A CHARACTERIZATION OF SOME MULTIPLY TRANSITIVE
PERMUTATION GROUPS, |

BY
Dierer HeLp

The objective of this paper is to give a proof of the following result:

TaeorEM A. Let G be a finite simple group which contains an tnvolution t
such that the following conditions are satisfied:

(I) The centralizer Ce(t) of ¢t in G is a splitting extension of an elementary
abelian normal 2-subgroup of order at most 16 by S, the symmetric group of
degree four;

(IX) the centre of a Sylow 2-subgroup of Ce(t) s cyclic.

Then G s isomorphic to one of the following groups As, Ae, A1 or Mae. Here
A, denotes the alternating group of degree m, and Mas ts the Mathieu simple
group on 22 letlers.

This result is a consequence of the following

TaeoreM B. Let m be an involution contained in the centre of a Sylow 2-sub-
group of Ay . Denote by Hy the centralizer of o in Ay .
Let G be a finite group with the following two properties:
(a) G has no subgroups of index 2, and
(b) G possesses an involution m such that the centralizer Ce(m) of = in G s
isomorphic to H, .
Then G is isomorphic to A .

Remark. Let G be a group satisfying the assumptions of Theorem A.
Then C4(t) contains an elementary abelian normal 2-subgroup M of order at
most 16 such that Cg(¢) is a splitting extension of M by Ss. Hence | M |
is equal to 8 or 16. It is straightforward to check, that, if | M | = 8, then
Ce(t) is uniquely determined. Application of the result in [8] yields that G
is isomorphic to Ag or Ay if | M | = 8. However, if | M | = 16, there are
precisely two possibilities for Ce¢(t) as has been observed in [10]. One of these
possibilities is that Ce(t) is isomorphic to the centralizer H, of an invelution
of M, the other possibility is that Cg(t) is isomorphic to the centralizer of
an involution of A;. The theorem in [10] states that if Cg(¢) is isomorphic
to H; then G is isomorphic to M, . Hence, in order to prove Theorem A,
it suffices to prove Theorem B.

1. Some properties of H,
The group H, is isomorphic to a group H generated by the elements =, ,
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uw'y 7, 7, p, A, £ subject to the following relations:

1r=”2=“'2=7 =1-'2=p3=)\2=£2=1,

o= pr,  w =p'm, o =, 17 =1

p 1 = 17, p o =1, TA = A7, NN = 77,
Mo = p ), T = Tm, 't = w7/, o = wp, M o= T\,
™w=upr, e’ =ap, o wp =, M= u

w'r =myd, W =, oW =u M=,
wk=ftr, pE=1Efu, WE=&/, £ =,

gk = Tu, BN =N, b = pp.
We put
D =@ umu,r, 7, N8, M={(r,uu, 8, S=@uprN),
Ly = (myp, \, w'8) and L = (m, pu, 7\, £).

M, S, Ly and L, are the only elementary abelian subgroups of D of order 16.
The groups M, S, L; and L, are all contained in S{u’, £) which is equal to
Cu(n) and S{u/, £) is the only maximal subgroup of D with centre of order 4.
The centres of all other maximal subgroups of D are equal to (v). We have
that the elementary abelian subgroups of D of order 16 are self-centraliz-
ing in H. Further, Ny(M) = H, Nx(S) = D, Ng(Li) = S/, &),
Na(Ls) = S/, &) and L’ = L.

The group H is a semi-direct product of its normal subgroup M and its
subgroup (7, 7"){p){\) which is isomorphic to Ss. There are eight classes of
conjugate involutions of H with the representatives m, u, 7, A, w\, &, 7£ and
m2¢.  The orders of the centralizers of these involutions in H are 2’3, 2°, 2°,
2° 2° 2°3 2°3, 2 respectively.

The groups M, 8, and L, split into D-conjugate classes in the following
way:

M: Vo5 p, mu;u, md, !, mun's £ WE, uE, muw't; wf, mu'E, Tk, w't.
S: 1wy, wu;y T, T, uT, TUT; A, pN, TN, TUTA; TN, TUN, TTN, BT,
Ly : 1575, wp; TN, wurd; wrX, urh; &, ué; wk, muk; TNE, muTAE, uTNE, wTAE.

The main problem in this paper is the fusion of the conjugate classes of
involutions. Some properties of the alternating groups of low degree are
needed for our proof; the character tables of [11] seem to be of some help.

In the whole paper, G denotes a group with properties (a) and (b) of the
theorem. Thus we assume that H is embedded in G and that Ce(x) = H.
The notation £ ~ y means that z is conjugate to y. All other notation is
standard.
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2. Conjugacy classes of involutions of @

(2.1) LeMMA. The involution = is contained in the centre of a Sylow 2-sub-
group of G.

Proof. Let R be a Sylow 2-subgroup of @ containing D. ThenH nR = D.
Wehaver e D C R, andify e Z(R), then [y, 7] = 1. Itfollowsy e Rn = D.
Hence Z(R) € Z(D) = {(r) and so Z(R) = ().

(2.2) LemmA. Each involution of G is conjugate to an involution of S.

Proof. Put H = (m,u,u, 7, 7,0, \yand D = S{u’, 7). Itisa consequence
of [16; p. 361] that every conjugacy class of involutions of H intersects S non-
trivially. Application of a lemma in [14] yields that each involution of G is
conjugate to some involution in D.

(2.3) LeMMA. The involution m s conjugale tn G to an involution ¢t ¢ H with
i # .

Proof. If = were not conjugate to an involution ¢{ e H with ¢ # =, then =
would not be conjugate to any involution of D different from =. Application
of [5; Corollary 1, p. 404] would yield 7 ¢ Z(G mod O(@)), and the Frattini-
argument of [1; Lemma 1, p. 117] would give @ = HO(G) against the assump-
tion that G has no subgroups of index 2.

(24) LemMa. The involutions w, A and =\ do not lie in the same conjugate
class of G.

Proof. Assume the lemma to be false. We have

Z(8'e)) = (myn,\) and Coe((m, u, N)) = S{u'é).

Call this group W. Denote by D a group of order 64 contained in Ce()\)
which contains S(u'g). Define Dy similarly. It is W’ = (ru) and therefore
Z(D3) = (\ mu) and Z(D%) = {(a\, wu). Put N = (W), Dx, Dy). Ob-
viously, (wu) = Z(N). N cannot be a 2-group because otherwise | N | = 2’
but D contains precisely one subgroup of order 64 with centre of order 4.
Since N/W is isomorphic to a subgroup of PSL(2, 7) we get that 3 divides
| N/W | but 7 does not. Hence mpu is centralized by an element x of order 3
in N. We know that S € W(t) n D} n D, and so since | Z(Dx)| = | Z(D)|
= 4 we must have S<{ (N, D). The group 8 is elementary abelian of order
16. Hence 8 = Ng(8)/8 is isomorphic to a subgroup of 4s. The involu-
tion mu of S cannot be conjugate to = under Ng(S) since [z, mu] = 1 and
H & No(8). It follows that 3-5, 3-7 and 5-7 do not divide | $|. But we
know that 3 divides | § |. Therefore, for | 8 | one obtaines the possibilities
8-3 and 8-3%

If N/W is of order 4-3 then N/W = A, and a Sylow 2-subgroup of G would
be normalized by an element of order 3 which however is not the case. Hence
N/W = §;. —Now assume |8| = 8-3. In this case N <{ Ne¢(8) and so
{rp) = Z(Ng(S)). But then we would have mu = = which is not possible.
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It remains to consider | $| = 8-3°. A Sylow 2-subgroup of $ is dihedral of
order 8. [6; Theorem 1, p. 553] implies that 8 has a subgroup of index 2.
Hence 8 is isomorphic either to a Sylow 3-normalizer of As or to the group
({y) X A)(z) wheres" = ¢* = 1,{y,2) = 83, A =~ Asand A{z) = S;. Suppose
the second case holds. Let T\ be a Sylow 2-subgroup of N¢(S) containing
Dy . Z(T,) is equal either to (\), {(ru\) or (wu). Clearly Z(Ty) = (mwu) is
not possible because in this case we would have # ~ wpin Ne(S). If Z(T)) =
(wu\), then note that mu\ ~ =\ under D, and we get | D n Th | = 32. On the
other hand, 8 contains a normal 2-subgroup of order 4 which yields | D n Ty | =
64 and gives a contradiction. If Z(T)) = (\) one argues similarly.

Finally, we have to consider the case that $ is isomorphic to a Sylow 3-nor-
malizer of As. The four-group (u/, 7/)S/8 acts on I where by I we denote
0(8). Put as = 'S, @z = 7'8S, a3 = p'7'S. A result due to R. Brauer
[15; p. 146] yields

| 9 |- Con({eu , @a))[* = | Conla)|-| Con(ew)|| Conles)|.

Itis |9 | = 9 and for ¢ = 1, 2, 3 the integer | Cyy(ay)| is a divisor of 3. It
follows that

Con({ar, az)) =1 and |Cy(es)| = | Com(as)| =3

for certain two different involutions a; and a;in {a; , as). Therefore, in Ng(S),
we have that

(1) Sy and (")
or

(2) Sw) and S{u'r’)
or

(3) S() and S{u'r")

are normalized by elements of order 3. It is Z(S(u')) = (w, ), Z(S(7")) =
(r, ) and Z(S{u'7’")) = (m, u7). The first two cases cannot happen because
m ~ 7 in Ng(8S) and H $ Ne(S). In the third case conjugates of = in
Ne(S) are «, 7, w7, ur, wur. Denote by T\ a Sylow 2-subgroup of N¢(S)
with D\ € Th. The group {zu) cannot be the centre of 7 . Hence Z(T}) is
either (\) or (muN). Consequently we get that « is conjugate to \ or to «\ in
No(8). If | No(Ly)| = 273°, then = would have 18 conjugates in Lz under
No(L:) against | Ly | = 16. If | Ng(M)| = 273, then = would have precisely
3 conjugates in M under Ng(M) which is not possible. We have proved that
S is not conjugate to M and not conjugate to L, in G. If Z(T)) = (M), then
| T\ n C(7u\)| = 64 and so wu) is conjugate to p in Ne(S). If Z(Th) =
(wu)), then | T\ n C(A\)| = 64 and X is conjugate to p in Ne¢(S). In any case
we obtain x4 ~ 7 in G. Denote by D, a Sylow 2-subgroup of C¢(u) which
contains S(u’, £). Since all the elementary abelian subgroups of D and D, are
contained in S{u’, £) we get S < (D, D,). It follows 7 ~ u ~ wu in Ng(S),
a contradiction. The lemma is proved.
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(2.5) LemMma. Interchanging N and =\ if necessary we may and shall assume
that = vs not conjugate to \ in G.

(2.6) LemMA. The involutions = and u are not conjugate in G.

Proof. By way of contradiction assume = ~ u in G. Suppose first that
neither =, 7\, £, m£ nor 7A£ is conjugate to 7 in G.  Each of the groups S and
L, contains only 3 involutions conjugate to = in G whereas M contains 7 in-
volutions conjugate to w. It follows that M is not conjugate to L and not
conjugate to S. If D, denotes a Sylow 2-subgroup of Ce¢(u) which contains
S{u, &), then all the elementary abelian subgroups of order 16 of D, are con-
tained in S{u', £). It follows M <{ (H, D,) and {(m, u) <1 (D, D,). Clearly,
(D, D,) is not a 2-group and therefore (D, D,) contains an element v of order
3 with #* = u, u’ = wu. Hence = has precisely 7 conjugates in M under
No(M). It follows |Ng(M)| = 27-3.7. No(M)/M acts faithfully on
{r, p, u'y and so Ne(M)/M = PSL(2,7). The involution £ possesses 4 or 8
conjugates under No(M). Since | Cx(£)| = 2°-3 we obtain | C(£) n Ng(M)|
= 2°.3.7. Denote by v an element of order 7 in C(¢) nNg(M). v acts
transitively on {uf, p'§, Tun', w¢, muk, s, up't}.  Hence & possesses precisely
8 conjugates under Ng(M) against | C(¢) n No(M)| = 2°-3-7.

We have shown that at least one of the involutions =, A, & 7¢ and 7A¢ is
conjugate to = in G.

Suppose that # ~ 7 or # ~ 7\ holds in G. Assume first # ~ 7in G. De-
note by D} a group of order 64 with S(+') C D; < Ce¢(r). Then S < (D, D;)
since S char S(+). Further, (D, D}) is not a 2-group because | Cz(7)| = 32.
Since A ~ = in G we get the following possibilities for | N¢(S)| : 273, 27-7,
27.5,27.3%. The case | Ng(S)| = 2"-7 or 275 cannot happen because Ag has
no subgroups of order 2°-7 or 2°.5 with dihedral Sylow 2-subgroups. If
| No(S)| = 273, then =, u and =u are the only conjugates of = under N¢(S).
Denote by X a Sylow 2-subgroup of N¢(8) with D} < X. It follows that
Z(X) is equal to {u) or to (wu). Itis|X nC(7)| = 64 and so r ~ pin Ng(S)
since u and wu are the only elements of D such that their centralizers intersect
D in a group of order 64. This contradicts the fact that =, » and wu are the
only conjugates of = under Ne¢(S). We are in the case | Ne(S)/S| = 2°3°
and so r ~ 7 ~ w\ under N¢(S). —Assume now 7 ~ 7w\ in G. Denote by
D%, a group of order 64 with S(u't) € Dy < Cq(w)\). It is Z(Dn) =
(w\, ) and so S < (D, D%,). Further, (D, D)) is not a 2-group. | Ne(8)/S |
is equal to either 2°3 or 2°3%. If | N4(8)/S| = 2°3, denote by X a Sylow
2-subgroup of N¢(S) which contains Diy. Z(X) is equal to (u) or to {mu)
and | X n D7 | = 64. We obtain =\ ~ u in Ng(S) which is a contradiction.
Hence | No(S)/8 | = 2°3’ and 7 ~ 7 ~ =\ in N4(8) also in this case. So, if
7w ~ 7 or v ~ w\ in G, then the conjugate class of u in N¢(S) consists of p
and mu because up ~ 7 ~ \ and the fact that both 7 and =\ have 4 conjugates
under D. Tt follows that 3* divides | C(u) n No(8)| against u ~ = in G.
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We have proved so far that at least one of the involutions &, m¢ and 7Af is
conjugate to 7 in G and that neither 7 nor =\ are conjugate to = in @. Denote
by D, a Sylow 2-subgroup of Ce¢(u) which contains S(u’, £). Then (D, D,)| =
2’3 since (m, uy <1 (D, D,), and S(u’, £) contains all elementary abelian sub-
groups of order 16 of D,. Since M and L, contain at least 4 conjugates of = in
G and S contains only 3 conjugates of 7, we conclude that S is normal in
(D, D,). The element \ has at least 4 conjugates under (D, D,). If 3 divides
| C(N\) n (D, D,)| then denote by v an element of order 3 in C(\) n (D, D,).
We may choose v so that #° = u, u’ = wu. It follows (uA)’ = wu)\, and so,
A would have more than 4 conjugates in (D, D,). This is a contradiction since
2°3 divides | C(A\) n (D, D,)| in this case. Hence 3 does not divide | C(\) n
(D, D,)|. Because of =+ ~ \ we have that \ has precisely 12 conjugates in
(D, D,). Therefore A ~ 7 in (D, D,) and so S{u'¢) would be conjugate to
S(7') against | Z(S('))| = 4 and | Z(S(uw'#))| = 8. This contradiction
proves the lemma.

(2.7) LEMMA. The tnvolutions m, & and w& do not lie in the same conjugate
class of G.

Proof. Assume that r ~ £ ~ 7£in G. Denote by D} a group of order 64
with Ly(u') © D} © Cq(£). Since Z(D;) = (¢, wu) we have M < (H, D;) and
H < (H, D}). The involution = has 5 or 9 conjugates in M under N¢(M).
Since N¢(M)/M is isomorphic to a subgroup of As, it follows that 7 has
precisely 5 conjugates in M under Ng(M). An element of order 5 in Ng(M)
must operate fixed-point-free on M, and so, either u ~ 7¢ or u ~ § since u has
6 conjugates in M under H. This contradicts (2.6).

(2.8) LemMa. Interchanging £ and ¢ if necessary, we may and shall as-
sume that w is not conjugate to & in G.

(2.9). LeMmMA. The involution w is conjugate to = or to =\ in G.

Proof. Assume by way of contradiction that the lemma is false. By (2.3),
(2.5), (2.6) and (2.8) follows that r ~ rf orw ~ 7A£in G and [N¢(8):D] =1

Suppose first that # ~ £ in G. Denote by D5; a group of order 64 with
Loy € D3y C Co(w). Since Z(D3y) = (rt, m), we get Lo <l (S(w/, &), Dxs)
= V. Clearly, V is not a 2-group and V normalizes (r, u, £) since Z(Lx(u')) =
(m, p, £). Not all involutions of (m, u, £) lie in the same conjugate class of G.
Hence V contains an element x of order 3 such that #° = #£, (7£)” = wué, u° =
ué, (ug)® = £ and [z, 7u] = 1. From a lemma in [14] we conclude that 7\ is
conjugate to an involution of M{(r, 7/){p). It follows that A is conjugate to
wor 7in G. Assume that 7\ ~ p in G. Denote by T a Sylow 2-subgroup
of Cg(w\) which contains S. Clearly, S <1(D, T) and (D, Thr) is not a
2-group. It follows [N¢(S):D] > 1 which is not possible. Now assume that
7\ ~ 7in G. Then 64 divides | Ce(w))| since S(u't) and S(+’) are not iso-
morphic. Denote by T\ a subgroup of Cg(w\) of order 64 which contains
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S(u'e). Since Z(Tm) = (wA, mu) we have S <] (D, T and [Ng(S):D] > 1
which again cannot happen. We have shown that 7 is not conjugate to w¢
and that = must be conjugate to TAE.

Denote by D} a group of order 64 with centre of order 4 and L, € Dy ©
Co(m2E). Then Lo < (S(’, &), D) = V. Clearly, V is not a 2-group. It
follows [Na(L2):S{/, £)] = 5. An element of order 5 in Ng¢(L:) must act
fixed-point-freeon L.. Hence,u~ A or p~ wrAin G. If y ~ 77\ thenp ~N\
in G. Denote by T a Sylow 2-subgroup of C¢()\) which contains S. Then
S<(D, T\) and [Neg(S):D] > 1 which is not possible. If u~ 7A then
g ~ wA in G and again one gets a contradiction. The lemma is proved.

(2.10) LEmMMa. Ng(S)/8S s tsomorphic to a Sylow 3-normalizer in As.
Further w ~ «\ ~ 7 in Ng(S).

Proof. From (2.9) we conclude that # ~ 7\ or # ~ 7in G. Assume first
m~a\in G. Denote by D}y a subgroup of order 64 of Ce(m)\) with S(u't) <
D%\ . Since Z(D3)) = (m\, mu) we get S < (D, D%\). Hencen = [Ng(S):D]
is equal to 5 or to 9. Since N¢(S)/S is isomorphic to a subgroup of 4s, we
obtainn = 9 and so * ~ A ~ 7in Ng(S). Assume now that = ~ rin G.
Denote by D; a subgroup of order 64 of Ce(7) with S(+') < D}. Since
S char S(r'), we get S < (D, D). Hence [Ne(8):D] = 9and = ~ 7 ~ w\in
No(8). Inany case| Ng(8)/S| = 29 and r ~ 7 ~ 7\ in Ng(S). A Sylow
2-subgroup of N¢(8)/S = 8 is dihedral of order 8. From [6; Theorem 1.
p. 553] we conclude that 8§ must have a subgroup of index 2. If $ has no
normal subgroups of index 4, then § = ((z) X A){y) where 2* = * = 1,
A=A, (x,y) = S; and A{y) = S;. Then either S{r’, u') <I Ne(8) or
S{u’, £) I Ne¢(S). In the first case an element of order 3 in N¢(S) would
normalize Z(S(+’, u')) against H & N () and in the second case we would get
w ~ u in Ng(S) which is not possible because of (2.6). We have proved
that 8 must have a normal subgroup of index 4. The lemma, is proved.

(2.11) LemMa. There is an element u of order 3 in Ng(8) with =* = 7,
" = wr. Further, | C(u) n Ng(8)| = 64-3 and u is conjugate to \ in Ng(S).
@ has precisely two conjugacy classes of involutions.

Proof. Denote by D; a subgroup of order 64 of C¢(7) n Ng(S) which con-
tains S(«/). It is (m, 7)< (S, '), DY) = X. Suppose X is a 2-group.
Then | X | = 2" and Z(X) C {r, 7). Itis S/, 7) <1 X and so Z(X) = (r)
against | Cx(7)| = 32. Hence X is not a 2-group. If follows the existence
of an element u of order 3 in X with #* = 7 and ¥ = =7 since u e N¢(S) and
H & No(S). Assume that 9 divides | C(x) n Ng(S)|. Then {u, mu} is the
conjugate class of u in Ng(S). Since C(u) nNg(S) I Ne(8) it follows
w eC(u). Then (wu)* = 7u yields a contradiction. Hence | C(u) n Ng(S)|
= 64-3 and u ~ Nin Ng(8). Since by (2.2) each involution of G is conjugate
to an involution in S, we get that G has precisely two conjugate classes of
involutions.
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(2.12) LemMA. The involution = is conjugate to w& in Ne(M).

Proof. It is a consequence of (2.8), (26) and (2.11) that u ~ £ in G.
Denote by T'; a Sylow 2-subgroup of Ce(¢) which contains M(rN\). It follows
M < (H, Ty and T; & H since | Cx(£)| = 2°3. Hence [No(M):H] > 1 and
m must be conjugate to 7£ under No(M ).

(2.13) LemMA. Let Tt be a Sylow 2-subgroup of Ce(£) with Liu') € T.
Put L = (S(/, &), Te). Then |L| = 2°3. There exists an element « in L of
order 3 such that = = wf, (wv£)" = wu&, u* = u§, (ug)* = £ and [o, 7u] = 1.
| Ne(Lz)| is equal to 2°3 or 2°82.  Z(L) = (wu) and L < Ng(Lz).

Proof. We know that 4 ~ £ in @ from (2.11) and (2.9). Denote by T';
a Sylow 2-subgroup of Cq(£) which contains Lx(u’). Since (L(u’))’ = (wuy
one gets Z(T:) = (&, wu). Also Z(Lxp')) = (m, p, & and Lo <] T:. Put
S, &), Tyy = L. We have (m, u, £) ] L and (wu) = Z(L). Clearly, L is
not a 2-group since wu ~ 7. L/Lxu’) is isomorphic to a subgroup of PSL(2,
7). Because of mu ¢ Z(L) we get | L | = 2°3. Since HnL = S{u, £), no
element conjugate to = under L can be centralized by an element of order 3 of
L. Considering the elements of (r, u, £) one gets the existence of an element
a of order 3 in L such that #* = =&, (7£)® = wu§, 1 = ug, (u§)* = £and
[ru, @] = 1. For [Ne(Lz2):S{(/, £)] we get the following possibilities: 3, 5,
3%, 7. If | Ng(Lz)| = 2°5 or 2%, then No(L;) = (S{u’, &), T:) which is not
possible. The lemma is proved.

(2.14) LemMA. The involution w is conjugate to T E in G.

Proof. Assume the lemma to be false. Then 7Af ~ p in G. Denote by
T a Sylow 2-subgroup of Ce(7A¢) which contains L. . Because of Z(Th;) =
(TAE, ) is a four-group we get Ly <| (S(u/, &), Thy) = X. Clearly, X cannot
be a 2-group since S{u’, £) # Tn:. Application of (2.13) yields Ng(L;) = X
and X is of order 2°3. Thus X = L. We may put £ = mu. Obviously,
(m, u) is conjugate to (rAE, mu) in L, and so = ~ murA¢ in L. But (mpré)y’
= 7AE against our assumption. The proof is complete.

(2.15) LEmMMa. We have [a, 7A] = 1.

Proof. 'There are nine elements in L which are conjugate to = in G. From
(2.13) follows that «a acts transitively on {u, ué, &. Also [a, mu] = 1. There
remain the elements A and wu7rA which « must centralize.

3. Simplicity of G
(3.1) LemMa. G 1s a simple group.
Proof. Since 0(H) = 1 and 7 ~ 7 ~ w7 in G we get from [15; p. 146] that
0(G) = 1. The fact that Ne(D) = D together with [1; Lemma 1, p. 117]

yields that G possesses no non-trivial odd order factor group. If G were not
a simple group then G has a normal subgroup ¥ with 1 € ¥  G. Since
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|Y| = 0(mod2) and | /Y | = 0 (mod 2) we get that = or u is contained
in Y because G has precisely two classes of involutions. Hence, (r, uy) S YV
and since D is generated by involutions, we get D C Y against |G/Y | =
0 (mod 2). The lemma is proved.

4. The centralizer of n in @

(4.1) LemMa. C(u) nNg(S) s generated by the elements m, p, 7, N\, ¢/, &, »
subject to the following relations: v* = 1, [y, ] = [», N = [, &l = 1, 7 = 77\,
7 o= mu\ pen = v

Proof. We are going to use the results of (2.10) and (2.11). Itis|C(u)n
Ny(8S)| = 64-3. Let » be an element of order 3 in C(u) n Ng(S). Denote
by N the subgroup of N¢(S) of order 64-9 which has S(+/, u/) as a Sylow
2-subgroup. We consider N = N nC(u). Clearly, » e N. Since the con-
jugate class of u in N¢(S) consists of 6 elements, since H 4= N¢(S) and since
m ~ 7\ ~ 7in N¢(S) we get [v, \] = 1. It follows Cs(v) = (u, ) and no
element in S\ {u, A\) normalizes (»). The case N({»)) n N = C(») n N is
not, possible since otherwise S{u’) would be normal in N against # ~ u and
H ¢ Ne(S). N contains precisely three Sylow 2-subgroups which one ob-
tains from S{u’) by transforming with » and »~*. Hence a Sylow 2-subgroup
of N({»)) n N is contained in S(u’) and so an element in S(u') \ S must invert
v. Elements in S{u’) \ S are the four elements of order 4 with square equal
to = which cannot invert » since [r, »] ¥ 1, the four elements with square
equal to wu which cannot invert » since [wu, »] = [r, ] # 1, the sets of elements
Ky = {u, w', muw’, 7'} and Ko = {u'\, u'\, mup’N, mu'N.  If 2 € K with
# vz = v, then by conjugating with an element in S we obtain an element
v of order 3 in (S(u’), ») with w'»'u’ = ». The same can be done if an
element in K, inverts v because [\, »] = 1. Hence we may assume that
w'vu' = v . Considering the conjugate class of u in N¢(S) and noting that
| Cs(»)| = 4, we get (wu)” = murhor A, Interchanging » and »™ if necessary
we may and shall assume that " = =7\ and 7 = 7p.

Finally, we consider the subgroup U of N¢(S) of order 32-9 with Sylow
2-subgroup S(w'¢). Put U = C(u)n U. Clearly, U = (S{(u't), »). From
[17; Theorem 4, p. 169] we conclude that » is inverted by an element in U
since (S(u'£))’ = (wu) and [wy, »] # 1. Such an element can be found in
S{u'e)\ S. All elements of order 4 in S(u'£) \ S have square equal to wu,
and so, they cannot invert ». There remain the eight involutions of
SWEY\ S : W, mu's, pw'E, muu's, ME, TE, ul'E, mulu'E. Since [u, ¥] =
[», \]l = 1 we have that either u’# or wu'¢ inverts ». If mu't inverts » then
w£ centralizes » and so (w£)” = w\r& = w&. It follows £ = 7Af against (2.14)
and (2.8). We have proved that u'¢ inverts » and therefore [, §] = 1. The
proof is complete.

(4.2) LemMA. Cqo(p) = ({u, \) X A){u'), where A = Ag, A(u') = S and
(ww, ™\, vy Wt oY S A, Further, [u, 7] = 1, 4" = \,\* = phand p'up’ = u™.
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Proof. First we shall consider the normalizer of (m, 7) in Ng(8). It is
Co((m, 7)) = 8(). Hence, by (2.11), Ne({m, 7)) = S{(z'}u, ') = X and
| X | = 64-3.

If 3 divides Cx(u), then {u, wu} is the conjugate class of uin X. Denote by
v an element of order 3 in Cx(x). Since no element of order 3 in Ng(S)
centralizes m, we get (wu)” = 7u or wru which is not possible. It follows
| Cx(u)| = 32. In asimilar way one proves | Cx(ur)| = 32, because ur is not
in the centre of a Sylow 2-subgroup of X. It follows that u ~ Ain X and
pur ~ ai in X. The conjugate class of p in X is {u, 7u, A, u), 7A, wurA}.
Since Cx(A\) Q':' S{’, 7', we have either Cx(\) C (S(u, ')) or Cx()\) C
(S, ) . For the action of 4 on S one gets #* = 7, " = nr, u* = A,
A = uA.

We know that (u7’)" is equal to one of the four elements in S(7’) the squares
of which are equal to 7. These elements are A7/, A7/, #A7/, w7A7’. We know
that ©* = A. It follows that (+')" is equal to ', ', w7/, or wv7’. The set
& = {7, v, 77/, 777’} is u-invariant. Hence u centralizes an element in &.
The group {u, N\) operates transitively on &, and so, transforming % by an
element in (u, \), we may and shall assume that ur’ = +'u.

We consider now uu’. We have uu’ e Cx(\) n C(7), and so

(un')*” € Cx(p) n C(x) = Su').

(us')""" e S(w'y n Cx(1") = {m, T)u').

Clearly, (uu’)""" ¢ {r, ) since otherwise u e (r, T)(u' ) a,gamst u = 1. Con-
sidering the possibilities for uy’, we get that (uu’)* ~ = u’ or (up')* = wru/.
If the last pos51b1hty holds then uy’ = w'mrw™. Put & = au and note that
the order of wu is 3 and that @ has a,ll the properties of u required so far.
Compute (7p')* = 7ruu 7ruu = yrrrru - = 1. Tt follows that u'dy’ = @ or
equivalently (du’ )" = /. Hence we may and shall assume that p'up’ = ™.

We turn now to the determination of Cg(u). Put & = CG(M) and
8/(w)= ©. In the epimorphism ® — ® put 7 — p, r = t, N =1, 4’ — m,
t>z,v—nanda — a.

It is Co(p) = {, 2) X (p, )Y(m) = T, where (p, )(m) is dihedral of or-
der 8, Z(T) = {, 2, p) and T' = (p). T is a Sylow 2-subgroup of & and
No(T) = . Application of [17; Lemma, p. 169] yields that no two dif-
ferent elements of Z(<T) are conjugate in ©.

Assume p ~ tin . Then there exists and 2 ¢ ® such that 772 = 7 or
ur. We have |C(7) nCq(u)| = |C(x) nCs(pr)| = 32 against |C(7) n
Co(u)| = 64. Hencep ~ tin ®. Further, p ~ m, p~Im, p * zt, p ~ 2lt
because (7£)” = wrA¢ and therefore (p2)" = pilz and (2lt)™ = pilz. Cer-
tainly, one has p” = pil and p* = pmz. Whether p ~ zlm in ® or not has
not been decided so far.

Application of [17; Theorem 5, p. 170] yields that the transfer of & into T

Further,



234 DIETER HELD

is isomorphic to T/(p, U, zm) if p ~ zlm in @, or to T/{p, t, I, zm) if p ~ zlm
in ®.

Assume by way of contradiction that & has no normal subgroup of index 4.
Then & has a normal subgroup M with [@:M] = 2. Since & < M we get
TS Mandso(p,t 1, zm) C M. Since p ~ z2m ~ zmp ~ zlm ~ zlmp in ©
and z ¢ M we get that these five elements are conjugate in M. We have

Ca(p) = (O X {p, t)em) = §.

Because of §' = (p) we get Nm(F) = § and so [, p and Ip lie in three different
conjugate classes of . Consider

Cn(p) nC(2m) = Cu(p) n C(zpm) = Cm(p) n C(zlm)
= Cu(p) n C(zpim) = () X (p, 2m) = §: .

$11s an elementary abelian group of order 8 and is normalized by Sylow 2-sub-
groups of 9 the commutator groups of which are (p), {egm), (epm), (elm),
{elpm). Tt follows [No(F1):F] = 5 and so 7 must divide | No(F1)/F1| from
which would follow that all involutions of {; are conjugate against p ~ [ in .
We have shown that @ has a normal subgroup It of index 4 and that p ~ zlm
in @.

We prove next that ® has no non-trival normal subgroup of odd order.
‘We have

|C(r)n®| =64,|C(r)n8| = 32

and

[Crr)n® | = [C(x) nC(\)| = 32.

Using [15; p. 146], we get from the action of (r, ) on 0(®) that 0(®) is
trivial. It follows from [17; Theorem 4, p. 169] that 0(®) = 1.

The 2-group {p, I, zm) is dihedral of order 8 and is a Sylow 2-subgroup of It.
Further, Cn(p) = (p, lt, zm), O(M) = 1 and (n, a) S M. Assume that M
has a subgroup of index 2. If N is the intersection of all subgroups of index 2
of P, then 2 < [M:N] < 4, and so (p) and (p, I, 2m) & N which is not possible.
Hence M does not possess subgroups of index 2. We are in the situation to
apply [6; Theorem 1, p. 553] and get that M = A or M = PSL(2, 7).

Denote by I the counter image of I in . A Sylow 2-subgroup of It is
(W) X (mu, ™AW'E). From a result in [3] we get It = (u) X A where 4 is
isomorphic to As or PSL(2, 7). Since A char 9t we get 4 <1 ®. Clearly,
(», ') € A, and since {wu, T\){») is isomorphic to 44, also {ru, TA)}(») S A.
Because of (mp)”*" = mup't, it follows u'¢é e A. Hence (mu, rTANW'E) is a
Sylow 2-subgroup of 4.

'We shall consider now A(u’) = X. Assume that Cx(4) = (yu') is of order 2
forsomey e A. Theny,u'] = [y, mu] = land »™" = v vy. Since (yu')? =1
we have y* = 1. Since

Cu(mu) = (mp, M(@W'E and (mu, INNW'E = 84,
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we obtain y = w’t. We must have [yu/, Far’] = [§, 7ar’] = 1. Conse-
quently,
1 = 7 Wirar = gr'a WEar = ETI(Ot—IM,Ot)MTI,
and so
o e = e = pliu ~

which is not possible. It follows that Cx(4) = 1 and A{y’) is isomorphic to
an automorphism group of A. Since a Sylow 2-subgroup of A{u’) has no
elements of order 8, we get A = As and A') = S; .

We have | §| = 8|4 |, and §/Cs(4) = S; since & has no elements of
order 8. It follows that | Cs(4)| = 4. Obviously, A nCg(4) = 1. Since
®/A is dihedral of order 8, we have to discuss the following three cases:

(1) ACs(4) = Alu, u'),
(2) ACg(4) = AQW'N),
(3) ACs(4) = A, N).
The case (1) cannot happen, since then ACg(4) = (u) X A(u') against

| Ce(4)] = 4. Assume that we are in the case (2). Then Cg(4) = (yu'\)
would be of order 4 for somey e A. We have

ly, N = [y, 7u) = yw'»] =1 and (yu\)’ = y'u e C(4),
and s0 4* e C(A4)nA = 1. It follows that y = u’&. Hence C5(4) = (¢N).
Therefore [§\, 7ar’] = 1 which means

a7 () Tar’ = Pa T (WEN)ar = 7 (o Wa)urht’ = £\,
and therefore

a_ly'a = 7'\ Atu = WErMTL = wi'E ~ T
yields a contradiction.
We are necessarily in case (3). Since u eCg(A) we get AunC(4) = pu

and hence AN n Cg(A4) = @since | Cg(A)| = 4. There exists y ¢ A such that
yA e C(4). It follows that [y, A] = [y, »] = [y, mu] = 1. Because of

Cu(mp) = C(mp, ™\, w'E) and  (mu, ™NNW'E) = 8,
it follows that y = 1. Hence Cg(4) = {u, \). The lemma is proved.

5. The identification of G with A4,
(5.1) LEmMA. [u, v] = 1 and uv is of order 3. (v, ') normalizes (u, v).

Proof. Denote by R a Sylow 3-subgroup of N¢(S) which contains u. We
know that R is elementary abelian of order 9, and that SR <] Ne(S). Con-
sider SR{+', ') = X and compute Cx(u). It is Cx(w) = R(S{(+, u')n
C(u)) = R(+'). Further, R <] R{u’, 7). The element » possesses precisely
four conjugates in RS under RS. These are », »", »', ». Hence »" ¢ R, for
some z in {1, =, 7, #7}. If £ = 7, then »" and u'»'u’ lie in R and hence
[, u'v"u’'] = 1 which is not possible. Therefore z > 7. Similarly, one proves
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that & «7. It follows that x = 1 or x = =. Interchanging v and »" if
necessary, we may and shall assume [u, »] = 1.

(5.2) LEMMA. The element uv of order 3 centralizes A. Further,
Ne((u, ) = ({u, N X A)u, u').
Proof. Clearly,
uwr eNo((u, M),  Co((w, M) = (g, ) X 4.

It follows that wv normalizes A. The automorphism group of 4 is an exten-
sion of A by a four-group. Hence u» induces an inner automorphism on A.
We have [mu, u»] = 1 and since C4(mu) = (mu, 7\, u'£), it follows that (u»)*
induces the identity automorphism on A. Because uv is of order 3, we obtain
[uv, A] = 1.

(5.3) LEMMA. Denote by w an element of order 5 in A{y'). Cgq(w) s equal
to ({u, Mur)) X {w) or L X (w) where L = A5 .

Proof. There is only one conjugate class of elements of order 5 in Cq(u).
We have Co(w) nCa(u) = {u, \) X {w). Let U be a Sylow 2-subgroup of
Ce(w) containgin (u, \). Assume (u, \) € U. If Z(U) & (u, \), then 2°
divides | Ce(w) n Ce(n)| which is not the case. Hence Z(U) < (g, \) and
, N or p) is contained in Z(U). But then | Ce(w) n Ce(x)] is divisible by 2°
where = € {u, u\, A}. However, in G we have u ~ A ~ p), and 80, Ce¢(z) n
Co(w) is conjugate to Ce(u) N Ce(w) in G against 2° | | Ce(w) n Colu)|.
We have proved that U = {(u, \). Put K = 0(Cq(w)). It follows from
[15; p. 146] that

| K || Cx({u, MI* = | Cx(u)]| Cx(N)[+| Cx(u))]| = 5"

Therefore | K| = 5 and K = (w). It follows from (5.2) that u» e Co(w).
Hence all involutions of C¢(w) are conjugate under Cq(w). Application of
[12; Main Theorem, p. 191] yields the lemma.

(5.4) Lemma. Cgq(ur) = (uv) X W where W = Arand A C W.
Proof. Itis u = wu. Hence

Co(mu) = ((mu, 7N X A) (W)
and
<u”) a, u, A, E) c A.

We know that A =~ A,. There exists an element 8 in A such that (8u’)* = 1
and [Bu/, wr] = 1. Put
Y = Cg(mwu) n Cq(ur).

The group T' = (wu, ¥A){Bu’) is dihedral of order 8 and a Sylow 2-subgroup of
Y. The structure of A(u’) yields | Y | = 2°8’. Let U be a Sylow 2-subgroup
of C¢(ur) which contains 7. Suppose T < U. If Z(U) ¢ T, then 2*
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divides | Y | which cannot happen. If Z(U) € T, then Z(U) = (wu) and
again we get a contradiction to | Y |. Hence 7' = U.
Put K = 0(Cge(ur)). We have

| K || Cx(mu, ™)I* = | Cx(mu)|-| Cx(+N)]+| Ca(mur))|.

Since Cg(u) does not contain subgroups of order divisible by 35, we obtain’
that K is a 3-group with 3 < | K| < 81. We know that A C Ce(uv)*
Hence » induces an automorphism on K/{uv). Since a 3-group of order at
most 27 does not have an automorphism of order 5 which follows from [7;
Theorem 12.2.2, p. 178], we know that w stabilizes the chain K D (uv) D (1).
It is a consequence of [9; Lemma, 7, p. 6] that w centralizes K. Application of
(5.3) yields K = (uv) is of order 3.

We shall now apply [6; Theorem 1, p. 553]. If C¢(ur) = B has a normal
subgroup of index 4, then B would have a normal 2-complement against
w e Band 0(B) = (uv). Put B/(ur) = B and (ur)4A/(ur) = A. Assume that
P has a subgroup U of index 2. Clearly, A & U since 8 does not divide
[ U]. Hence UA = Band UnAJA. If UnA = 1, then B/U = AU/U
=~ %/Un A = U yields a contradiction. If Un A = ¥, then A € U which
we had ruled out. Hence B does not have subgroups of index 2. It follows
that B is isomorphic to PSL(2, q), ¢ odd, or ¥ is isomorphic to A;. In any
case, B is a simple group. In the epimorphism B — B put b — b for an
element b e B. We have

| Co (#8) | = 2°3 and Co (77) = ((7m, 7\) X (&) ){B&)

where & = 1 for an z ¢ A and (&, B’y = Ss since in A(u’) a group of order 9
is not centralized by an involution. It follows that Cs(#7) = C4,((12)(34))
and so by the result of [13] we must have B =2 A;. Since (ur) X 4 C:C(uv)
we get from a result in [3] that Ce(ur) = (ur) X W, where W = 4,. Since
A has no subgroup of index 3, it follows A < W. The proof is complete.

(5.5) LemMa. Ng((ur)) = ((ur) X W){u') and W{u') =2 S;.

Proof. Put W{u') = X. Suppose Cx(W) = (wp’) is of order 2 for some
weW. Then [wy’, W] = 1 but no involution of G centralizes a group iso-
morphic to A;. Hence W{p') is an automorphism group of W and so

W'y = S;.
(5.6) LemMa. No({uv)) n Co(p) = Au').
Proof. We have
No(wr)) nCo(p) = WH(((wr) X W)nCqe(u)) = @WHWnC(u)) = (u)A.

(5.7) Lemma. In G we have uv ~ v, u ~ p and v ~ u.

Proof. Since [u, 7] = 1 and 7 ~ 7 in G and since all elements of order 3
in H are conjugate in H, we conclude that p ~ % in G. We have [rup'¢, p)
= 1 and wup't ~ u in G. There is a Sylow 2-subgroup J of Ce(mup’t) n
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Ca(p) which is dihedral of order 8 and contains (r, muu’s). It follows that J
is a Sylow 2-subgroup of C¢(p). If we had p ~ u» in G, then J and

(mu, TN, WE)

would be conjugate in G against (mu, 7\, u'8) & A. Hence p ~ u» in G.
Since (u, ), &) centralizes », we get » ~~ pin G. Since Cq(r) has precisely two
classes of elements of order 3, it follows ur ~ » in G.

(5.8) LEMMA. We have guvt = w v, tut = wvand v = w7

Proof. The element uv centralizes A and p'¢ e A. We get p'uviu’ = up
and so furvg = w v " and gut = w'». To complete the proof, one represents

(W', 7'¥&) on (u, vy and uses (4.1) and (4.2).
(5.9) LemMma. The elements o and v of order 3 commute.

Proof. From (5.8) we conclude that Ce(ur) is mapped onto C¢(») under

7. Since a” ¢ W, we get [v, o] = 1.
(5.10) Lemma. The involutions u', vu', mup’ and & are conjugate in W{u')
and are transpositions. The tnvolution wuf is a product of three transpositions.

Proof. We have (mup’)™ = w' and (mu, TA()(u') = S;. Hence vy’ ~ '
in W{u'). The element o of order 3 normalizes Ly, (m, u, £ and Ly(u') =
Co((m, u, £)). Using the fact that [», ] = 1 one verifies that

(W) e, m', &', '8},
Since 7 ~ uu’E, we get
(W) efu!, uw', Eu'}.

If (u')* = ', then (up')® = ptu’ ~ = yields a contradiction. Also (u’)® = &u’
is not possible since then (£u')® = upfu’ ~ = which is not possible. We must
have (#/)® = pu’ and so (uu')* = &/. Hence u’ ~ up' ~ &' in (W'))”
since (o, u') S (W{'))”. Therefore p’ ~ wuu’ ~ ¢ in W{u'). Now, either
p' or muf is a transposition in W{y’). Since 7 ~ wuf in G and 5 does not di-
vide | H | we get that u’ is a transposition and wuf is a product of three trans-
positions.

(5.11) LEmMMA. The group G contains a subgroup Q isomorphic to Ai .

Proof. From [2; Section 161] follows that S; contains precisely one con-
jugate class of subgroups isomorphic to Ss. By S; we denote the symmetric
group on the set {1, 2, 3, 4, 5, 6}. There exists an isomorphism ¢ of W{u’)
onto S; which maps A(u’) onto Ss . {u/, vu', muy’, £ is a set of transpositions
in A(W)\A. Using ¢, we can find a transposition ¢ e W{u)\(W u A(w"))
such that the order of ou’ is 3 and [o, vu'] = [0, mun’] = [0, £] = 1. Also,
we can find a transposition 6 in A(u)\A such that [, 8] = [v/, 8] = [/, 8] = 1,
(run'8)® = (8¢)° = 1. Clearly, both o and § invert u» and [u. 8] = 1.

We have (o, u) € Ce(vu’) n C(muu’) n C(¢) = X. The group X is trans-
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formed by mur\ onto C¢(») n C(x’) n C(¢) = X since

C(w') n C(mup') = C(vwu) n C(auy’).
Obviously,

C(w') nC(§) = C(u'§) nC(w").

The elements u’ and u'# are transpositions of W™ (u') and [/, w'&] = 1. It
follows that 3 divides the order of X. Since C¢(») n C(u’') = S; by (5.7),
(5.8) and (5.10), we get X = (&) X (k)(z), where k* = 2* = 1 and (k, 2) == S;
since £ ¢ Z(X). Since [, a] 5 1, we get that the order of o is either 3 or 6.
Denote by & the element ¢™™. Suppose that the order of u# is 6. Then
(wo) < X and (u5)® = £ Since £ = £ and (ua)® = &, it follows from
[uo, mup’s] = 1 that also [§, mup’s] = 1 and so [£ 8] = 1 against 1 # 6% and
(8¢)* = 1. Tt follows that uo is of order 3.

Putur = My, u=Mo,0 = Mz, 0/ = My, v = Ms,7up’ = Mg, 8 = My
and ¢ = M. For the M; we have obtained the following relations:

1= Mi = M%-.-l = (MiMi+1)3 = (MiMj)2

wheres,j = 1,2, ---,8,7 > 74+ 1.
It follows from [4; chapter XIII] that (My, My, ---, M) = Q = Ay .

(5.12) LEemma. G = Q.

Proof. From (4.2) and the fact that @ contains precisely two classes of
involutions, and because Cq(p) is isomorphic to C4,,((12)(34)), we obtain
that Q contains the centralizer in G of each of its involutions. Assume
that @ is properly contained in G. Since by (3.1) the group @ is simple,
we get Nyee@Q’ = 1. Application of a lemma in [14] yields that the number
of conjugate classes of involutions of @ is one against (2.11). We have proved
that Q = G and so G = Ayy. The proof of Theorem B is complete.
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