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1. Introduction

Let M denote a topological n-manifold and N a topological (n /c)-mani-
fold. For locally flat embeddings or immersions, f M --* N, Fadell [2], [3]
has constructed normal fiber spaces which satisfy a weak Whiteny duality
theorem. Each of these normal fiber spaces is an appropriate path space
similar to that described by Nash [12]. In Fadell’s construction, the case
of immersions is treated separately from that of embeddings and is, in fact,
much more complicated. Indeed, in both cases the fibers are rather messy
topological spaces.
Our objective is to exploit the theory of microbundle pairs and the corre-

sponding version of the Kister-Mazur coring theorem, proven independently
by Kuiper and Lashof [7] and the author [9], to obtain a simpler normal
structure, the homotopy normal bundle of f. It will be shown that this h-
normal bundle satisfies a weak Whitney duality (Theorem 4.5), a composi-
tion theorem (Theorem 4.7), and an appropriate "isotopy invariauce"
theorem (Theorem 4.9). Furthermore, we shall prove that if f has a tubular
neighborhood, , then is fiber homotopy equivalent to the h-normal bundle
(Theorem 4.11) and hence tubular neighborhoods are unique up to fiber
homotopy equivalence. Finally we shall prove that the h-normal bundle
is equivalent, in so far as is possible, to the normal structures previously given
in both the smooth and topological categories.

In Section 2 we give a rather general form of the coring theorem which,
with the results of Section 3 on Euclidean bundles, allows us, in Section 4,
to define the h-normal bundle and verify its properties.

2. The coring theorem
The Kister-Mzur theorem [6] has been generalized by Kuiper and Lashof

[7] and, in the topological case, by the author [9] as follows:

THEOE 2.1. In the topological and in the PL-category every (R+, R)
microbundle, (a, b), over a locally finite simplicial complex contains a unique
(R+, R’)-bundle, (, ), in the sense of Steenrod [12], which is (R’*+, R’)
microbundle equivalent to a, b ).

The coring theorem has been extended further, in [4] and [9], by weakening
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the restrictions on the base space and fiber and by noting that the argument
holds for any number of radially invariant subspaces. In particular, consider
a pair of topological spaces (X, Y). The open cone pair,

is the pair
Co(X, Y) (Co(X), Co(Y))

xx [0, ) Y [0, ))r x (0)

Co(Y) is always given the induced topology from C0(X), which may be given
either of two topologies. The first is the identification topology and the sec-
ond (when X is locally compact) is the topology induced from the open cone
Co(X*, X), where X* denotes the one point compactification of X. The
latter will be referred to as the strong topology for the open cone.
We make the following definitions.

DEFINITION 2.2 A Co(X, Y)-microbundle, (a, b) is
(i) a pair of maps

B -. E, E. -- Bz p
such that pi id.

(ii) the open cone Co(X, Y), with cone point, ,, as base point, and
(iii) a "local trivialization," V,, g}, such that V, is an open subset of

E,
U., p(V,) B,

and g. is a homeomorphism such that

/

Co(X, Y)

p(V.)

id’B B

h’(U, U n E) -. (U’, U’ n//)

commutes, where (.(x ) x, ,).

DEFINITION 2.3. TWO Co(X, Y)-microbundles, (a, b) and (a’, b’), over
B are said to be Co(X, Y)-microbundle equivalent if there exist neighborhoods,
U and U’ of i(B) and i’(B), respectively, having Co(X, Y)-microbundle
structures, and a homeomorphism h, such that the following diagram com-
mutes.
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For convenience the term "microbundle" will signify either an equivalence
class of microbundles or a particular representative of such a class. As
in the theory of bundles, the basic properties respect equivalence classes and
hence allow this convention. For example, a microbundle is said to be nu-
merable if the cover of B, {p(V,)}, induced by the "local trivilization"
is numerable in the sense of ])old [1], i.e. it admits a refinement by a locally
finite partition of unity. We note that every microbundle over a paracom-
pact space is numerable [1].
Employing the Ehresmann-Feldbau definition of a fiber bundle [13, p. 18],

it is possible to prove the following theorem [9, Thm. 1.0.4].

TIEOREM 2.4. If either
(a) X is a locally compact Hausdorff space and Co(X, Y) is given the strong

topology, or

(b) X and B are countably paracompact T4 spaces and Co(X, Y) is given
the identification topology,
then every numerable Co(X, Y )-microbundle, a, b ), contains a unique numerable
Co(X, Y)-bundle, (o, ), which is Co(X, Y)-microbundle equivalent to (a, b ).

Remark. If, in ddition to condition (a), X were locally connected, the
theorem would indicate the existence of a unique numerable Steenrod bundle
with (topological) group consisting of the homeomorphisms of Co(X, Y)
leaving the cone point fixed. Moreover, if X is a compact, locally connected,
Hausdorff space this conclusion would also hold for the identification topology,
since it is equivalent to the strong topology. As an example of this, consider
the pair (S+-1, S-1 ). Since C0(S+-1, S"-) is homeomorphic to (R+,
R") and S+- is a compact, locally connected, Hausdorff space, Theorem
2.4 extends Theorem 2.1 in the topological category to give the existence of
unique numerable Euclidean bundle.
The proof of Theorem 2.4 [9] consists of an extension of Kister’s expansion

theorem [6, Thm. 1] to open cone pairs nd a strengthening of his existence
nd uniqueness theorems using the theory of numerable bundles s developed
by Dold [1]. There are, of course, numerous technical difficulties to be over-
come in extending Kister’s theorems. However, since the rguments re
quite "standard" there does not seem to be sufficient justification for the
inclusion of the, rather lengthy, proof.

3. Euclidean bundles

If a is ny cone bundle with canonical section, i, let a’ denote the bundle
obtained by removing the image of the section, i.e. if X\Y denotes the com-
plement of Y in X, E, E\i(B). Two cone bundles, a and fl, over B
re sid to be fiber homotopy equivalent if there exist fiber mps

f (E, E,, i,(fl)) - (E, E,, is(B)) g
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such that fg and gf are homotopic to the appropriate identity maps, through
homotopies of the triples which respect the fiber structure.

If (a,/) is a C0(X, Y)-bundle there is an associated Co(X\Y)-bundle whose
total space is given by (Ex\Er) [J i(B). In particular, associated to every
C0(Sn+-l, Sn-1)-bundle, (a, fl), there is a C0(Sn+-l\S-l)-bundle, v(,.),

the homotopy normal bundle of fl in a. Note that S+-I\S- has the homo-
topy type of S- so that the fibers of v(,.) are of the correct homotopy type.
With these definitions we can prove the following weak Whitney sum

theorem, compare Milnor [10, Lemma 2.1.5].

THEOREM 3.1. Suppose that (a, fl) is a numerable Euclidean bundle.
is fiber homotopy equivalent to fl @ (.)

Then

The proof of this theorem is an application of the following lemmas and
an extension of a theorem of Dold [1].
Let p’ R+ -- R+ be given by

pt(x, y) (x,(1 t)y),

where x (xl, ..., x) and y (xn+l, .-.,x+). We may assume,
without loss of generality, that B is arcwise connected for if it is not the lemma
may be proven over each arc component separately. Fix a point, b e B,
and choose a local coordinate patch containing it.

IEMMA 3.2. Suppose that (a, fl) is a numerable Euclidean bundle over B.
There is a (fiberwise) strong deformation retraction pt, of E onto E, which
is a fibered homeomorphism for 0 <= < 1 and which agrees with pt over b, with
respect to the chosen coordinates.

The proof of this lemma is an easy application of the techniques developed
by Dold [1], as is the proof of the next lemma.

nk Rn+Let t R - be given by

v’t(x, y) (1 t(1 s(x, y)))(x, y)

where s(x, y) rain( y I], 1).

IEMMA 3.3 Suppose that (, ) is a numerable Euclidean bundle. Then
there is a (fiberwise) de]ormation, , of (a,/) such that

(i) 0 id
(ii) w(E) c i,(B)
(iii) v is a homeomorphism, for 0 <= 1 which is the identity on i,(B).
(iv) v is a homeono, rphism on E(,,) for 0 <= <-_ 1.
(v) vt, agrees with t over b, with respect to the chosen coordinates.

The proof of the following theorem, except for the modifications which are
necessary to respect the additional structure, is due to Dold [1, Thm. 3.3].
It is, of course, possible to prove more general versions of the theorem, which
is stated in its present form specifically for application in this paper.
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THEOREM 3.4 (Dold). Suppose that o, and (’, ’ are numerable
C0(X, Y)-bundles over B and f is a map such that

id’B ------- B

commutes and is a fiber homotopy equivalence over each U of a numerable cover-
ing of B. Then, f is a fiber homotopy equivalence.

A proof of Theorem 3.1 is provided by defining f: E ---) E#,(.) by

f(e) (pl(e), v(e)

and applying Theorem 3.4. The Ux may be taken to be a common numerable
local trivialization cover of B. To see that f is a fiber homotopy equivalence
over each Ux it is sufficient (by arcwise connectivity) to verify that it is a
fiber homotopy equivalence over b. This can be proven directly since f is
representable over b, with respect to the chosen coordinates, by (p(e), yl (e)).

4. Topological manifolds
A topological manifold (with boundary) of dimension n, M is a separable

metric space such that, for each x e M, there is an open set, U, containing x,
which is homeomorphic to (either) R (or

R {(x, ,) RI-> 01).

We may assume, without loss of generality, that the closure of U is homeo-
morphic to either D or D.

If M is a topological manifold with boundary, we define the boundary of
M, bM, to consist of those points of M which do not have a neighborhood
homeomorphic to R. We also define 2M to be M [JM M and note that bM
and 2M are both topological manifolds.
Suppose M and N+ are two topological manifolds with boundary.

DEFINITmN 4.1 A one-to-one map f: M -- N is said to be a (proper)
locally flat embedding of M into N if, for every point x M\bM, there is an
open set U c N, containing f(x), and a homeomorphism

h (R"+, R") ---. U, V f :(M)

and, for every point x e bM, there is an open set U N, containing f(x),
and u homeomorphism

h (R+, R) ---+ (U, V :(M)).

A map which is, locally, a locally flat embedding is a locally flat immersion.
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We note that if f M - N is a locally flat embedding (immersion) of topo-
logical manifolds with boundary, then

f[b:bM-bN and 2f:2M--2N
are locally fiat embeddings (immersions) of topological manifolds.
Suppose that M and N are topological manifolds and f is a locally fiat

immersion.

PROIOSITION 4.2. A M -* M X M -* M 1 has the structure of a nu-
merable R’-microbundle, t called the tangent microbundle of M.

IROeOSITION 4.3. (id, f) M -- M X N -- M 1 has the structure of a
numerable (R’+k, R’)-microbundle, (f*tv, t), called the induced microbundle
off.
A proof of Proposition 4.2 was given by Milnor [11] which employed a special

case of the following lemma, which we shall use to prove Proposition 4.3.

LEMMA 4.4. Let I(n - ]; n) denote the topological group of homeomorphisms
of D+ onto itself which are the identity on S’+-1 and invariant on D. There
is a map

, (Int n) X (Int D) --./(n + k; n)

such that
(i) ,(x, y)(x) y
(ii) ,(x, x)(y) y.

In the proof of Proposition 4.3 it is helpful to keep in mind the case of a
locally flat embedding since, iu this case, it is possible to take (Es*N, E)
to be the pair (M X N, M X f(M)). Ia the general case, however, the pir
structure is slightly more complicated but follows, as well, from the following
argument. For each x e M, consider

h (R+, R’) (Us(), Us() I"1 f(U))

given by the local flatness structure off at x, where Us()(U) is a neighborhood
of f(x (x) in N(M). The (R+, R)-microbundle structure is, then, given
by

g U X R+, R’) --- M X N
defined by

g(y, z) (y, h(’),-(h-(f(x) ), 0)(/(0, "),(h-(f(x) ), 0), h-(f(y) )(z) )) ).
In the case of locally flat immersions we can takeE to be the union of the

images of R X 0 under the g.
Applying Theorem 2.4 to tM and (f*t, t) we define the tangent R-bundle,

r, and the induced (R+, R)-bundle, (f*rN, r). The homotopy normul
bunde of f is then defined by

Pf 12 (f* T2V, TM)
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If M and N are topological manifolds with boundary and f is a locally flat
immersion we define

As a corollary of Theorem 3.1 we have

THEOREM 4.5. Iff M N is a locally fiat immersi ffr is a fiber homot-
opy equivalent to

We note that this weak Whitney duality theorem, together with the struc-
ture of the bundles, is sufficient to construct a Stiefel-Whitney characteristic
class theory, see [2]. The following results are given to illustrate further the
similarity of the homotopy normal bundle and the normal bundle in the smooth
category.

PROPOSITION 4.6. Suppose that f M N is a locally fiat immersion; then

f is a locally fiat immersion of bM into bN such that is fiber homotopy
equivalent to .
The proof follows from Definition 4.1 and Theorem 3.4 via the inclusion

map.

THEOnE 4.7. Suppose that f M N and g N 0 are locally fiat
immersis; then gf is a locally fiat immersion and is fiber homotopy equivalent
to /*.

It is easy to see that gf is a locally flat immersion. To prove the remainder
of the theorem we let t denote the deformation defined by applying Lemma
3.3 to (g’r0, r) and t, the deformation defined by applying the lemma to
(f*r, r). Finally, let Pt denote the deformation gotten from applying
Lemma 3.2 to (g’r0, r). The fiber map

h E E f*()

is defined by h(e) (p(e), (p(e) ), (e) ). The proof is concluded by apply-
ing Theorem 3.4 as before.
In considering the question of inwriance of homotopy normal bundles under

isotopies one is lead to consider the concept of a concordance between two
locally flat immersions. It is a generalization of what one might call a locally
flat isotopy of locally flat immersions and for which it is possible to prove a
slightly stronger inwriance theorem.

DEFINITION 4.8. Two locally flat immersions, f and g, of M into N are
said to be concordant if there is a locally flat immersion

F:MXINXI
which extends

fX(0):MX(0)NX(0) and gX(1):MX()YX().
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THEOREM 4.9. If f and g are concordant locally fiat immersions then
and arefiber homotopy equivalent.

This can be proved by considering the homotopy normal bundle of the
concordance, applying the numerable "homotopy" theorem [5, pp. 48-51],
and Proposition 4.6.
In considering the equivalence of the homotopy normal bundle to other

normal structures it should be noted that Milnor [11] has shown that the
tangent microbundle of a smooth manifold is microbundle equivalent to the
tangent vector bundle so that the tangent Euclidean bundle is equivalent, as a
Euclidean bundle, to the tangent vector bundle. The situation for normal
structures is more complicated, making the following definition necessary.

DEFINITION 4.10. Suppose that f M -+ Nn+k is an embedding (immer-
sion) of topological manifolds, f is said to have a tubular neighborhood if
there is an Rk-bundle, (E,, p, M) and an embedding (immersion), F
such that

F:E N

(ii) ghere is a cover, {U}, such hat F ,-( is a homeomorphism.

TttEOREM 4.11. If f M "-+ N has a tubular neighborhood then (f’raT,
is (R+, R’)-bundle equivalent to (rM (R) ’, ’+).

A proof can be given following Milnor [11, TAm. 5.9]

COROLLARY 4.12. Tubular neighborhoods are unique up to fiber homotopy
equivalence.

COnOLLARV 4.13. If f is a smooth embedding or immersion of smooth mani-

folds the normal vector bundle, , is fiber homotopy equivalent to ,+

The first corollary follows from Theorem 4.11 since every tubular neighbor-
hood is fiber homotopy equivalent to +. The second is proven by showing
that, following Lang [8, p. 73], smooth embeddings and immersions have
tubular neighborhoods.

In the category of topological manifolds and locally flat immersions or

embeddings the situation is more complicated since Fadell has given different
constructions of the normal fiber space in each case. First, suppose that

f M -+ N is a locally flat embedding. Let No denote those paths in N
such that +(t) f(M) if and only if 0. Let N No [J C, where C denotes
the constant paths at points of f(M), and define p:N -+ M by
p(+) f-(+(0)). This is Fadell’s normal fiber space, .

(i) the diagram commutes
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THEOREM 4.14. , is afiber homotopy equivalent to ’I

This is proved by applying Theorem 3.4 to the map g Es - E given by
g(x)(t) pl_t(x), where pt is defined in Lemma 3.2.

If f is a locally fiat immersion the definition of Fadell’s normal fiber space is
much more difficult. Thus we shall not give the details of the following weak
equivalence theorem.

THEOREM 4.15. g E -- E defined as above, has the property that

g, H,(p-(x), p(x) \f(x)) ---, H,(p(x), p(x) \/(x))
is an isomorphism.

Here p-(x) is a function space similar to that used for embeddings and](x)
denotes the constant path at f(x). This seems to be the strongest statement
that can be made since the homotopy type of Fadell’s fiber is not known. The
proof of this theorem parallels that of the previous except that the argument
showing that g, is an isomorphism is precisely that given by Fadell [3] to
identify the weak homotopy type of the fiber.
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