RESTRICTED GORENSTEIN RINGS

BY
ABRAHAM ZAKS

Recently, Faith [4] and Levy [7] studied restricted quasi-Frobenius rings. In
this note we discuss some generalizations.

We start by observing that R is a restricted quasi-Frobenius ring iff R is a
restricted Gorenstein ring. Furthermore, R is restricted Gorenstein ring, and
R is a Gorenstein ring iff R/M” is a Gorenstein ring for every maximal ideal
M in R.

We define a sequence of classes of rings Go, G1 -+ by G; = (R|R/M’is a
Gorenstein ring whenever M is a prime ideal and ht M > 4}. It turns out that
R is a Gyiring iff R is a direct sum of ideals R; - - - R;, and R; is an Artinian
ring, or, a Dedekind domain for every 7,2 = 1, --- ,{. Also, R is a Gy-ring for
¢ 2> 2iff Krull-dim R < <.

We also study the classes G = {R|R/I is a Gorenstein ring whenever I
contains a prime ideal M such that ht M > j}. It turns out that G* contains
all rings of Krull dimension less than 2. Rings of Krull dimension ¢ that have
finite global dimension are G*-rings. In G" there are rings of Krull dimension
one, the global dimension of which is not finite.

0. Preliminaries

All rings are presumed to be commutative rings with an identity.

For a prime ideal M in R we denote by R the local ring of R at M. We set
ht M = Krull-dim R .

A ring R is a Gorenstein (quasi-Frobenius) ring if B is a Noetherian ring,
and inj dimg R < » (injdimz B = 0).

A ring R is a restricted Gorenstein (quasi-Frobenius) ring if B/I is a Goren-
stein (quasi-Frobenius) ring whenever I is a non-zero ideal.

Let F be a field and A an F vector space. By dimz A we denote the (vector
space) dimension of A over F.

By Spec B we denote the variety associated to B by taking the Zariski
topology on the set of prime ideals of R.

We quote some useful facts.

A. Let R be an Artinian local ring, with radical M, and set k = R/M.
Then R is a Gorenstein ring iff R is a quasi-Frobenius ring, and this is so
iff dim, Homg (k, B) = 1 (cf. [1]).

B. Let R be a Noetherian ring, and M a prime ideal. The kernel of the
canonical map R — Ry is the intersection of the primary components of (0)
which are disjoint from R — M, e.g. [9, Theorem 18, p. 225].
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C. Let M be a prime ideal in a Noetherian ring R, that is generated by r
elements, then ht M < r [8, p. 26].

D. Let R be a Noetherian ring of finite Krull dimension. If R is a Goren-
stein ring, then

inj dimgz B = Krull-dim B = Supy inj dimg, R,
and
gldim B = Supy gl dim Ry,

where M ranges over all maximal ideals of R.

E. Let R be a Noetherian domain. If dimgs M/M* = 1, for every
maximal ideal M in R, then R is a Dedekind domain [2].

A ring R is indecomposable if for every two non-zero ideals, M, N such that
R = M + N, the intersection M n N is non-zero. Notice that R is indecom-
posable iff 0 and 1 are the unique idempotents in R.

F. Let R be a Noetherian ring without nilpotent elements, then R, con-
tains no nilpotent elements for every prime ideal M in R.

It might be helpfull to think of dimg/ M /M ? for a maximal ideal M in R,
as the “dimension of the tangent space to Spec B at M”’. The condition
M D, N for a prime ideal N in R can then be viewed as “M is not an isolated
point on Spec B” or “M lies on a subvariety of Spec R, of dimension at least
one”. Finally, Ry being a regular local ring should be understood as “M is a
non-singular point of Spec R”.

1. Go-rings

A ring S is a Go-ring if for every prime ideal M, S/M* is a Gorenstein ring.

If S is an Artinian Gy-ring, then it readily follows that S is a direct sum of
ideals S; - - - S:, where S; is a local Artinian, uniserial ring for¢ = 1, --- , ¢
[ef. 7]. Furthermore, one easily verifies that such a ring S is necessarily a
Gyring. This completes the study of Artinian Go-rings.

Let S be a Noetherian ring, and let N be its nilpotent radical. Set B = S/N.
Since idempotents from R can be lifted to S, it follows that R is a direct sum of
ideals Ry - -+ R. iff S is a direct sum of ideals S; --- S;, and B; = S;/Nn S;
fors =1, ---,¢ In particular S is indecomposable iff R is indecomposable.

Let M’ be a maximal ideal in S, and M = M’/N the corresponding maximal
ideal in R.

Lemma 1. If dimgae M’/M” = 1 then Ry is a regular local ring of dimension
less than or equal to one.

Proof. If M” D N, then from dimgu M'/M” = 1 it follows that
M' = M" 4+ N. Since M*> = M” + N/N = M’/N, it follows that in Ry,
MRy = (MRy)’. Since MRy is the Jacobson radical of Ry,

Noes (MRyx)" = (0),
therefore MRy = (0) and Ry is a field.
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Otherwise M D N and thus dimg/» M/M* = dimgs M’/M” = 1. Hence
there exists an element m such that M = Rm -+ M*. Therefore in R we have
MRy = mRy + M’Ry = mRy + (MRy)?, and by the lemma of Nakayama
we conclude that MRy = mRy . Therefore, Krull-dim Ry < 1. If By is
Artinian, then since B contains no nilpotent elements it follows that R is a
field. Otherwise Krull-dim R, = 1, and since MRy = mRy , it results that
Ry is a regular local ring, of dimension one. This completes the proof of the
lemma.

ProrositioN 2. Let S be a Noetherian indecomposable ring. If
dims/M' ]M-,/]lll2 =1

Jor every maximal ideal M' in S, and if S is not an Artinian ring, then S isa
Dedekind domain.

Proof. By Lemma 1, Ry is a regular local ring of dimension at most 1 for
every maximal ideal M in B. Thusgldim R < 1. Since R is not an Artinian
ring it follows that gl dim B = 1. But an indecomposable ring of global di-
mension one is a domain, since for every element r > 0 in B, Rr is a projective
ideal, hence the exact sequence 0 — ann (r) — R — Rr — 0 splits, thus
ann (r) = (0). Therefore R is a Dedekind domain. This implies that N is a
prime ideal in S. Since S is not an Artinian ring, then for every maximal ideal
M’ of 8, it follows that M’ contains N. The condition dimgy M'/M”? = 1
implies the existence of an element m in M’ such that M’ = Sm + M”. Local-
izing at M’ it now readily follows that M’'Sy = mSy- , i.e. Sy is a principal
ideal ring. Since M’ D N, it results that Krull-dim Sy > 1. Hence Sy is
aregular local ring. In particular Sy is a domain. Since (0) in S is aprimary
ideal, the canonical map S — Sy is an embedding. In particular this implies
N = 0. Therefore S = R is a Dedekind domain.

The assumption dimgs M’/M” = 1 holds whenever S/M"” is a quasi-
Frobenius ring. Since we consider only maximal ideals, S/M"” is a quasi-
Frobenius ring iff S/M" is a Gorenstein ring.

Remark that if S is a Dedekind domain then all its proper residue rings are
quasi-Frobenius rings [7].

Finally, notice that if Krull-dim B = 1, then for every maximal ideal M,
M* = 0.

We therefore proved

TaEOREM 3. Let R be an indecomposable Noetherian ring of Krull dimension
one. Then the following are equivalent:
(1) R s a Dedekind domain.
@) Al proper residue rings of B are quasi-Frobenius (Gorenstein).
(i) R/M*® is a quasi-Frobenius (Gorenstein) ring for every mazimal ideal
M in R.
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LemmA 4.  Let R be a Noetherian ring that is a direct sum of ideals By ## 0 and
R £ 0. Then R is a Gyring iff Ry and R, are both Go-rings.

Proof. The proof is an immediate consequence of the fact, that for each
prime ideal P in R either Pn Ry = Ryorelse PnR: = R, .

We thus obtain the following combining Theorem 3, Lemma 4, and the
Artinian case.

TaEOREM 5. Let R be a Noetherian ring, then the following are equivalent:
(1) R s a direct sum of ideals Ry - -+ Ry . Each R; ts either an Artinian,
unisertal, local ring, or a Dedekind domain.
(ii) R and all its proper residue rings are Gorenstein rings.
(i) R/M* is a quasi-Frobenius (Gorenstein) ring for every maximal ideal
M in R.

Under each of these equivalent conditions, inj dimg;r B/I < 1 for every
ideal I in R, and gl dim R/M < 1 for every prime ideal M in R.

If R is not an indecomposable ring, then one easily verifies that condition
(ii) is equivalent with

@(ii)* All proper residue rings of R are Gorenstein rings.

Theorem 5 can be viewed as the characterization of Go-rings. Another char-
acterization may be obtained from

ProposiTioN 6. Let R be a Noetherian ring and M a maximal ideal; then
R/M* is a quasi-Frobenius ring iff Ry is a principal ideal ring.

Proof. If R/M” is a quasi-Frobenius ring then dimpg/» M/M* = 1. This
implies the existence of an element m in M for which ¥ = Rm + M*. Then
localizing at M this implies MR, = mRy , therefore Ry is a principal ideal
ring.

Conversely, R being a principal ideal ring is either a uniserial Artinian ring
or else a Dedekind domain. In any event Ry/M R is a quasi-Frobenius ring.
Since R/M* = (R/M*)aym»y = Ru/M’Ry it follows that R/M” is a quasi-
Frobenius ring.

2. Gy-rings

Let S be a Noetherian ring, N its nilpotent radical and set B = S/N.
Throughout this section we assume that R is an indecomposable, non-Antinian
ring, unless otherwise specified.

We recall that R is a Gy-ring if R/M? is a Gorenstein ring whenever M is a
non-minimal prime. Then if R is an Artinian ring then obviously R is a
Gl-ring.

Observe that if R is a domain then R is a Gy-ring iff R is a Go-ring; therefore
we have
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ProrosiTioN 7. Let R be a Gi-domain; then R s a Dedekind domain.
Our first aim is to study the ring R instead of studying the ring S; we need
Lemma 8. If 8 7s a Gi-ring then so is every residue ring of S.

Proof. Let I be any ideal in S, and consider the ring S/I. If S/I is an
Artinian ring, then obviously we are done. Otherwise, there exists prime
ideals My, M in S such that I € My C. M,. Since S is a Gy-ring we have
that S/M3 is a Gorenstein ring. Assume furthermore that M, is amaximal
ideal in S. This implies by Proposition 6 that Sy, is a principal ideal ring.
Since My C . M, it turns out that Krull-dim Sy, > 1, therefore Sy, is a regular
local ring. In particular M; Sy, = 0. It therefore follows that Krull-
dim S < 1. In particular Krull-dim S/I < 1, therefore it suffices to prove
that for every non-minimal prime M’ in S/I, we have that (S/I)/M” isa
quasi-Froebenius ring. But from I C M, we now obtain

ISM2 C M1SM2 =0 and (S/I)(Mz/z) = SMz/ISsz

1.e. (S/I)uyn is a regular local ring. Therefore by proposition 6 we havethat
(S/I)/(Ms/I) is a quasi-Frobenius ring. This proves that S/I is a Gy-ring

In particular if S is a Gi-ring then R is a Gi-ring. We quote the following
as a corollary.

CoroLLARY 9. If S is a Gi-ring then Krull-dim S < 1.

This was proved while proving Lemma 8.

Since R is presumed to be not an Artinian ring we will restrict ourselves to
the case Krull-dim R = 1. In R there are no nilpotent elements, thus there
are no nilpotent elements in R, . Hence if Krull-dim Ry = 0, Ry is a field.
If Xrull-dim Ry # O then necessarily Krull-dim Ry = 1. This implies that
M is not a minimal prime. Therefore, if R is a Gi-ring, R/M” is a quasi-
Frobenius ring hence Ry is a regular local ring.

We therefore proved that Ry is a regular local ring for every maximal ideal
in B if R is a Gyring. Since R is assumed to be indecomposable, from
gldim R = Supy gl dim Ry = 1—where M ranges over all maximal ideals M/
in R—it follows that R is a Dedekind domain.

Thus, if S is a Gy-ring, we have by Lemma 8 that R is a Gy-ring, hence B
is a Dedekind domain. It follows that N is a prime ideal in S. Since Krull-
dim S = 1, we have that for every maximal ideal M in S, M D. N. Hence
S/M? is a quasi-Frobenius ring. By Proposition 6, Sy is a principal ideal ring.
M D, N implies that Krull-dim S, > 1, therefore Sy is a regular local ring.
The canonical map S8 — Sy is thus an embedding of S in a domain, therefore
N = 0,i.e. R = §/N = 8 is a Dedekind domain.

Finally, notice that if R is the direct sum of ideals B; # 0 and R, # 0 then
R is a Gy-ring iff Ry and R, are Gy-rings.

We therefore established the following:
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TarorEM 10. Let R be a Noetherian ring. Then the following are equiva-
lent:
i) R s a Gi-ring.
(ii) R ¢s a direct sum of ideals Ry --- R;. For every 1,1 < 7 < t, R; is
etther an Artinian ring or else a Dedekind domain.
(iii) For every proper ideal I of R that properly contains a prime ideal N of
R, R/I’ is a Gorenstein ring.
@iv) For every maximal ideal M of R, if M s not a minimal prime then
R/M’ is a quasi-Frobenius ring.
Under each of these equivalent conditions R/I is a quasi-Frobenius ringwhen-
ever I is a proper ideal that properly contains a prime ideal N. Furthermore, for
any prime ideal N in R, gl dim R/N < 1.

3. Gi-rings

A similar treatment to the one used above will lead to the following con-
clusion: If M is a maximal ideal and R/M” is a quasi-Frobenius ring then
ht M < 1. Therefore we have

TueorEM 11. Let R be a Noetherian ring. Then R is a Gi-ring (2 > 2)
iff Krull-dim R < 1.

Some further properties that can be easily derived are that if R is a G;-ring
then so are all its residue rings. Conversely, if all residue rings of R are G-
rings then R is a G;-ring if R is not a domain. If R is a domain then R is a
G,q.l-ring.

If I is an ideal that contains a prime ideal M in a Gy-ring R, then R/I is a
Gi—-ht M—ring.

4, @-rings

We start with G"-rings. Recall that R is a Gring if R/I is a Gorenstein
ring whenever I contains a prime ideal. This readily implies that if R is a
G"-domain, then R is a Dedekind domain. Futhermore, if N is a prime ideal
then R/N is a Dedekind domain. This results since if N is non-maximal, and
M is any maximal ideal containing N, then (M/N)* = M* + N/N = M/N;
thus R/M* + N is a quasi-Frobenius ring. In particular this implies that
Krull-dim R < 1.

Since every Artinian ring is obviously a G'-ring, and since if R is a direct
sum of ideals Ry - - - R, then R is a G*-ring iff R;is a G*-ring for¢ = 1, -+ - , ¢,
we will restrict ourselves to indecomposable rings of Krull dimension 1.
Furthermore, if S is a G*-ring, and N its nilpotent radical, then R = S/N is
again a G'-ring. Then R is an indecomposable G'-ring without nilpotent
elements.

If M is a maximal ideal in R and M is a minimal prime, then R is neces-
sarily a field. If M is a maximal ideal that properly contains a prime ideal
M, , then Ry/Mi Ry is a regular local ring of dimension one and Ry, is a field.
This implies the existence of an element m in M such that MRy = mRxy
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+ MiRy. Since Ry, = (Bu)u, is a field it follows that the kernel of the
canonical map Ry — Ry, is M1 Ry . Unless M1 Ry = (0), this implies that
0) = MiRuyn---nM;Ry, where M;Ry are prime ideals for every
’L',’L. = 1, e ,tandM;RM # MRM.

Set Ny = MyRyn---nM;Ry, and set M’ = My Ry + N;. Since
Ru/ury is a regular local ring, and since M’ is a direct sum, it follows that
for some integer j,7 > 0,m’ e Ny . Since N is the intersection of prime ideals,
this immediately implies that m e Ny. Hence M’ = MRy, and Ny = mR,, .
One may now proceed by induction to prove that MR is the direct sum of the
cyclic ideals Ny for £ = 1, --- , t where N}, is the intersection of M; Ry for
1 # k.

Conversely, if for every maximal ideal M in B, MRy is a direct sum of cyclic
ideals then R is a G*-ring. We will be done if we can prove that for any prime
ideal K in R, Ry/KRy is a uniserial, Artinian ring, or a Dedekind domain,
whenever K < M. But if K is a prime ideal then KR, C MRy is a prime
ideal. Therefore, if MRy = mi Ry + -+ + my By (direct sum), then KRy
contains my - - - m, except, maybe, for one 7, say m; ¢ KRy . Thus Ry/KRxy
is a residue ring of Ru/ny-+-m;_1,miy1---m, that is a regular local ring of dimen-
sion one, since m; is not nilpotent modulo (m; - - - My, Miyy - - - My).

Since in S, every prime ideal contains N, the above result means that S is a
G'-ring iff for every maximal ideal M in S, MSu/NSy is a direct sum of cyclic
ideals.

The Artinian rings and the Dedekind domains are trivial examples of
G'-rings.

Another example results by taking a ring S with non-zero nilpotent radical
N, so that S/N is a Dedekind domain. Such a ring may be obtained as a
residue ring of a domain A of global dimension 2, by a primary ideal.

As for G'-ring for ¢ > 2, one easily verifies that if R is a G"-ring then so are
all its residue rings. Conversely, if all proper residue rings of R are G’-rings
then R is a G*ring. Tt will be a G-ring if R is not a domain.

Also if R is a direct sum of ideals Ry - - - R, , then R is a G*ring iff R; are
Qring forj = 1, -+ , t.

Finally if R is a G"-ring then, by arguments similar to the one used above it
will result that Krull-dim R < 7 — 1 or else Krull-dim R = 7 and B/M is a
Dedekind domain for every prime ideal M in R for which ht M = 2 — 1. The
converse may be verified easily. Remark that these conditions are satisfied
by rings of finite global dimension, and of Krull-dim R = <. At least for
i = 1 we had G"-rings of Krull dimension one having infinite global dimension.
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