A) S since has no elements of

order 8. It follows that C(A)I 4. Obviously, A n C(A) 1. Since
@/A is dihedral of order 8, we have to discuss the following three cases:

()
(2)
(3)

AC(A A(,
AC(A)
AC(A A(,

The case (1) cannot happen, since then AC(A) () X A(’) against
C(A)I 4. Assume that we are in the case (2). Then C(A)

would be of order 4 for some y e A. We have

[y, ’,] [y, r] [y’,,] 1 and (y’X) y C(A),

and soyeC(A)nA 1. It follows that y ’. HenceC(A)
Therefore [, r’ar’] I which means

’-’(x)’’ ’-(’x)’ ’(-’)x’
and therefore

yields a contradiction.
We are necessarily in case (3). Since e C(A) we get A n C(A)

and henceA C(A) 0 since C(A)I 4. There exists y e A such that
y e C(A). It follows that [y, ,] [y, ] [y, ] 1. Because of

C,(-) (rg, rX, g’) and (-g, rX)(,)(’) S,

it follows that y 1. Hence C(A) (t, k). The lemma is proved.

5. She identification of G with A0
(5.1) LEMMA. [U, ] 1 and u is of order 3. (’, r’) normalizes (u, ).

Proof. Denote by R a Sylow 3-subgroup of Na(S) which contains u. We
know that R is elementary abelian of order 9, and that SR < Na(S). Con-
sider SR(’, u’) X and compute Cx(u). It is Cx(u) R(S(r’, u’)n
C(u)) R(r’). Further, R <:1R(u’, r’}. The element u possesses precisely
four conjugates in RS under RS. These are , , Hence e R, for
some xin{1, v, r, r}. Ifx r, then and’’ lie in R and hence
[, ’d’] i which is not possible. Therefore x r. Similarly, one proves
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thatx rr. It follows thatx 1 orx r.
necessary, we may and shall assume [u, ] 1.

Interchanging and if

(5.2) LEMMA. The element u, of order 3 centralizes A. Further,

Na((.u, X>) ((p,, :X) X A )(u,

Proof. Clearly,

No((,u, X)), Ca((p,, X)) (,u, X) X A.

It follows that u normalizes A. The automorphism group of A is an exten-
sion of A by a four-group. Hence u induces an inner automorphism on A.
We have [, u] 1 and since C(r) (r, rX, ’), it follows that (u)
induces the identity automorphism on A. Because u is of order 3, we obtain
[u,A] 1.

(5.3) LEMMA. Denote by o an element of order 5 in A
to (, X)(u,) X {co) or L X (co) where L ._ As.

Ca(co) is equal

Proof. There is only one conjugate class of elements of order 5 in Ca(t).
We have Ca(co) n Ca(t) (u, } (co). Let U be a Sylow 2-subgroup of
Ca(co) containgin (, }. Assume (t, } c U. If Z(U) (t, h}, then 28
divides Ca(co) n Co()l which is not the case. Hence Z(U)

_
{, X} and

#, or X is contained in Z(U). But then Ca(co) n
where x e I, h, }. However, in G we have/ X
Ca(co) is conjugate to Ca(u)n Ca(co) in G against 2
We have proved that U (t, h}. Put K 0(Ca(co)). It follows from
[15; p. 146] that

g I’1CK((t, h})l CK(t)I’I C(X)I’i C(tX)l 5a.
Therefore KI 5 and K (co}. It follows from (5.2) that u e Ca(co).
Hence all involutions of Ca(co) are conjugate under Ca(co). Application of
[12; Main Theorem, p. 191] yields the lemma.

(5.4) LEMMA.

Proof. It is

and

We know that J _.
and [/’, u] 1. Put

Ca(u) (uv) X W where W ._ A7 and A W.

r/. Hence

x

x,
There exists an element in such that (#)= 1

Y Ca(rt) n Ca(u).

The group T (r#, rh}(/#’} is dihedral of order 8 and a Sylow 2-subgroup of
Y. The structure of (#’) yields Y 283. Let U be a Sylow 2-subgroup
of Ce(u) which contains T. Suppose T U. If Z(U) T, then 24
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divides Y which cannot happen.
again we get a contradiction to Y I.
Put K 0(Co(u)). We have

IfZ(U) T, thenZ(U) (rg) and
Hence T U.

Since Co(g) does not contain subgroups of order divisible by 3.5, we obtain,
that Kis a 3-group with 3 _< [K[ _< 81. We know that A Ca(ug)"
Hence o induces an automorphism on K/(u). Since a 3-group of order at
most 27 does not have an automorphism of order 5 which follows from [7;
Theorem 12.2.2, p. 178], we know that stabilizes the chain K
It is a consequence of [9; Lemma 7, p. 6] that 0 centralizes K. Application of
(5.3) yields K (u) is of order 3.
We shall now apply [6; Theorem 1, p. 553]. If Ca(u) B has a normal

subgroup of index 4, then B would have a normal 2-complement against
o B and 0(B) (u). Put B/(u) and (u)A/(u) I. Assume that
! has a subgroup 11 of index 2. Clearly, H 1I since 8 does not divide
Ilii. Hence 117I and11<l?I. If 11nil 1, then!/ll__ [11/11_

I/11 n ?/ I yields a contradiction. If 1I n ?/ /, then ?I

_
1I which

we had ruled out. Hence does not have subgroups of index 2. It follows
that is isomorphic to PSL(2, q), q odd, or ! is isomorphic to A. In any
case, ! is a simple group. In the epimorphism B --, ! put b --. for an
element b e B. We have

C ()J 23 and C (#) ((,} X (2}

where 2a 1 for an x e A and (,/’}
_
S since in (g’} a group of order 9

is not centralized by an involution. It follows that C(/7) C((12) (34))
and so by the result of [13] we must have ! - A. Since (u) X A _’C(u)
we get from a result in [3] that Ca(u) (u} k W, where W -- A. Since
A has no subgroup of index 3, it follows A c W. The proof is complete.

(5.5) Lv.MM. Na((u)) ((u} X W)(g’} and W(g’) ._ S.
Proof. Put W(g’) X. Suppose Cx(W) (wg’) is of order 2 for some

w e W. Then [wg’, W] 1 but no involution of G centralizes a group iso-
morphic to AT. Hence W(g’) is an automorphism group of W and so

(5.6) L.MA. Na((u))n Ca(g) A(g’).

Proof. We have
Na((u)) n Ca(g) (g’)(((u) X W) n Ca(g))

(5.7) LEM. In G we have u, ,, u p and , ,,o u.

Proof. Since [u, r’] 1 and r’ r in G and since all elements of order 3
in H are conjugate in H, we conclude that p u in G. We have [rg#$, p]

1 and r#g g in G. There is a Sylow 2-subgroup J of Cq(rg#)n
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Ca(p) which is dihedral of order 8 and contains (r, r’>. It follows that J
is a Sylow 2-subgroup of Ca(p). If we had p u in G, then J and

would be conjugate in G against (r, r, ’) __c A. Hence p u in G.
Since (, , ) centralizes , we get - p in G. Since Ca() has precisely two
classes of elements of order 3, it follows u in G.

V-1, u u-l and(5.8) LEMMA. We have u, u- ’ u-,-.
Proof. The element u centralizes A and ’ e A. We get ’uu’ u

and sou U-I-1 and u u-i. To complete the proof, one represents
(’, r’)() on (u, ) and uses (4.1) and (4.2).

(5.9) LEMMA. The elements a and , of order 3 commute.

Proof. From (5.8) we conclude that Ca(u) is mapped onto Ca(v) under
Since a’ W, we get [, a] 1.

(5.10) LEMMA. The involutions ’, ,’, r’ and are conjugate in
and are transpositions. The involution - is a product of three transpositions.

Proof. We have (,)x , and (, r}()(’) S. Hence
in W(’}. The element a of order 3 normalizes L, (v, , $} and L(’}
Cq((v, , )). Using the fact that [,, a] 1 one verifies that

Since r ’}, we get

If (’)" ’, then (’)" ’ yields a contradiction. Also (’)" $’
is not possible since then (’)" ’ r which is not possible. We must
have (’) ’ and so (’)" ’. Hence ’ ’ ’ in (W<’>)’
since (a, ’) _.c (W(’))’. Therefore ’ r’ in W(#’). Now, either

’ or r is a transposition in W(’). Since r r# in G and 5 does not di-
vide H[ we get that ’ is a transposition and r is a product of three trans-
positions.

(5.11) LEMMA. The group G contains a subgroup Q isomorphic to Ao.
Proof. From [2; Section 161] follows that S contains precisely one con-

jugate class of subgroups isomorphic to S. By S we denote the symmetric
group on the set {1, 2, 3, 4, 5, 6}. There exists an isomorphism
onto S which maps A(u’) onto S. {’, v’, r’, } is a set of transpositions
in A(’>\A. Using , we can find a transposition W(’>\(W u A(’>)
such that the order of r is 3 and [, ] [, r’] [, }] 1. Also,
we can find a transposition 6 in A<’>\A such that [, 6] [’, ] [’, 6] 1,
(r’6) (6})a 1. Clearly, both a and 6 invert # and [./}] 1.
We have <a, >

___
Ca(v’) n C(r#’) n C(}) X. The group X is trans-
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formed by rr, onto Ca() n C(’) r C() . since

C(’) C(’) C(). C(’).
Obviously,

c(’) c() c(’) c(’).

The elements ’ and ’ are transpositions of W’(’) and [’, ’$] 1. It
follows that 3 divides the order of X. Since C() n C(’) S by (5.7),
(5.8) and (5.10), we get () X ()(z), where ka z 1 and (k, z) S
since e Z(). Since [, a] 1, we get that the order of is either 3 or 6.
Denote by e the element a,,x. Suppose that the order of is 6. Then
(e) and ()a . Since ,x and (a) , it follows from
[a, ’] 1 that also [, v’] 1 and so [, ] 1 against 1 and
() 1. It follows that a is of order 3.

’ =M ’ =M ’ =M MPutu=M,=M:,a=M,
and M8. For the M we have obtained the following relations"

1 M (M,M)M+ (MM+)

where i,j 1, 2,.-., 8, j > i + 1.
It follows from [4; chapter XIII] that (M, M, Ms) Q Ax0.

(5.12) LEMMA. G Q.

Proof. From (4.2) and the fact that Q contains precisely two classes of
involutions, and because Co(u) is isomorphic to Ca0( (12) (34) ), we obtain
that Q contains the centralizer in G of each of its involution. Assume
that Q is properly contained in G. Since by (3.1) the group G is simple,
we get GoQ 1. Application of a lemma in [14] yields that the number
of conjugate closes of involutions of G is one against (2.11). We have proved
that Q G and so G A0. The proof of Theorem B is complete.
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